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Abstract: Children conceived with assisted reproductive technology (ART) have an increased risk
of adverse outcomes, including congenital malformations and imprinted gene disorders. In a
retrospective North Carolina-based-birth-cohort, we examined the effect of ovulation drugs and ART
on CpG methylation in differentially methylated CpGs in known imprint control regions (ICRs).
Nine ICRs containing 48 CpGs were assessed for methylation status by pyrosequencing in mixed
leukocytes from cord blood. After restricting to non-smoking, college-educated participants who
agreed to follow-up, ART-exposed (n = 27), clomifene-only-exposed (n = 22), and non-exposed
(n = 516) groups were defined. Associations of clomifene and ART with ICR CpG methylation were
assessed with linear regression and stratifying by offspring sex. In males, ART was associated with
hypomethylation of the PEG3 ICR [β(95% CI) = −1.46 (−2.81, −0.12)] and hypermethylation of the
MEG3 ICR [3.71 (0.01, 7.40)]; clomifene-only was associated with hypomethylation of the NNAT
ICR [−5.25 (−10.12, −0.38)]. In female offspring, ART was associated with hypomethylation of
the IGF2 ICR [−3.67 (−6.79, −0.55)]. Aberrant methylation of these ICRs has been associated with
cardiovascular disease and metabolic and behavioral outcomes in children. The results suggest that
the increased risk of adverse outcomes in offspring conceived through ART may be due in part to
altered methylation of ICRs. Larger studies utilizing epigenome-wide interrogation are warranted.
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1. Introduction

In the United States, increased child-bearing age and infertility rates are commensurate
with increased prevalence of the birth of offspring conceived with the use of ovulation drugs
or assisted reproductive technology (ART) [1,2]. Compared with spontaneously conceived
singleton births, singleton births conceived with ART are associated with increased risk of
multiple adverse maternal and offspring outcomes, including preterm delivery, perinatal
mortality, small for gestational age, antepartum hemorrhage, congenital anomalies, mater-
nal pregnancy hypertensive disorders, and gestational diabetes [3,4]. Pregnancies resulting
from ART have also been associated with a 30–40% increase in birth defects compared with
spontaneous conception [3–9]. Although epigenetic modifications such as the control of
gene expression through DNA methylation are hypothesized to mediate some of these
associations, mechanistic insights linking ART to adverse offspring and maternal outcomes
remain elusive.
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Data from murine models and humans suggest the timing of many ART procedures
may perturb the establishment of proper methylation marks during oocyte maturation
or the re-establishment of other methylation marks following the demethylation wave
occurring soon after fertilization. Specifically, ART may interfere with genomic imprinting—
an epigenetic process established prior to germ layer specification and stably maintained in
somatic tissues throughout life [10,11]. In this process, one parental allele is silenced by the
methylation of CpGs in parent-of-origin-specific differentially methylated regions (DMRs)
that regulate monoallelic expression of multiple genes, known as imprint control regions
(ICRs) [12–14]. Aberrant methylation of ICRs during gametogenesis or embryogenesis may
lead to life-long alterations in gene expression and multiple human congenital disorders.
For example, Silver–Russell syndrome and Beckwith–Wiedemann syndrome are the result
of errors during ICR establishment [15].

ART has been associated with aberrant methylation of known ICRs (in placenta) and
poor placental or fetal growth outcomes in both humans and mouse models [10]. In mice,
superovulation induced by drugs such as clomifene has been associated with the disruption
of maternal imprint marks in SNRPN, PEG3, and KCNQ10T1 and paternal imprint marks
in H19 [16]. In mice, ART treatment resulted in small changes in methylation of control-
region CpGs for H19, IGF2R, and PEG3, altered expression of these genes, and intrauterine
growth restriction (IUGR) [10,17–19]. In humans, multiple studies have suggested placental
epigenetic perturbation in offspring conceived through ART in imprinted genes that include
H19, MEG3, PEG3, PLAGL1, and PEG10 [10,20–23].

