
Deng et al., Sci. Adv. 11, eado9970 (2025)     3 January 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 18

C E L L  B I O L O G Y

cSTAR analysis identifies endothelial cell cycle as a key 
regulator of flow- dependent artery remodeling
Hanqiang Deng1,2†, Oleksii S. Rukhlenko3†, Divyesh Joshi1, Xiaoyue Hu2, Philipp Junk3, 
Anna Tuliakova3, Boris N. Kholodenko3,4,5*, Martin A. Schwartz1,2,6,7*

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but 
regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation 
(cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), 
physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel in-
ward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a pub-
licly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory 
network controlling EC states and made several notable predictions. Particularly, inhibiting cell cycle–dependent 
kinase (CDK) 2 was predicted to initiate inward remodeling and promote atherogenesis. In vitro, PSS activated 
CDK2 and induced late G1 cell cycle arrest. In mice, EC deletion of CDK2 triggered inward artery remodeling, pul-
monary and systemic hypertension, and accelerated atherosclerosis. These results validate use of cSTAR and iden-
tify key determinants of normal and pathological artery remodeling.

INTRODUCTION
The vascular system has evolved to provide adequate circulation to 
the tissues in the face of changing demand due to tissue growth, re-
gression, and changes in metabolic activity. An important aspect of 
this homeostatic regulation involves sensing of fluid shear stress 
(FSS) from blood flow by vascular endothelial cells (ECs) (1–3). ECs 
encode a FSS set point such that sustained FSS above or below this 
level triggers vessel outward or inward remodeling to increase or de-
crease lumen diameter and restore FSS to the initial level (4,  5). 
Available evidence suggests that FSS near the set point activates sig-
naling and gene expression programs that stabilize the vessel, where-
as FSS above or below this range destabilizes the vessel to permit 
remodeling (4). Failure of these homeostatic mechanisms results in 
tissue ischemia associated with excessive inward remodeling in cor-
onary and peripheral artery disease. Vascular malformations associ-
ated with excessive outward remodeling and vessel fragility are much 
less common but must also be considered diseases of compromised 
vascular homeostasis.

Regions of arteries that bend sharply, branch, or bifurcate de-
velop FSS with lower magnitude and complex fluctuating changes 
in direction during the cardiac cycle, termed disturbed shear stress 
(DSS), generally modeled in vitro by oscillatory shear stress (OSS) 
(6). Artery segments under DSS are susceptible to metabolic and 
inflammatory stimuli that induce the formation of atheroscle-
rotic plaques, a form of pathological vessel remodeling. Most plaques 
are clinically silent due to compensatory outward remodeling by 

the unaffected parts of the vessel that preserves lumen diameter, 
often termed Glagov remodeling (7). Only in late stages with more 
severely inflamed vessels does this mechanism fail, at which point 
the encroaching plaque decreases lumen diameter to cause tissue 
ischemia.

These ideas can be conceptualized in terms of a set of interlinked 
FSS-dependent EC states and transitions between them (4,  8,  9). 
Physiological FSS [physiological shear stress (PSS)] at or near the set 
point confers vessel stability with low permeability, low cell prolif-
eration and turnover, and low inflammation (10). Low FSS [low 
shear stress (LSS)] that triggers inward remodeling is associated 
with higher EC turnover, higher EC inflammatory activation with 
recruitment of leukocytes that assist remodeling, and smooth 
muscle contraction (11). High FSS [high shear stress (HSS)] trig-
gers outward remodeling associated with cell proliferation, inflam-
matory activation and leukocyte recruitment, and smooth muscle 
cell relaxation and proliferation (12). DSS alone is insufficient to 
induce remodeling but renders vessels susceptible to pathological 
stresses (13). FSS magnitude and patterns thus govern transitions 
between distinct EC states that drive vessel remodeling, stability, or 
susceptibility to additional stresses that lead to disease (14).

We have identified multiple pathways that show sharp FSS-
dependent regulation and that participate in these processes. For 
example, Smad2/3 are specifically activated at low FSS (LSS) and re-
quired for vessel inward remodeling (15). By contrast, Smad1/5 are 
specifically activated by physiological FSS (PSS) to signal vessel sta-
bility (4,  16) and suppressed by paraphysiological HSS through a 
Krüppel-like factor 2 bone morphogenetic protein endothelial regu-
lator (KLF2-BMPER) pathway (17). However, our understanding of 
these crucially important pathways remains highly incomplete. This 
limited understanding is a major obstacle to developing safe and ef-
fective treatments for coronary, peripheral, and cerebral artery disease 
and vascular malformations, which are characterized by aberrant ves-
sel remodeling that leads to vascular insufficiency and tissue ischemia 
or to vessel instability, rupture, and bleeding.

Developing improved therapies requires a deep understanding of 
the regulatory networks that define EC states and transitions between 
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states. Recent efforts applied computational approaches to identify 
different cell states and predict molecular pathways that govern cell 
trajectories and cell state transitions (18–20). A systems biology ap-
proach, cSTAR, can use and integrate a variety of omics data to 
identify key regulators of cell state transitions and predict experi-
mental outcomes (21).

FSS potently determines EC phenotype, controlling expression 
of several thousand genes (22, 23). However, a systematic analysis of 
the distinct transcriptomic responses to each of these flow patterns 
has not been reported. Thus, to gain insight into these processes, we 
assessed responses of cultured ECs to LSS, PSS, HSS, OSS, and static 
(STAT; no flow) conditions. The use of cSTAR accurately separated 
the transcriptomic patterns of EC states under these conditions and 
demonstrated the existence of three orthogonal vector axes that pre-
cisely characterize EC state transitions. Combining this information 
with published EC drug perturbation data [LINCS L1000 dataset 
(24)] enabled reconstruction of a signaling network that controls EC 
state transitions and suggested that cell cycle plays a central role in 
these processes. Experimental studies confirmed these predictions, 
demonstrating distinct inflammatory mediators under LSS versus 
OSS and showing that cell cycle position determines pro- and anti-
inflammatory susceptibility, with CDK2 as a major determinant of 
the stable, anti-inflammatory state in quiescent ECs under physio-
logical shear stress.

RESULTS
cSTAR analysis of EC transcriptomic data under flow
Human umbilical vein ECs (HUVECs) were subjected to OSS 
(0.5 ± 4 dynes/cm2), LSS (3 dynes/cm2), PSS (16 dynes/cm2), and HSS 
(40 dynes/cm2) for 24 hours, in each case in comparison to STAT as 
an internal control. The total RNA was extracted and prepared for 
RNA sequencing (RNA-seq). The fold changes in expression com-
pared to the control static condition were considered as points in the 
transcriptomic dataspace (see Materials and Methods).

In the initial cSTAR step (21), we used machine learning tech-
niques, such as support vector machines (SVMs), to exploit the high-
dimensional omics space and construct separating surfaces between 
distinct EC states (technically, the SVM algorithm with a linear kernel 
from the scikit-learn python library was applied to build a maximum 
margin hyperplane that distinguishes different cell states). SVM is rec-
ognized as one of the top-performing algorithms for classification 
tasks (25). It is particularly effective when the number of features 
greatly exceeds the number of samples, which is precisely the scenario 
addressed in this study (26).

Directions in the transcriptomic space are specified by the state 
transition vectors (STVs), which are unit vectors normal to the hy-
perplanes that separate cellular phenotypic states. After building the 
STVs, cSTAR computes quantitative scores of cell phenotypic states 
termed dynamic phenotype descriptors (DPDs) that describe the 
phenotypic cell features associated with each STV. These metrics are 
determined by the Euclidean distances between the separating sur-
face and the cell state, with plus or minus sign depending on the STV 
directions. If all STVs are orthogonal, then transcriptomics changes 
along either STV affect distinct phenotypic features that are associ-
ated with different DPDs and different molecular processes (27).