H19 is maternally expressed and codes for a noncoding RNA that functions as a tumor
suppressor [24] and is associated with Beckwith–Wiedemann Syndrome [25]. In contrast,
the nearby paternally-expressed IGF2 gene that encodes insulin-like growth factor 2 is
involved in fetoplacental development and growth and has been implicated in both cancer
and cardiovascular disease [26]. The maternally-expressed MEG3 gene, along with RTL1,
MEG8/8, and DIO3, are regulated by the DLK/MEG3 ICR [27] which is also a well-studied
cancer-associated locus. PEG3 is also part of a locus housing multiple genes regulated by
an ICR [28] and, similar to other imprinted regions, is associated with fetal development
and fetoplacental growth [29]. PLAGL1 is a suppressor of cell growth and is often deleted in
cancer. Over-expression of PLAGL1 in-utero is associated with transient neonatal diabetes
mellitus [30]. Lastly, PEG10 is heavily expressed in the placenta and implicated in cell-cycle
progression and cancer [31].

Recent genome-wide methylation analyses have examined associations of ART and
offspring cord-blood DNA methylation. A combined case-control study in the UK Avon
Longitudinal Study of Parents and Children (ALSPAC) and Norwegian Mother, Father and
Child Cohort Study (MoBa) cohorts (a total of 205 ART cases and 2439 controls) reported
associations of ART with differential methylation at five CpGs, but these did not replicate
in the Australian Clinical review of the Health of adults conceived following Assisted
Reproductive Technologies (CHART) cohort [32]. Another assessment of genome-wide
methylation in the Upstate KIDS cohort found associations of ART with decreased methy-
lation of 11CpGs, including IGF1R, and hypomethylation of nine maternally imprinted
genes [33]. Similar results were not found for ovulation induction alone, and only the
differential methylation of the maternally imprinted GNAS gene persisted into childhood.
The results of prior work highlight issues regarding power to determine associations of ART
with methylation in offspring in genome-wide analyses and indicate a need for additional
genome-wide and targeted analyses.

Unique epigenetic changes related to ART procedures, including the induction of
superovulation with drugs such as clomifene, micromanipulation with intracytoplasmic
sperm injection of a single sperm into the egg (ICSI), in vivo oocyte maturation, in vitro
fertilization (IVF), embryo transfer (ET), and embryo culture conditions, have been re-
ported [34–36]. Building on these findings, we evaluated the association of ART and
clomifene use with CpG methylation at 48 CpGs in nine previously characterized ICRs.
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2. Results

Of the 574 participants included in the analysis (Table 1; Figure 1), 27 reported the use
of ART (ET/ICSI), and 22 reported the use of clomifene only in the index pregnancy. While
there were no significant differences in maternal body mass index (BMI) and offspring
sex between the exposed and non-exposed groups, ART-exposed participants were more
likely to be older, nulliparous, and white. Offspring from exposed participants (ART and
clomifene) had decreased mean gestational age and mean birth weight (p < 0.05; 262 days
vs. 272 days and 2975 g vs. 3305 g).
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Figure 1. Cohort Selection and Exposed/Non-exposed Definition: Mothers from two waves of en-
rollment were asked questions concerning index pregnancy and use of ART use. Of these participants,
1296 mothers agreed to epigenetic follow-up, including pyrosequencing of offspring cord blood.
Cases were overwhelmingly non-smoking and college-educated participants; mothers who either
smoked or were not college-educated were excluded (removed 5 cases and 717 controls). For the
ART-exposed group, 27 cases were defined based on an affirmative answer to either of one of the
following questions: “Did you use in vitro fertilization or embryo transfer (IVF/ET)? (Yes, No)” or
“Did you use intracytoplasmic sperm injection? (Yes, No)”. There were 9 mothers who answered
affirmative answer to “Was current pregnancy conceived with ART? (Yes, No, Don’t Know, Refused)”,
but answered negative to the prior two questions and were removed from the analysis. To examine
clomifene-only use separately, 22 participants who reported use of clomifene/Serophene, but gave
negative answers to the questions concerning ART/ET and ART/ICSI were excluded from the ART
analysis and included as cases in the clomifene group defined below. For the clomifene group, of the
516 ART controls, 339 mothers answered follow-up questions regarding their use of specific fertility
medication. Of these, 22 were classified as cases based on reported use of clomifene/Serophene, 14
were excluded from the analysis because they were included as ART cases, and the remainder were
classified as controls (n = 303).
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Table 1. Participant demographics.