We aimed to find the STV directions that describe and deter-
mine three different EC functions: (i) FSS sensing (STVFSS) that dis-
tinguishes FSS magnitude, (ii) stability (under PSS) versus tendency 

for inward (LSS) or outward (HSS) vessel remodeling (STVremod), 
and (iii) abnormal remodeling under OSS (STVOSS). Therefore, we 
used the SVM to separate different transcriptomic responses that 
correspond to distinct flow conditions and cell phenotypic respons-
es. Accordingly, the calculated STVs and DPD scores are denoted by 
different subscripts. The subscript “FSS” corresponds to the separa-
tion of LSS and HSS transcriptomic responses, the “remod” sub-
script corresponds to the separation of PSS versus LSS and HSS 
taken together, and the “OSS” subscript corresponds to the separa-
tion of OSS versus PSS, LSS, and HSS taken together. Grouping of 
LSS and HSS transcriptomic states together versus PSS state is ex-
plained by the fact that remodeling and inflammation pathways are 
activated in both LSS and HSS states, whereas there is no remodel-
ing/inflammation in PSS state, which is stable. Likewise, OSS state is 
analyzed versus combined other FSS states because OSS is used to 
model EC pathological conditions (6). The resulting STVFSS, STVremod, 
and STVOSS (tables S1 and S2) are mutually orthogonal, suggesting 
distinct EC transcriptomic and phenotypic responses to perturba-
tions along these axes. Robustness of the EC state classification and 
the DPD score variability was rigorously tested using cross valida-
tion, as we did previously (21).

DPD scores calculated along each STV (Fig. 1, A and B) reveal 
that the remodeling scores, as quantified by DPDremod, for EC tran-
scriptomes under both OSS and STAT conditions substantially dif-
fer from other EC states (Fig. 1A). These remodeling scores are 
higher than the scores under PSS, where vessels are stable, but lower 
than under LSS and HSS that induce strong vessel remodeling. We 
conclude that OSS and STAT induce a state susceptible to remodel-
ing, although to a lesser extent than LSS and HSS. The findings for 
OSS correspond well to behaviors in vivo, where regions of arteries 
under OSS are stable if unperturbed but show high susceptibility to 
inflammatory and metabolic stresses, which result in preferential 
inflammatory gene expression and ultimately formation of athero-
sclerotic plaques (28). ECs under STAT do not exist in vivo, but our 
result aligns with general observations that PSS reduces inflamma-
tory gene expression and cell proliferation to levels below those ob-
served under static conditions (29).

Molecular features described by the DPDFSS scores that distin-
guish LSS from HSS (Fig. 1, A and B) are involved in inward versus 
outward remodeling. The DPDOSS scores of OSS and STAT states are 
also notably close to each other and significantly higher than the 
scores under all other FSS conditions (Fig. 1B). Figure 1 (A and B) 
demonstrates that the DPDFSS scores of EC responses under STAT 
and OSS conditions closely resemble the DPDFSS scores under PSS 
condition. This suggests that static and OSS conditions predispose 
vessels to remodeling (i.e., reduce stability) but without a preference 
for inward versus outward directions. Again, this result is consistent 
with the observation that artery regions under disturbed flow are 
stable but susceptible to inflammatory and metabolic stimuli (28). 
The similarity in the DPDFSS and DPDOSS scores does not indicate 
that OSS and STAT states are identical but rather that they have 
some patterns of gene expression in common. For DPDFSS, it implies 
that neither OSS nor STAT condition induces patterns of gene ex-
pression associated with responses to the FSS magnitude. Likewise, 
the similar DPDOSS scores between OSS and STAT imply similar 
responses of gene expression associated with abnormal remodeling. 
Although the OSS state is closer to the STAT state than to the PSS, 
HSS, and LSS conditions, these two states are by no means identical, 
as can be seen for the difference in their DPDremod scores.
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Fig. 1. cSTAR analysis of EC states under different flow conditions. (A to D) RNA-seq data from ECs under OSS, LSS, PSS, HSS, or STAT conditions for 24 hours were ana-
lyzed, and DPD scores were calculated. (A) Two-dimensional (2D) plot of phenotypic scores in the DPDFSS and DPDremod plane. (B) 2D plot of phenotypic scores in the 
DPDFSS and DPDOSS plane. (C and D) Top GSEA Hallmark (HM) gene sets that contribute to the STVremod [(C)] and STVOSS [(D)]. The components of STVs were used as the 
GSEA input for the GSEA hallmark gene set. Positive-normalized enrichment score (red) reflects an increase in a molecular process while moving along the corresponding 
STV, and negative-normalized enrichment score (blue) reflects a decrease. Size of circles corresponds to the number of genes in STV corresponding to the specific GSEA 
term. (E) Scatter plot of the DPDremod and DPDOSS scores calculated for in vivo single-cell RNA-seq data (33) from the left carotid artery partial ligation mice model: 2L, 
2 days left carotid artery; 2R, 2 days right carotid; 14L,14 days left carotid; 14R, 14 days right carotid. Histograms on the top and right present distributions of DPD values 
across one axis.
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While both LSS and OSS are often considered atherogenic (28), 
our analysis indicates that these two states are distinct, as evident 
from their distinct positions within the planes representing the phe-
notypic features of EC states (Fig. 1). To gain initial insight into the 
differences between physiological and pathological vessel remodel-
ing, we applied the gene set enrichment analysis (GSEA) (30) algo-
rithm to analyze the components of the STVremod and the STVOSS 
(Fig. 1, C and D). As described (31), this approach identifies the 
transcriptomic features that characterize these two remodeling pro-
grams, irrespective of whether the remodeling is directed inward or 
outward. We observed that both physiological (characterized by the 
STVremod components) and pathological (depicted by the STVOSS) 
remodeling are strongly associated with changes in cell cycle genes 
(Fig. 1, C and D). The STVremod and STVOSS were distinguished by 
(i) the presence of epithelial to mesenchymal transition genes in the 
STVremod but not in the STVOSS, (ii) suppression of inflammation 
response genes in STVremod and their activation in STVOSS, (iii) sup-
pression of NOTCH signaling in the STVremod but not in the STVOSS, 
and (iv) distinct patterns of chemokine expression. Specifically, che-
mokines induced by OSS promote macrophage recruitment, where-
as LSS-induced chemokines favor neutrophil recruitment (fig. S1A) 
(32). These results thus predict differential immune cell recruitment 
under LSS versus OSS. To test this notion in vivo, we created LSS 
and OSS in the mouse carotid artery using different ligation proto-
cols (fig. S1, B and C). Both protocols increased infiltration of both 
neutrophils and macrophages, consistent with their inflammatory 
nature, but neutrophil infiltration was more pronounced under LSS 
(fig. S1, D and E), whereas macrophage infiltration was greater un-
der OSS (fig. S1, F and G). The increase in immune cell infiltration 
indicates that inflammatory processes are indeed activated during 
both physiological vessel remodeling (guided by STVremod) and 
pathological (guided by STVOSS) remodeling. This suggests that the 
GSEA-based conclusion of suppressed inflammatory processes dur-
ing physiological remodeling (Fig. 1C) is overly simplistic, as certain 
inflammatory processes are still activated in this context.

To further test the in vivo relevance of the DPD scores derived 
from in vitro data, we computed these scores for single-cell RNA-
seq data from a published carotid ligation protocol that induces OSS 
(left carotid ligated, right control) (33). Figure 1E displays the com-
puted DPDremod and DPDOSS scores for individual ECs on a scatter 
plot. Notably, ECs from the operated left carotid artery at 2 and 14 days 
after surgery (2L and 14L) exhibit the significantly higher DPDOSS 
scores compared to control right carotids (2R and 14R). DPDOSS scores 
were slightly higher for ECs from the left carotid at 2 days than at 
14 days, whereas the DPDremod scores showed the opposite pattern. 
This suggests that exposure to OSS initiates negative feedback that 
partially dampens inflammation, consistent with in vivo observa-
tions (34, 35). Our in vitro–derived STVs and DPDs from different 
flow conditions are thus supported by in vivo results.