Demographic

ART ET/ICSI

Mean (SD) or Frequency (% of Total)

Exposed Non-Exposed All

n = 27 (4.7%) n = 516 (89.9%) n = 543 (100%)

Maternal age # 36.3 (3.6) 30.1 (5.5) 30.4 (5.5)

Maternal pre-pregnancy BMI # 24.5 (6.1) 27.7 (8.8) 27.5 (8.7)

Race / Ethnicity # White 21 (77.8%) 242 (46.9%) 263 (48.4%)

Non-white 6 (22.2%) 274 (53.1%) 280 (51.6%)

Parity * Nulliparous 17 (63%) 213 (41.4%) 230 (42.5%)

One or more 10 (37%) 301 (58.6%) * 311 (57.5%) *

Diabetes † None 25 (96.2%) 444 (88.1%) 469 (88.5%)

Any type 1 (3.8%) 60 (11.9%) 61 (11.5%)

Sex
Male 11 (40.7%) 272 (52.7%) 283 (52.1%)

Female 16 (59.3%) 244 (47.3%) 260 (47.9%)

Demographic Clomifene Only

n = 22 (6.8%) n = 303 (93.2%) n = 325 (100%)

Maternal age # 33.6 (4.9) 30.0 (5.1) 30.2 (5.2)

Maternal pre-pregnancy BMI 25.6 (5.8) 27.4 (8.1) 27.2 (7.9)

Race/Ethnicity # White 18 (81.8%) 143 (47.2%) 161 (49.5%)

Non-white 4 (18.2%) 160 (52.8%) 164 (50.5%)

Parity Nulliparous 7 (31.8%) 136 (45.0%) 143 (44.0%)

One or more 15 (68.2%) 167 (55.0%) 182 (55.0%)

Diabetes ‡ No 20 (90.9%) 269 (90.0%) 289 (90.0%)

Any type 2 (9.1%) 30 (10.0%) 32 (10.0%)

Sex
Male 12 (54.5%) 165 (54.5%) 177 (54.5%)

Female 10 (45.5%) 138 (45.5%) 148 (45.5%)

Missing covariates: * Two non-exposed; † One exposed and 12 non-exposed; ‡ Four non-exposed. # Exposed
and non-exposed means (continuous variables—Student t-test) or expected frequencies (categorical variables −
chi-squared test) differ (p < 0.05).

2.1. ART ET/ICSI and Mean Offspring CpG Methylation

We evaluated ART ET/ICSI exposure, excluding participants with clomifene exposure
only, and offspring DMR methylation (Figure 2). In male offspring, ART was associated
with hypomethylation of the PEG3 DMR [β(95% CI) = −1.46 (−2.81, −0.12), p = 0.033]
and hypermethylation of the MEG3 DMR [3.71 (0.01, 7.40), p = 0.049]. In female offspring,
ART-IVF was associated with hypomethylation of the IGF2 DMR [−3.67 (−6.79, −0.55),
p = 0.022]. These associations were unaltered in a sex-adjusted model that included all
participants. Several CpGs within the PEG3 and MEG3 DMRs were significant with a
clear, consistent intra-DMR effect direction (Supplementary Figure S1) whereas the mean
CpG methylation for the region as a whole was not significant. In a sensitivity analysis
performed by including education in the model, the magnitude of associations with the
PEG3, MEG3, and IGF2 DMRs was attenuated while the direction of association remained
consistent. A sensitivity analysis performed by excluding methylation outliers did not
affect these findings (Supplementary Figure S2).
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Figure 2. Associations of ART ET/ICSI and Mean CpG Methylation: We assessed the relationship
between ART use for the index pregnancy and mean CpG methylation at nine DMRs using linear
regression. We stratified models by sex and adjusted for pyrosequencing batch, pre-pregnancy
maternal BMI, race, maternal age, diabetes, and parity. Estimates (β) are shown for males (tan) and
females (blue) and represent the mean percentage of methylation change associated with maternal
use of ART (* p < 0.05).