Integrating high-throughput LINCS perturbation data
The derived STVs and DPDs aid in comprehending the differences 
between EC states but do not reveal the causal connections that regu-
late these states. To infer these connections, cSTAR relies on pertur-
bation data, which are responses measured in the same omics data 
space as the STVs and DPDs (21). Perturbations can be genetic, such 
as small interfering RNA (siRNA), or with small-molecule inhibitors 
or activators. The LINCS datasets report responses to drug perturba-
tions but only under STAT condition and thus are insufficient for 

constructing the STVs/DPDs and gaining insights into the core net-
work that determines EC phenotypic transitions. However, merging 
our data with the LINCS L1000 transcriptomics perturbation data 
for HUVECs (24) elucidates how drug perturbations affect cell states 
and facilitates the inference of causal connections within the core 
network governing EC state transitions (Fig. 2A). This data integra-
tion will enable us to infer how core pathways control EC phenotypic 
features that will be included as modules in the core network and 
expressed by different DPD metrics.

The core network components are chosen on the basis of two key 
criteria. First, these components must significantly influence the STVs. 
Second, their perturbations should substantially affect DPDs scores, as 
outlined in Materials and Methods. As transcriptomics patterns for the 
OSS state are close to those for the STAT state (Fig. 1), we calculated log 
fold changes (LFCs) of transcriptomic responses to drug perturbations 
with respect to the dimethyl sulfoxide controls using LINCS data. Com-
bining these transcriptomic responses with the STV based on our data 
enabled us to compute the changes in the DPD scores following drug 
perturbations (Fig. 2A). This protocol identified components of the core 
regulatory network controlling both OSS and STAT states, as well as EC 
transitions to other states. These components include vascular endothe-
lial growth factor receptor (VEGFR), transforming growth factor–β re-
ceptor (TGFβR), bromodomain (BRD) family, MAPK kinase (MEK)/
extracellular signal–regulated kinase (ERK) pathway, phosphatidylino-
sitol 3-kinase (PI3K)/AKT/mTOR pathway, protein kinase C (PKC), 
p21-activated kinase (PAK) kinase family, cell cycle-dependent kinase 
(CDK1/2), and Aurora kinase family.

Inferring causal connections in the core network that 
controls EC state transitions and phenotypes
The LINCS L1000 datasets contain only transcriptomic responses to 
drug perturbations. However, to infer causal connections within the 
core network pathways regulating both OSS and STAT states and EC 
transitions, it is imperative to ascertain the responses in pathway activi-
ties, including the kinases and BRD proteins that were affected by drug 
perturbations. The existing methods for identifying enzyme transcrip-
tional signatures and estimating enzyme activities are founded on data-
base knowledge and cover only a few well-studied pathways (21, 36). 
Therefore, we developed a data-driven identification of enzyme activity 
signatures. It enabled us to deduce not only the drug-induced altera-
tions in the activities of well-known core network modules, such as the 
MEK/ERK or PI3K/AKT/mTOR pathways, but also for enzymes whose 
transcriptional signatures are not well-established, such as Aurora ki-
nases and PAK (Materials and Methods).

We previously developed modular response analysis (MRA) 
(37,  38) and its Bayesian reformulation (BMRA) (39) to precisely 
reconstruct causal connections between network nodes, including 
feedback loops, from perturbation data. Each node in the network 
represents a reaction module, which could be a single protein, gene, 
or pathway or any entity defined by its input-output relationships. 
This enables us to incorporate EC phenotypes, quantified through 
the DPDs, as network modules. The DPD modules contain infor-
mation about the performance of the cell-wide network, which 
is controlled by the core regulatory network that plays a key role in 
determining EC phenotypic features.

MRA quantifies the network topology in terms of connection co-
efficients, i.e., connection strengths, that quantify the immediate im-
pact of a change in a node (A) on another node (B), assuming that 
the activities of all other nodes are held constant to prevent indirect 
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Fig. 2. cSTAR reconstruction of the core network driving EC cell fate decisions. (A) Schematic illustrating the data analysis pipeline and the reconstructed core net-
work. RNA-seq data from different flow conditions were used to obtain the STVs, and perturbation data from LINCS database (https://clue.io/data/CMap2020#LINCS2020) 
were used to infer the wiring of the core network and its connection to the phenotypic modules (DPDremod and DPDOSS). The resulting inferred network is presented at the 
bottom. Arrowheads indicate activation, and blunt ends indicate inhibition. Line widths indicate the absolute values of interaction strengths. Flow chamber was adapted 
from (81). (B) Global impact scores of the effect of perturbation of each core network module on the rest of core network components (blue) and on the cells’ phenotype 
(red) calculated as L2 norm of the relevant column in the global response matrix R = −r

−1 (Materials and Methods) (C) Global impact of the core network modules on the 
direction of vessel diameter change (calculated using the DPDFSS) and vessel remodeling program regardless of the direction (calculated using the DPDremod).

https://clue.io/data/CMap2020#LINCS2020
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influence. The connection coefficients cannot be directly measured 
because perturbations to any node rapidly propagate through the 
network, masking direct, causal connections (40). We use BMRA 
because of its enhanced resilience to noise and its reduced demand 
for perturbation data, as compared to MRA. Moreover, BMRA offers 
the flexibility to incorporate pre-existing knowledge about the net-
work in the form of a prior distribution. In BMRA, the inputs consist 
of the changes in the activities of core network components induced 
by drug perturbations, along with a prior distribution, which may 
contain all zeros if no prior knowledge is available. The outputs of 
BMRA encompass the inferred connections, the associated 
connection strengths, and their respective confidence intervals 
(21, 39). Critically, BMRA calculates the confidence intervals for 
each inferred connection, which estimates robustness of the in-
ferred causal connections, including connections to the pheno-
typic DPD modules (21).

The inferred network is detailed in table S3 and Fig. 2A. While its 
causal connections and strengths quantify the local impact of each 
node on others, they do not offer insights into the overall or global 
changes (37). The forward MRA approach allows us to calculate 
how perturbation of each module propagates through the network 
and enables prediction of the global impact of each node (see Mate-
rials and Methods), highlighting the significance of each direct 
causal connection for the global changes in cell state (41, 42).

To gain insight into the control of EC remodeling programs, we 
analyzed both the inferred connection coefficients characterizing 
direct effects and the global system impacts of each node on the 
regulatory network and EC phenotype. Quantified by DPDremod, 
Aurora kinase and ERK emerge as the sole immediate drivers, 
while the VEGFR and PI3K pathways are the sole immediate sup-
pressors of physiological vessel remodeling. Other nodes affect the 
DPDremod scores via activation or inhibition of these nodes. Top 
three nodes exerting strongest global impacts on the regulatory 
network are PAK, PKC, and CDKs (Fig. 2B). The causal, local con-
nections reveal multiple mutual positive and negative feedback 
loops between the CDKs and other network nodes, and same for 
PAK (Fig. 2A). Summarizing, we found that cell cycle–related kinases 
(CDKs and Aurora kinase) and PAK play key role in computing cell 
fate decisions. PAK, CDKs, and ERK have the strongest impact on 
different EC phenotypic features (Fig. 2C). The positive impact of 
the CDK2 module on the DPDFSS score and its negative impact on 
DPDremod score suggest that CDK2 inhibition will induce inward 
vessel remodeling (where the DPDFSS decreases and DPDremod in-
creases). Figure 2C predicts that inhibition of CDKs, PI3K, and 
VEGFR will stimulate vessel remodeling by decreasing DPDremod, 
whereas inhibition of all other core network modules will suppress 
vessel remodeling.

The impact of signaling network modules on the DPDremod un-
derscores the importance of these nodes in normal vessel stability 
versus remodeling, while their impact on the DPDOSS suggests anti-
atherosclerotic effects (Fig. 2C). cSTAR calculations suggest that 
core network modules except CDK2 could facilitate atherosclerosis, 
with PAK being the most potent. Critically, cSTAR predicts that 
inhibiting CDK2 promotes atherosclerosis by activating the TGFβ 
pathway, an essential driver of plaque formation (Fig. 2A) (43).

Summarizing, the cSTAR analysis predicts that cell cycle is piv-
otal in regulating various shear stress–induced EC states (Fig. 2). 
Particularly, our analysis predicts that CDK2 inhibition will decrease 
the DPDFSS score and increase the DPDremod and DPDOSS scores, 

thus promoting both inward vessel remodeling and atherogenesis. 
While the roles that core network modules play in shear stress sig-
naling must be inferred with caution, they are consistent with nu-
merous studies linking shear stress to cell cycle regulation such that 
physiological shear stress inhibits while OSS/DSS promotes prolif-
eration (44–50). We therefore experimentally assessed the role of 
CDK2 in shear stress-dependent artery remodeling.

Effects of FSS on cell cycle
We first assessed cell cycle state under the different FSS conditions 
using the FUCCI reporter system that distinguishes cells in early G1, 
late G1 and S-G2-M. FUCCI is based on expression of the fusion 
proteins mCherry-hCdt1 and mVenus-hGem that are differentially 
ubiquitinated and degraded at different points in the cell cycle (51). 
During S, G2, and M phases (S-G2-M), only mVenus-Geminin is 
expressed, resulting in cytoplasmic green fluorescence (52, 53). Fol-
lowing mitosis, geminin is degraded, and cells are nonfluorescent 
(G0/early G1). As cells progress to late G1, mCherry-Cdt1 is expressed, 
and red fluorescence accumulates. We generated stable FUCCI-
expressing HUVECs, subjected these cells to different FSS condi-
tions for 24 hours, and scored cells as unlabeled, red, or green. We 
found that OSS increases cell cycle progression above the level seen 
under STAT as indicated by an increase in green cells (S-G2-M phases). 
LSS induces early G1 arrest (increased FUCCI negative, decreased 
S-G2-M) to a moderate extent. PSS induces much stronger late G1 
arrest (FUCCI red with very few in S-G2-M). HSS induces a higher 
fraction of cells in S-G2-M compared to PSS, about the same as 
STAT (Fig. 3, A and B). Cell cycle progression is thus ordered 
OSS > STAT = HSS > LSS > PSS. To confirm these findings, cells 
were labeled with the thymidine analog 5-ethynyl-2ʹ-deoxyuridine 
(EdU) during the last 2  hours of the 24-hour flow regimen and 
stained for this marker to identify cells that synthesized DNA in this 
interval. EdU labeling demonstrated that OSS induced the highest 
DNA synthesis, and LSS suppressed, PSS strongly suppressed, and 
HSS had little effect on DNA synthesis compared to static (Fig. 3, C 
and D). These results confirm the findings from the FUCCI reporter 
and identify an unexpected difference in the nature of cell cycle ar-
rest that depends on flow magnitude. They are also consistent with 
published findings that cell proliferation is increased under OSS and 
reduced by PSS (44, 47–50).

CDK2 activity and function in ECs
Active CDK2 complexed with cyclin E is thought to be the major 
determinant of the late G1-to-S transition (54). Our previous work 
showed that the Smad2/3 pathway, an important mediator of endo-
thelial inflammatory gene expression during atherosclerosis and 
low flow inward remodeling in vascular ECs, is directly inhibited 
by CDK2 (15). We therefore assayed CDK2 activity under these FSS 
patterns, mainly to determine whether the late G1 arrested state un-
der PSS is associated with active CDK2. For this purpose, we used 
a reporter construct, DHB-mVenus (55), whose phosphorylation 
by CDK2 triggers its translocation out of the nucleus (Fig. 4, A and 
B). HUVECs were cotransfected with DHB-mVenus plus histone 
2B (H2B)–mCherry as a nuclear marker; cells were then subjected 
to OSS, LSS, PSS, HSS, and STAT conditions. We found that PSS is 
the most effective among all conditions to increase the cytoplasm/
nucleus ratio, indicating CDK2 activity (Fig. 4, C and D). There-
fore, CDK2 is most active in the PSS and late G1-arrested state. The 
fact that CDK2 activity is higher under PSS than in cells under OSS 
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Fig. 3. Characterization of cell cycle state under different FSS. (A) Diagram of the FUCCI reporter. (B and C) FUCCI HUVECs were subjected to OSS, LSS, PSS, HSS, or static for 
24 hours. Cells were fixed, stained with 4′,6-diamidino-2-phenylindole (DAPI), and imaged as described in Materials and Methods. Representative images for these conditions are 
shown in (B). Scale bar, 100 μm. (C) Quantification of FUCCI-red, FUCCI-green–positive cells, and double-negative cells. n = 6 experiments. (D and E) HUVECs were subjected to flow 
patterns as in (A), labeled, and stained for EdU as described in Materials and Methods. Percent of EdU-positive cells was quantified. n = 6 experiments. Scale bar, 100 μm. Data are 
presented as means ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001. ns, not significant, calculated by one-way analysis of variance (ANOVA) with Tukey’s multiple comparison tests.



Deng et al., Sci. Adv. 11, eado9970 (2025)     3 January 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

8 of 18

that are cycling more rapidly is because in cycling cells, CDK2 is ac-
tive in a short window before entering S phase, whereas under PSS, 
CDK2 activity is sustained as long as cells remain in late G1 arrest.

To further evaluate how CDK2 affects cell cycle state, we performed 
CDK2 knockdown in FUCCI HUVECs (Fig. 5A). CDK2 depletion 
strongly reduced the fraction of cells in S-G2-M and increased early 
G1 arrest (Fig. 5, B and C), a hallmark feature of the LSS state (Fig. 
3C). This result was consistent under OSS (fig. S2). CDK2 is thus re-
quired not only for cell cycle progression but also for the specific late 
G1 arrest. We next carried out RNA-seq on CDK2 knockdown (KN) 

cells under STAT and PSS conditions for 24 hours. CDK2 knock-
down decreased the DPDFSS and increased the DPDremod and DPDOSS 
scores (Fig. 5, D and E) with greater changes under PSS than STAT 
conditions. These results support computational cSTAR predictions 
(Fig. 2C), indicating that CDK2 knockdown can initiate inward 
vessel remodeling and atherogenesis in vivo. In addition, different 
extents of cell state changes after CDK2 knockdown under PSS and 
STAT conditions suggest that CDK2 activity is essential for the PSS 
state, and the disruption of CDK2 activity abolishes PSS state, but 
not STAT state.

Fig. 4. CDK2 activity under FSS. (A) Schematic of CDK2 sensor. NLS, nuclear localization signal; NES, nuclear export signal; S, serines that are CDK consensus phosphory-
lation sites. (B) Schematic of CDK2 phosphorylation-mediated translocation of DHB-mVenus. (C and D) HUVECs expressing the DHB sensor were subjected to OSS, LSS, 
PSS, HSS, or STAT conditions for 6 hours. Cells were fixed and imaged as described in Methods, representative images shown in (C). Scale bar, 25 μm. Arrowheads are CDK2 
high activity cells. Cell nuclei were identified using fluorescent H2B images to obtain a mask. Ratio of cytoplasmic/nuclear signal was quantified (D). n = 66 cells for each 
group from three independent experiments. Data showing all points from minimum to maximum. **P < 0.01 and ***P < 0.001, calculated by one-way ANOVA with 
Tukey’s multiple comparison.
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Fig. 5. CDK2 depletion induces early G1 arrest. FUCCI HUVECs were transfected with control (siCtrl) or CDK2 (siCDK2) siRNA and analyzed on day 4. (A) CDK2 knock-
down confirmed by Western blotting. (B) Cells were fixed and mounted with DAPI. Representative images are showed. Scale bar, 100 μm. (C) Quantification of cell cycle 
state. n = 5 experiments. Data are presented as means ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, calculated by two-tailed unpaired t tests. (D and E) 2D plots of 
DPDFSS and DPDremod [(D)] and DPDFSS and DPDOSS [(E)] for CDK2 KN in STAT and PSS conditions. DAPI, 4′,6-diamidino-2-phenylindole.
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Furthermore, cSTAR predictions are corroborated by the FUCCI 
data (Fig. 5, B and C), where CDK2 knockdown induced early G1 
arrest, resembling the LSS state. However, the CDK2 knockdown 
state differs from the bona fide LSS state, which has a low DPDOSS 
score. The CDK2 knockdown thus induces characteristics of both 
the LSS and OSS states, activating both normal and pathological 
vessel remodeling processes.