2.2. Clomifene Only and Mean Offspring CpG Methylation

We evaluated clomifene use only, excluding participants who underwent ET or ICSI
ART, and offspring DMR methylation (Figure 3). In male offspring, clomifene use only
was associated with mean hypomethylation of the PLAGL1 DMR [−8.58 (−15.53, −1.63),
p = 0.016] and the NNAT DMR [−5.25 (−10.12, −0.38), p = 0.035] (Figure 3). Supplementary
Figure S3 displays the results of methylation changes at individual CpGs. An outlier
sensitivity analysis revealed the association of clomifene exposure and male-offspring hy-
pomethylation in the PLAGL1 DMR was driven by a single individual, while the association
for NNAT was unaffected (Supplementary Figure S4).
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Figure 3. Associations of Clomifene and Mean CpG Methylation: We assessed the relationship
between the use of clomifene only and mean CpG methylation at nine DMRs using linear regression.
We stratified models by sex and adjusted for pyrosequencing batch, maternal pre-pregnancy BMI,
race, maternal age, diabetes, and parity. Estimates (β) are shown for males (tan) and females (blue)
and represent the mean percentage of methylation change associated with maternal use of clomifene
without ART (* p < 0.05).

3. Discussion

The use of ART and superovulation drugs has been associated with adverse offspring
outcomes with little mechanistic understanding. A meta-analysis reporting associations
of imprinting disorders with ART suggested some insights [37]. We found associations
between ART and hypomethylation of the PEG3 DMR, a gene associated with placental and
fetal development and intra-uterine-growth-restriction [10]. The effect size was similar by
offspring sex but was significant only for males. We also found a male-specific association
of ART with hypermethylation of the MEG3 DMR, and a female-specific association of ART
with hypomethylation of the IFG2 DMR.

Recent work has associated ART with hypomethylation of the PLAGL1 DMR [33]. Al-
though our ART results also showed hypomethylation, the association was not significant.
Aberrant methylation of PLAGL1 has been implicated in placental growth and very preterm
births [38]. In females, we found associations of ART and IGF2 DMR hypomethylation. In
addition to the aforementioned association of clomifene use and male-offspring PLAGL1
hypomethylation, we also observed NNAT hypomethylation in male offspring conceived
with clomifene. Similar patterns of methylation at these DMRs have been associated with
cardiovascular disease, metabolic disease, and some cancers in adulthood [39]. These
findings are consistent with the contention that DMRs are responsive to environmental
influences and can serve as archives of past exposures [40–44] and thus the stability of their
patterns of methylation makes these regions logical targets for evaluating early origins of
disease [45–48]. In our study, although ART-exposed participants likely used ovulation
drugs such as clomifene prior to ART, associations of ART and interrogated methyla-
tion changes were very different from women who reported the use of clomifene only,
suggesting that offspring methylation differences may vary by the type of procedure/drug.

NNAT is associated with the imprinting disorder Beckwith–Wiedemann syndrome,
which is an imprinting disorder. A recent study of 44 ART-conceived children and controls
reported placental hypomethylation of multiple imprinted genes, including NNAT [49].
This result was an outlier group identified by principal component analysis (n = 15).
Our findings for NNAT are significant only for males whose mothers used clomifene to
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conceive. Importantly, the same study [49] reported highly different placental genome-
wide patterns of methylation for in vitro (IVF/ICSI) procedures vs. procedures involving
ovulation induction or intrauterine insemination. We also found substantial differences
in methylation patterns in offspring cord blood between mothers who conceived with
superovulation drugs only, and those who conceived with more invasive procedures. The
imprinted gene MEST has been associated with male infertility as well as alterations in
methylation of its ICR in both humans and mice [50–53]. We did not find significant
associations of ART or clomifene exposure and offspring changes in MEST in offspring,
but this may have been due to the small number of cases.