Deletion of CDK2 in ECs in vivo
We previously found that a pharmacological inhibitor of CDK2 and 
related CDKs induced artery inward remodeling and pulmonary 
arterial hypertension (15), although this protocol was limited by gen-
eral toxicity. To investigate the role of CDK2 in vivo using a more 
specific approach, we crossed CDK2 floxed mice with Cdh5-CreERT2 
mice to induce endothelial-specific CDK2 knockout (CDK2 iECKO; 
Fig. 6A). Mice at 8 weeks of age were injected with tamoxifen and 
Cdk2 deletion confirmed (Fig. 6B). Mice at 2 months after CDK2 
iECKO showed markedly higher right ventricular systolic pressure 
(RVSP) and less dramatic but significant left ventricular systolic pres-
sure (LVSP) (Fig. 6, C to E). CDK2 iECKO thus induces pulmonary 
arterial hypertension and to a lesser extent systemic hypertension. To 
investigate mechanisms, we focused on the pulmonary vasculature 
where effects were stronger. Immunostaining for smooth muscle ac-
tin (SMA) in whole lung sections showed an increase in muscular-
ized small vessels, typical of pulmonary hypertension and indicating 
artery inward remodeling (Fig. 6, F and G). Masson’s trichrome and 
hematoxylin and eosin (H&E) staining of lung sections confirmed 
that arteries in CDK2 iECKO lung became narrowed and even occlu-
sive (Fig. 6H and fig. S3). Immunostaining of phospho-Smad2 and 3 in 
lung sections corroborated the cSTAR prediction that TGFβR signal-
ing is hyperactivated after CDK2 iECKO (fig. S4). CDK2 iECKO thus 
leads to artery inward remodeling and hypertension.

Deletion of CDK2 in ECs accelerates atherosclerosis 
plaque formation
The cSTAR model predicted that activation of the TGFβR pathway 
due to CDK2 suppression will promote atherogenesis. Previous 
studies also linked both Smad2/3 hyperactivation and inward re-
modeling to atherosclerosis (56). We therefore hypothesized that 
the loss of endothelial CDK2 might enhance atherosclerotic plaque 
formation. To test this hypothesis, CDK2 iECKO and Ctrl mice were 
injected intraperitoneally with PCSK9 adeno-associated virus and 
fed a high-cholesterol/high-fat diet (HCHFD) for 12 weeks (Fig. 
7A). Body weight, plasma total cholesterol, and triglyceride levels 
were unchanged between CDK2 iECKO and Ctrl mice (fig. S5). En 
face staining of the whole aorta with Oil-Red O (ORO) was used 
to assess total atherosclerotic burden. This analysis showed that 
CDK2 iECKO mice developed larger atherosclerosis plaques com-
pared to control mice (Fig. 7, B and C). Histological analysis of 
aortic root sections also showed larger plaques (Fig. 7, D and E). 
Immunostaining showed that loss of endothelial CDK2 increased 
infiltration of both neutrophils and macrophages (Fig. 7, F and 
G). Together, the deletion of endothelial CDK2 accelerates athero-
sclerosis plaque formation.

DISCUSSION
These results lead to three main conclusions. First, cSTAR analysis 
of transcriptomic data for ECs under low, physiological, high, and 

oscillatory FSS identifies three distinct, orthogonal axes that de-
scribe endothelial states (Fig. 1). In keeping with published studies 
that show that PSS confers vessel stability (2, 28), ECs under PSS 
have a low value on the remodeling axis (DPDremod) and an interme-
diate value on the FSS axis (DPDFSS) indicating no propensity to 
remodel in either direction. ECs under both STAT and OSS show 
intermediate values on the remodeling axis, indicating a less stable 
state than PSS but well below the actively remodeling LSS and HSS 
conditions. OSS and STAT conditions have low values on the DP-
DFSS axis, similar to PSS, again indicating no propensity for inward 
or outward vessel remodeling. OSS and STAT are also in close prox-
imity on the OSS axis (DPDOSS).

These data should be interpreted in light of the concept that in vivo 
remodeling processes are assisted by immune cells (8, 57). The EC 
expression of cytokines and leukocyte recruitment receptors bring 
in monocyte/macrophages that secrete growth factors, degrade, and 
synthesize extracellular matrix. These processes are essential for 
high FSS-induced collateral remodeling in the heart for example 
(58). Pathological remodeling clearly differs in many respects that 
are only partially understood but both physiological and pathological 
remodeling associate with inflammation (59).

These findings correspond well to behaviors in vivo, where artery 
walls under disturbed, atherogenic flow are stable over decades in 
the absence of additional perturbations but are specifically suscep-
tible to inflammatory and metabolic stresses that lead to athero-
sclerosis. Consistent with reduced stability, these regions also show 
amplified rapid responses to inflammatory stimuli, so-called inflam-
matory priming, quantified by DPDOSS, whereas regions of arteries 
under PSS are resistant (60). However, these similarities in gene ex-
pression patterns and remodeling behaviors for OSS and STAT 
do not in any way indicate identity. Numerous studies including 
this one identifies extensive differences in EC gene expression 
(22, 44, 61). In vivo, only angiogenic ECs exist without shear stress, 
but this state shares elevated inflammatory status and endothelial-
mesenchymal transition with OSS, underscoring both their simi-
larities and differences (62). The cSTAR analysis of transcriptional 
signatures thus offers a notable perspective on FSS-driven EC states.

Second, using cSTAR to integrate our transcriptomic data with 
the LINCS L1000 datasets, which describe responses of ECs without 
flow to a library of compounds, identified causal connections be-
tween multiple pathways that determine vessel stability, remodeling 
and disease susceptibility. This analysis identified a causal network 
linking VEGFR, TGFβR, CDK1/2, ERK MAP kinases, PI3K/AKT, 
PAK, BRD, PKC, and Aurora kinases that is likely to play a major 
role in determining EC state. In this model, CDKs suppress physio-
logical remodeling, i.e., confer stability, whereas PAK, TGFβR, and 
Aurora kinase promote remodeling. All core network modules 
except CDK2 promoted the OSS state, associated with pathological 
remodeling, with PAK being top contributor. These outcomes fit 
well with the known pro-inflammatory role for PAK (63–67).

Third, based on the prediction that CDKs suppress DPDremod, 
the FUCCI reporter revealed that LSS suppressed cell proliferation 
via early G1 arrest, while PSS suppressed more strongly but via late 
G1 arrest. In this state, CDK2 is active, but cells do not progress into 
S phase. The nature of the block into S phase is not fully understood, 
but p53 and the CDK inhibitor p21/WAF1 have been implicated 
(45, 48). It may be related to the so-called cell growth checkpoint that 
is later in G1 and distinct from the restriction checkpoint (68). 
Knockdown of CDK2 in cells or under OSS decreased cell cycle 
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Fig. 6. Deletion of endothelial CDK2. (A) Schematic for production of CDK2 iECKO mice. Cdh5-CreERT2; CDK2flox/flox (CDK2 iECKO) and CDK2flox/flox (ctrl) mice at 6 weeks 
of age were injected with tamoxifen. (B) Cdk2 deletion efficiency in isolated lung ECs confirmed by quantitative PCR. n = 4 mice per group. (C and D) Representative trace 
and quantification of right ventricle systolic pressure (RVSP) from control and CDK2 iECKO mice. (E) Quantification of left ventricle systolic pressure (LVSP) from control and 
CDK2 iECKO mice. n = 6 mice per group. (F) Representative SMA immunostaining in Ctrl and CDK2 iECKO entire lung sections. Scale bars, 1 mm. (G) Quantification of SMA+ 
muscularized arteries (diameter < 50 μm and > 50 μm) in Ctrl and CDK2 iECKO lungs. n = 6 mice per group. (H) Representative Masson’s trichrome staining of Ctrl and 
CDK2 iECKO lung sections. V, vessels. Arrows indicate narrowed and occlusive vessels. Data are presented as means ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, calcu-
lated by two-tailed unpaired t tests [(B), (D), and (E)] and two-way ANOVA with Tukey’s multiple comparison [(G)]. i.p., intraperitoneal.



Deng et al., Sci. Adv. 11, eado9970 (2025)     3 January 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

12 of 18

Fig. 7. Atherosclerosis in CDK2 iECKO mice. (A) Experiment timeline: CDK2 iECKO and Ctrl mice at ~6 weeks were treated with tamoxifen for five consecutive days. At 
9 weeks, mice were injected with PCSK9 virus and 1 week later fed with HCHFD for an additional 12 weeks. (B and C) Representative images and quantification of ORO 
staining for male and female Ctrl and CDK2 iECKO whole aorta. (D) ORO and H&E staining of aortic root sections from Ctrl and CDK2 iECKO mice. Scale bar, 500 μm. 
(E) Quantification of ORO lesion area for both male and female Ctrl and CDK2 iECKO mice. n = 6 mice per group per gender. (F) Representative images and quantification 
of anti-myeloperoxidase (MPO; neutrophil marker) on aortic root sections from Ctrl and CDK2 iECKO mice. Scale bar, 250 μm. (G) Representative images and quantification 
of CD68 (macrophage marker) on aortic root sections from Ctrl and CDK2 iECKO mice. Scale bar, 250 μm. n = 6 mice per group. Data are presented as means ± SEM. 
*P < 0.05 and **P < 0.01, calculated by two-tailed unpaired t tests.
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progression but shifted cells into early G1. DPD analysis of tran-
scriptomic data after CDK2 knockdown confirmed similarities to 
the LSS state, although with features of the atherogenic state. In vivo 
EC deletion of CDK2 induced artery inward remodeling and pul-
monary and systemic hypertension, providing strong evidence that 
CDK2 is essential for stabilizing arteries under PSS. Together, these 
data argue that early versus late G1 arrest associate with highly 
distinct states. CDKs appear to do so not simply by controlling cell 
proliferation but rather by controlling activities of other signaling 
modules (Fig. 2), for example, by inactivating Smad2/3. Both in vitro 
transcriptomic analysis and in vivo results identify CDK2 as a major 
determinant of the stabilized PSS state.

The emerging concept that CDKs control EC phenotype apart from 
rates of proliferation or cell cycle per se fits with a recent study examin-
ing cell cycle regulation in post-natal retinal angiogenesis (53). They re-
ported that late G1 arrest associates with arterial differentiation, while 
early G1 arrest associates with venous differentiation in vivo. Their 
results, however, differed from ours in that the arterial, late G1 state had 
higher TGFβ signaling. This discrepancy suggests that regulatory 
networks likely vary depending on developmental stage (adult versus de-
veloping vasculature) or location (systemic versus central nervous system 
vasculature), where different CDKs may be involved.

A second surprising finding is the distinction between LSS and 
OSS. Numerous publications treat these as comparable features of ath-
erogenic flow patterns that predict lesion formation and vulnerability 
(69, 70). cSTAR analysis predicted that the overall states are highly 
distinct, and while both promote expression of inflammatory media-
tors, even these are different, correlating with differential recruitment 
of leukocyte subsets. Further evaluation of these differences and their 
roles in vessel inward remodeling under LSS versus atherogenesis un-
der OSS will be an important direction for future work.

Together, these results strongly validate the cSTAR approach for 
elucidating the effect of FSS on EC state as a driver of vessel remodel-
ing. They also lead to three important conclusions concerning the 
nature of FSS-regulated EC states, elucidation of a potential regula-
tory network (Fig. 2), and the role of CDKs in determining vessel re-
modeling. Future work to fully elucidate the detailed FSS-dependent 
regulatory network will require a perturbation analysis under the dif-
ferent FSS conditions and experimental validation of predictions. 
Doing so offers the opportunity to both advance our basic under-
standing of vascular regulation and to identify therapeutic targets for 
treatment of vascular disease.

Limitations of this study
This study examined effects of shear stress on HUVECs cultured on 
tissue culture plastic with conclusions validated in arteries in mice; 
effects on different substrates or in microvascular and lymphatic ECs are 
likely to differ. EC responses to pulsatile versus steady flow show sta-
tistically significant but modest differences (71–73); thus, steady flow 
was used for LSS, PSS, and HSS conditions. The simplified shear stress 
profiles used in this study may not fully reflect the responses to com-
plex pulsatile FSS in vivo. Because cSTAR is a data-driven approach, its 
results are tailored to the specific cell types from which the data have 
been originated. In addition, since cSTAR is a data-driven approach, 
and most of perturbation data were obtained under static conditions, 
the cSTAR model predicts cell state responses under nonstatic condi-
tions qualitatively rather than quantitatively. To achieve quantitatively 
accurate predictions of vessel remodeling processes, a set of perturba-
tion omics experiments under FSS conditions would be needed.

MATERIALS AND METHODS
Animals
CDK2fl/fl mice and Cdh5-CreERT2 mice, all on the C57BL/6 back-
ground, were previously described (74, 75). Gene deletion was initiated 
by intraperitoneal injection with 1.5 mg of tamoxifen (Sigma-Aldrich, 
T5648) for five consecutive days. Sex-matched 6- to 10-week-old 
mice were used to induce gene deletion for experiments. All mice were 
housed in a pathogen–free (SPF) facility with a light (12-hour light 
cycle), 50% humidity, and ambient temperature (69°F) controlled envi-
ronment. They were fed a pellet rodent diet and had free access to wa-
ter. All mouse protocols and experimental procedures were approved 
(approval number 2023-20148) by Yale University Institutional Animal 
Care and Use Committee.

RV and LV hemodynamic measurements
RVSP was measured with a 1.4F pressure transducer catheter (Millar 
Instruments) and LabChart software (ADInstruments) as described 
(56). Briefly, mice were anesthetized with 2% isoflurane, and the 
catheter was inserted through the right jugular vein into the right 
ventricle. For LVSP, the catheter was inserted through the carotid 
artery into the left ventricle. RVSP and LVSP were all recorded and 
analyzed with LabChart software (ADInstruments).

Mouse atherosclerosis model
Control and CDK2 iECKO mice at 9 weeks old were intraperitone-
ally injected with murine PCSK9 adeno-associated virus (pAAV-
mPCSK9, produced by the Gene Therapy Program Vector Core at 
the University of Pennsylvania School of Medicine, Philadelphia, 
PA). Beginning at 10 weeks, mice were fed a HCHFD (Clinton/
Cybulsky high-fat rodent diet with regular casein and 1.25% added 
cholesterol; Research Diet, D12108) for the indicated times.

Analysis of atherosclerotic lesions
Mice were euthanized and immediately perfused with phosphate-
buffered saline (PBS) for 5 min. Whole aortas—including the aortic 
arch, the thoracic, and abdominal segments—were dissected, gently 
cleaned of adventitial tissue, and fixed with 4% paraformaldehyde 
(Electron Microscopy Sciences) overnight at 4°C. The whole aorta 
was longitudinally opened and stained with 0.6% ORO (Sigma-
Aldrich, O0625) for 60 min at room temperature. The aorta then 
was washed with 60% isopropanol for 20 min and rinsed three times 
with dH2O for 5 min. Last, the whole aorta was flat-mounted and 
imaged with Nikon Digital Slight DS-Fi1c camera. For analysis of 
lesions in the aortic root, the heart and the proximal aorta were ex-
cised, and the bottom of the heart was removed. The heart was then 
fixed with 4% paraformaldehyde overnight at 4°C, dehydrated with 
30% sucrose overnight, embedded in optimal cutting temperature 
compound (OCT), and frozen at −80°C. OCT blocks were sec-
tioned at 6 μm in thickness using a microm cryostat. Sections were 
further stained with ORO and hematoxylin. Lesion areas were 
quantified with ImageJ (National Institutes of Health) software.

Plasma lipid analysis
Blood samples were collected into tubes with lithium heparin and 
centrifuged at 3000g at 4°C for 10 min, and plasma was care-
fully transferred to a sterile tube for lipid measurement or stored at 
−80°C. Total cholesterol was measured using the Total Cholesterol 
Assay Kit (MyBioSource, MBS168179) according to the manu-
facturer’s instructions. Triglyceride levels were measured using the 
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Triglyceride Colorimetric Assay Kit (Cayman, 10010303) according 
to the manufacturer’s instructions. Optical density was determined 
using a microplate reader (BioTek).