Our findings are also consistent with a recent report examining the effects of ART
and culture medium on methylation in buccal smears of children aged 7–8 years [54].
Based on a more global chip-based analysis of probes, investigators reported enrichment of
differentially methylated probes associated with imprinted genes, including H19, and an
increase in methylation of CpGs in the PEG3 DMR in children exposed to ART, albeit in
the opposite direction. The reasons for the differences are unclear although the probes and
CpGs assessed differ.

While differential methylation at multiple sites across the genome has been reported with
other environmental exposures periconceptionally in studies of adults and children [55,56],
long-term adverse health outcomes in ART-conceived offspring are understudied in humans.
Inconclusive data from small studies have suggested increased risk of type 2 diabetes, CVD, and
metabolic syndrome (reviewed in [57]). Further, epigenetic data linking obesity to epigenetic
dysregulation have been difficult to interpret for several reasons. These include the appropri-
ateness of linking clinically accessible tissue (blood or buccal) results to tissues with etiological
relevance and the fact that environmental exposures can cause temporal variability in epigenetic
marks. Thus, making inferences can be difficult without temporal serial mapping of epigenetic
alternations. Features of regulatory sequences of genomically imprinted genes overcome these
obstacles as methylation marks at these regions are established before germ layer specification
and, therefore, are similar across tissues and more temporally stable [11]. The data presented
here suggest that ART and clomifene exposures that occur prior to germ layer specification
are associated with altered methylation profiles at multiple loci in offspring. While a recent
genome-wide scan of 450 k CpGs in the ALSPAC cohort found five CpGs with methylation
values associated with ART at genome-wide significance, three of which were previously linked
to human aging and disease, these findings did not replicate in the CHART cohort [32].

Mechanisms by which ART may alter methylation marks of putative ICRs have yet
to be elucidated. It has been suggested that associated health risks may be the result of
ovarian stimulation and the subsequent hormonal effects, gamete manipulation, embryo
exposure to culture media, factors implicit in a couple’s need to use ART to conceive,
or factors associated with non-singleton births [58–60]. For example, some suggest that
superovulation affects maternal gene products necessary for imprint maintenance during
embryonic development [61]. In mouse models, superovulation has been associated with
transgenerational alterations in offspring sperm methylation [62]. Hypermethylation and
gene expression of long noncoding RNA H19 was altered in response to ART [63]. Aberrant
methylation has also been suggested from the use of culture medium in IVF. The absence
of protection against oxidative stress inherent with natural conception has been suggested
to increase the chances of methylation errors related to imprinting [64]. Additionally,
the appropriate maintenance of DNA methylation requires culture supplementation with
methyl donors. Variation in folic acid supplementation may also produce suboptimal
culture conditions resulting in aberrant methylation at imprinted loci with sex-specific
effects [65]. This variation may be a significant contributor to methylation variation as
commercial media often do not contain methyl donors such as folate [66].

Strengths of this study include a sample size that enabled sex-specific analyses. Several
methylation outcomes were sex-specific, highlighting the importance of treating sex as a
biological variable. Further, the longitudinal design of the Newborn Epigenetics Study
(NEST), where exposure was assessed at enrollment (mean gestation age 12 weeks) and CpG



Int. J. Mol. Sci. 2022, 23, 10450 8 of 14

methylation was measured at birth, resulted in minimized recall variability in exposure.
The use of pyrosequencing, which is the gold standard in DNA methylation sequencing,
also ensured the robustness of methylation measurements.

We evaluated associations between either the use of clomifene alone to assist in
pregnancy or the use of ART (ET/ICSI) to assist in pregnancy, and offspring methylation of
imprinted DMRs. These DMRs control genes involved in multiple developmental pathways
implicated in a wide range of developmental disorders when dysregulated. As embryo
transfer technology is often preceded by the use of super-ovulatory drugs such as clomifene,
differences observed between the use of clomifene only and embryo transfer technology
(ET/ICSI) would involve the manipulation of embryo and ex-vivo culture conditions of
ovum/embryo in the latter.