Cell culture and siRNA transfection
HUVECs pooled from multiple deidentified donors were obtained 
from Yale Vascular Biology and Therapeutics tissue-culture core lab-
oratory at passage 1 (P1). Cells were maintained in endothelial growth 
medium 2 (EGM2) Endothelial Cells Growth Media (Lonza, CC-
3162) and used for experiments between P2 and P5. The siRNA trans-
fection was performed with Opti-MEM medium (Thermo Fisher 
Scientific) and Lipofectamine RNAiMAX (Invitrogen). ON-TARGET 
plus Smartpool siRNAs from Dharmacon were used against human 
CDK2 (L-003236-00-0005).

Generation of FUCCI HUVECs
HEK293T cells were transfected with pBOB-EF1-FastFUCCI-Puro 
(Addgene plasmid #86849) and packaging plasmids using Lipo-
fectamine 2000 (Thermo Fisher Scientific, 11668019) according to 
the manufacturer’s instructions. Supernatants containing lentivirus 
were collected 48 hours after transfection and passed through a 
0.22-μm filter. Primary HUVECs were infected with lentivirus for 
24 hours and then replaced with EMG2 Endothelial Cells Growth 
Media. Cells were selected and passaged in puromycin (1 μg/ml; 
Sigma-Aldrich P9620).

Shear stress
HUVECs were seeded on tissue culture plastic slides coated with fi-
bronectin (20 μg/ml) for 2 hours at 37°C and grown to confluence. 
Shear stress with the calculated intensities indicated in manuscript 
and each figure was applied in parallel flow chambers as described 
(15, 76). Shear stress values were chosen with reference to HUVECs 
based on both in vitro data demonstrating that physiological respons-
es (alignment and suppression of inflammatory pathways) are maxi-
mal between 10 and 20 dynes/cm2, which corresponds well to in vivo 
FSS in the umbilical vein at ~15 dynes/cm2 [(4) and references there-
in]. Shear stress at 1 to 6 dynes/cm2 activates inflammatory pathways; 
thus, 3 dynes/cm2 was used to model low FSS. Levels above 30 dynes/
cm2 disrupted alignment and activated inflammatory pathways (4); 
thus, 40 dynes/cm2 was used to model high FSS. For OSS, flow rever-
sal rather than magnitude (or time averaged magnitude) has been 
identified as the critical variable that influences EC phenotype (59, 77–
79); we chose 0.5 ± 4 dynes/cm2, a standard condition that elicits re-
sponses similar to those seen in regions of disturbed FSS in vivo.

EdU cell proliferation assay
HUVECs were seeded on tissue culture slides, grown to confluence 
in EGM2 medium, and subjected to shear stress as indicated. After 
22 hours, a 2X working solution of EdU in complete EGM2 medi-
um was added to cells, a final concentration of 10 μM. Two hours 
later, cells were collected and fixed. EdU DNA synthesis was 
detected following the manufacturer’s Click-iT EdU imaging kits 
(Invitrogen, C10337).

Immunofluorescence
For cells, samples were fixed in 4% paraformaldehyde (Electron 
Microscopy Sciences) for 10 min at room temperature. For tissues, 
samples were fixed in 4% paraformaldehyde overnight at 4°C 
and incubated with 30% sucrose (Sigma-Aldrich) solution in PBS 

overnight at 4°C. Specimens were embedded in OCT medium 
(SAKURA), and 8- to 10-μm sections were cut in a cryostat (Leica). 
For immunofluorescence (IF), samples were incubated in blocking 
buffer [5% donkey serum, 0.2% bovine serum albumin (BSA), and 
0.3% Triton X-100 in PBS], followed by incubation with primary 
and secondary antibodies diluted in a blocking buffer. Images were 
taken using the SP8 confocal microscope (Leica).

RNA isolation and quantitative real-time PCR
RNA was extracted from cells with the RNeasy Plus Mini Kit 
(QIAGEN) according to the manufacturer’s instructions, and reverse 
transcription was performed with the iScript Reverse Transcription 
Supermix for RT-qPCR (Bio-Rad). Then, cDNA was amplified by 
real-time polymerase chain reaction (PCR) with iQ SYBR Green Su-
permix (Bio-Rad). The expression of target genes was normalized to 
expression of housekeeping gene GAPDH. Primer sequences were 
listed as below: mGapdh (5′-AGGTCGGTGTGAACGGATTTG-3′, 
5′-TGTAGACCATGTAGTTGAGGTCA-3′) and mCdk2 (5′-CCTG- 
CTTATCAATGCAGAGGG-3′, 5′-GTG CTGGGTACACACTAGG- 
TG-3′).
Computational methods and analysis
Total RNA was extracted from HUVECs subjected to OSS, LSS, PSS, 
HSS, and static for 24 hours. Total RNA was quantitated by Nano-
Drop, and RNA integrity number value was measured with an Agi-
lent Bioanalyzer. Samples were subjected to RNA-seq using Illumina 
NextSeq 500 sequencer (75–base pair paired end reads). The base 
calling data from sequencer were transferred into FASTQ files using 
bcl2fastq2 conversion software (version 2.20, Illumina). To analyze 
EC responses to FSS, the control condition is selected as no 
treatment, static condition (STAT). Using DeSeq2 (R package for the 
analysis of RNA-seq data), we determined the differentially expressed 
genes comparing the conditions LSS, PSS, OSS, HSS, and STAT.
STVs and cell states
Using cSTAR, we determined STVs that govern FSS sensing of ECs 
using the data we generated. In the cSTAR approach, the STV deter-
mines the direction in the data space that corresponds to a cell state 
transition. To generate the STVFSS, which describes the direction of 
vessel remodeling, we separated LSS and HSS states. To obtain the 
STVremod, which describes the initiation of vessel remodeling pro-
gram regardless of the direction, we separated LSS and HSS states 
from PSS state. To generate the STVOSS, which describes pathologi-
cal vessel remodeling, we separated PSS, LSS, and HSS states from 
OSS state. Mutual orthogonality of these STVs suggests that these 
three processes activate different groups of genes. The components 
of STVs are presented in tables S1 and S2.

We used LINCS L1000 perturbation data that contains HUVECs 
transcriptomic responses to a large number of drug perturbations, 
enabling us to perform inference of causal connections between the 
drug targets. To make the STV transferrable between different data-
sets, these STVs must be built in the space of LFCs. The reference 
state, with respect to which LFCs are calculated, is STAT for 
HUVECs in the LINCS database. To estimate phenotypic changes 
brought about by drug perturbations, for the j-th drug perturbation, 
we calculated the dot products of LFCs from the LINCS data (xj) 
and the STV (n) from our generated data to find the element of the 
global response matrix (RDPD,j) for the corresponding DPD module, 
as follows

RDPD,j = xj ⋅ n (1)
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Global responses of core network modules
If a direct measurement of the core network module activity can be 
done, then the LFC in the expression of the gene i in response to the 
j-th perturbation are used for Rij value. When direct measurements 
of the activity of the i-th node are unavailable, such as in transcrip-
tomic assessments of responses to enzyme inhibitor treatments, we 
apply the following procedure. A relative activity of the of the i-th 
module after j-th perturbation ( fij) is calculated as a linear function 
of the transcriptomic LFCs (xkj) as follows

Coefficients α̃ik, which are used to infer activity of i-th module, 
can be found using linear regression over function g, which de-
scribes response of enzyme activity to an inhibitor. In the simplest 
case of monomeric target, this function is expressed as follows

Here, I is the inhibitor concentration and K is the median in-
hibitory concentration (IC50) dose for this inhibitor, taken from the 
literature data. If multiple inhibitors of the same target are applied, 
then the coefficients α̃ik are found by regressing the function g over 
all doses of all inhibitors . The coefficient α̃i0 is set to 1 for all mod-
ules because for the control (no inhibitors) data points, all LFC, xkj, 
are close to zero, while the value of the function g is equal to 1.

To satisfy the MRA modular insulation condition (80), the vec-
tors of coefficients α̃ik (excluding the intercept coefficient α̃i0) for 
different modules must be mutually orthogonal. In addition, we 
have penalized the negative pathway activities and added Lasso reg-
ularization to minimize the number of potential solutions and ide-
ally find the unique solution. In brief, we infer the coefficients α̃ik by 
finding the global minimum of the following function

Here, the first term describes the linear regression over enzyme 
activity for each module, the second term introduces the orthogonal-
ity condition, the third term penalizes the negative pathway activities, 
and the forth term introduces Lasso regularization. The hyperparam-
eters, ã, b̃, c̃ , and d̃, provide a means to balance the priority among 
different terms when it is not possible to satisfy all conditions simul-
taneously.

Taking into account that α̃i0 =1, ∀ i, expression 4 reads

When coefficients α̃ik are determined, the elements of the global 
response matrix Rij for core network modules can be calculated 
from Eq. 2 as follows

Here, we imply that for control data point fij = 1.
It is important to highlight that while the STV (n) is normalized 

to a unit length, the vectors α̃
i
= { α̃ik } do not have unit lengths and 

must not be normalized, as doing so would violate the regression 
conditions. Completing the entries, Rij, for both the core network 
modules and the DPD module(s) marks the completion of the tran-
scriptomic data preparation for the BMRA inference in cSTAR. Note 
that for the CDK2 module, we integrated our transcriptomics siRNA 
perturbation data together with LINCS drug perturbation data. All 
codes for computational analysis are available on Zenodo (https://
zenodo.org/records/14218021).
MRA-based predictions of the global responses based on the 
inferred network
The local response matrix, r, which is inferred during the BMRA 
step of cSTAR, enables us to make predictions of system responses 
to different perturbations. The local response matrix is intimately 
related to the ODE system that describes the network dynamics. 
Mathematically, the matrix r is the Jacobian matrix normalized by 
its diagonal elements (41, 42).

The predictive models can vary in complexity. Using both the 
inferred local response matrix r and phosphoproteomics time-
course data, we have built nonlinear ODE models of kinase net-
works using cSTAR (21). However, because the transcriptomics 
LINCS data only permit indirect measures of the activities of signal-
ing network modules and lack time-course data, attempting to de-
velop a dynamic nonlinear ODE model would be inappropriate. 
Such a model would be challenging to identify, suggesting that a 
simpler level of description is needed. Therefore, we employ MRA 
framework, which facilitates predicting drug responses using a lin-
ear function of applied perturbations, as follows (41, 42)

Here RI is a vector of systems-level responses to a drug perturba-
tion (I), r is a BMRA-inferred local response matrix, and vector rI 
quantifies the local responses of primary targets to a drug I. Equa-
tion 7 demonstrates that the i-th column of matrix −r−1 (table S4) 
encapsulates the system-level responses of all modules within the 
network to a 1% activation of module i. Thus, to quantify the pheno-
typic impact of each signaling core network module on the pheno-
typic DPD modules in Fig. 2C and to quantify impact of all core 
network modules on the activation of the TGFβR module in fig. 
S3C, we used elements of −r−1 as described above. To quantify the 
overall effect of the i-th module on all other core network modules 
at Fig. 2B, we used the L2-norm of the vector of core network re-
sponses to the activation of module i.

Western blotting
Cells were harvested and lysed for 30 min on ice in radioimmuno-
precipitation assay buffer (Roche) containing complete mini pro-
tease inhibitors (Roche) and phosphatase inhibitors (Roche). 
Cells were centrifuged at 14,000 rpm for 10 min at 4°C, and the 
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∑
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RI = −r−1 ⋅ rI (7)
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supernatant was transferred to new 1.5-ml EP tubes and boiled with 
4X loading buffer [250 mM tris-HCl (pH 6.8), 8% SDS, 40% glyc-
erol, 20% β-mercaptoethanol, and 0.008% bromophenol blue] at 
99°C for 5 min. Cell lysates were resolved by SDS-polyacrylamide 
electrophoresis on 4 to 15% CriterionTM TGXTM Precast Gels 
(Bio-Rad) and blotted onto a polyvinylidene difluoride membrane 
(Millipore). The blotted membranes were blocked with 5% non-fat 
milk and then incubated with specific antibodies diluted in 5% BSA, 
followed by horseradish peroxidase (HRP)–conjugated secondary 
antibodies. Protein bands were imaged using Immobilon Western 
Chemiluminescent HRP substrate (Millipore). ImageJ was used for 
densitometry quantification of western blot bands.

Mouse lung ECs isolation
Mouse lungs were collected and digested in a solution of collagenase 
(2 mg/ml; Sigma-Aldrich). Cell suspension was filtered through a 
70-μm sterile cell strainer (Falcon). ECs were isolated using mag-
netic beads anti-rat immunoglobulin G (Invitrogen) coated with rat 
antimouse CD31 antibody (BD Biosciences). Cells were lysed for 
RNA extraction with PicoPure RNA isolation kit (Applied Biosys-
tems) according to the manufacturer’s instructions.

Mouse carotid artery ligation model
C57BL/6J mice (12 weeks) were purchased from the Jackson Labo-
ratory (stock no. 000664). Mice were anesthetized with ketamine/
xylazine (100 and 10 mg/kg), and surgical procedures were per-
formed under 0.5 to 1% isoflurane anesthesia condition delivered 
via a precision vaporizer. Mice received pre-emptive analgesia of 
buprenorphine (Ethiqa XR) and local anesthetic bupivacaine, and 
surgical procedures were performed using aseptic and microsur-
gery techniques. The cervical skin was cut in the midline. Then, 
the left common carotid artery (LCA) and its bifurcation were 
bluntly dissected to expose all four distal branches: external ca-
rotid artery (ECA), internal carotid artery (ICA), occipital artery 
(OA), and superior thyroid artery (STA). To generate low shear 
stress (LSS) in the region of LCA, ECA and STA were ligated using 
6-0 silk suture, leaving ICA and OA open. To generate OSS in the 
region of LCA, four distal branches were ligated using 6-0 silk su-
ture. Last, the skin was closed with a 6-0 Prolene suture. Shear 
stress profiles after surgery were characterized in previous stud-
ies (15, 61).

Antibodies
We used the following antibodies for immunofluorescence (IF) 
and immunoblotting (IB): Rat antimouse CD31 (BD 550274, clone 
MEC13.3; IF, 1:200), glyceraldehyde-3-phosphate dehydrogenase 
(Cell Signaling Technology, 5174S; IB, 1:2000), p-Smad2 Ser465/467 
(Millipore, AB3849-I; IF, 1:200), p-Smad3 Ser423/425 (Abcam, ab52903; 
IF, 1:200), α–smooth muscle actin (Sigma-Aldrich, A2547; IF, 1:400), 
CDK2 (Cell Signaling Technology, 2546S; IB, 1:1000), myeloperoxi-
dase (R&D Systems, AF3667; IF, 1:400), F4/80 (Invitrogen, 14-4801-82; 
IF 1:400), and CD68 (Thermo Fisher Scientific, 14-0681-82; IF, 1:400). 
Secondary antibodies are listed in table S5.

Statistical analysis
Statistical analysis was performed using GraphPad Prism software 
(GraphPad software Inc.). Data were analyzed for normality and 
equal variance using the Shapiro-Wilk test and Brown-Forsythe test, 
respectively. If both tests were passed, then statistical significance 

was further analyzed by two-tailed unpaired t test for two groups 
comparison or one-way analysis of variance (ANOVA) with Tukey’s 
post hoc test for multiple groups comparison. Statistical significance be-
tween two groups plus treatment was calculated by two-way ANOVA 
with Tukey’s multiple comparison tests. A P value less than 0.05 
was considered significant (*P < 0.05, **P < 0.01, and ***P < 0.001). 
Statistical details and experimental n are described in the legend of 
each figure.

Supplementary Materials
The PDF file includes:
Figs. S1 to S5
Legends for tables S1 to S5

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S5
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