A limitation of our study and others is the inability to adequately control for unmea-
sured confounding. For example, maternal education may approximate a wide range
of stressors that include, among others, socioeconomic status and access to prenatal care
information, which may contribute to variability in offspring methylation status, etc. [67,68].
In our cohort, the use of ART varied widely based on education status, with most mothers
who used ART having at least some college education. By removing all mothers who did
not have at least some college education, we attempted to isolate ART as an exposure,
instead of using education as a proxy for multiple behaviors and exposures.

Another limitation is a lack of data on differences in the media used in in-vitro
procedures. The media vary by clinic, even including differences in whether folate (a
classical methyl donor) is used [64]. More importantly, in nearly all human studies of ART
and offspring outcomes, a recurring interpretation issue arises in disentangling underlying
maternal biology-related and ART-related offspring outcomes. That is no different in
this study. We were unable to determine if mothers requiring the assistance of super-
ovulatory drugs and/or the use of ART have underlying biological differences that are
the primary driver of observed methylation differences in offspring cord blood. However,
work in mice has suggested that ART does indeed result in changes in offspring epigenetics
that are not related to maternal infertility [69]. In further support of maternal biology-
independent effects of ART on epigenetic alterations, recent work suggested that in mice,
proper imprinting of Snrpn, Kcnq1ot1, and H19 is altered by ART but not by age [70].
Further, the underlying biology driving the choice of super-ovulatory drugs vs. more
invasive ART procedures may be a contributing factor to the methylation differences seen
between the effects of clomifene only vs. ART. These include both maternal and paternal
contributions to infertility.

4. Materials and Methods
4.1. Study Participants

Participants were selected from the prospective Newborn Epigenetics Study (NEST).
Enrollment in NEST is described elsewhere [40,71]. Briefly, pregnant women who visited
one of six prenatal clinics in Durham, NC, USA and neighboring counties for prenatal care
between 2005 and 2011 were targeted for inclusion. Prospective participants who were
aged ≥18 years, intended to maintain residence in the area until delivery, and intended to
deliver at either Durham Regional Hospital or Duke University Obstetrics Hospital were
enrolled. The latter criterion facilitated the collection of parturition data and specimens,
including fetal blood from the umbilical cord vein and maternal blood. Of the 3545 women
approached, 2546 were enrolled. Participation was not associated with educational level,
maternal age, or maternal BMI although Asians were less likely to participate [40,71]. All
participants provided informed consent, and the study was approved by Duke University’s
institutional review board (Pro00014548; IRB# 7041-07-3R2ER; March 2007).
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4.2. Data Collection
4.2.1. Outcome Assessment

For methylation analysis of cord blood, NEST participants were selected based on the
availability of recent follow-up data at the time of sample analysis, consent to epigenetic
analyses at enrollment, and additional consent to follow-up epigenetic analysis for offspring
from ages 3–5 years during follow-up visits. Methylation was assessed in at least one ICR
for 1296 participants. Procedures for specimen collection, handling, and methylation
are described elsewhere [27,40,71]. Briefly, DNA for pyrosequencing was extracted from
offspring cord-blood buffy coat using Puregene (Qiagen, Germantown, MD) reagents.
Pyrosequencing was performed on a Pyromark Q96 Pyrosequencer (Qiagen, Germantown,
MD). Primers and PCR conditions are described in detail elsewhere [11,72]. The methylation
fraction for each CpG dinucleotide was calculated using PyroQ CpG Software (Qiagen,
Germantown, MD). The methylation fraction was analyzed at multiple CpGs of DMRs (n)
in the ICRs of H19 (4), IGF2 (3), MEG3-IG (4), MEG3 (8), MEST (4), PEG3 (10), PLAGL1
(6), NNAT (3), and SGCE/PEG10 (6). Due to quality control methods, minor differences in
sample sizes exist depending on the CpG. Note that these regions are considered established
ICRs and are referred to as such in the text.

4.2.2. Exposure Assessment

We defined exposure groups for ART and clomifene using data from a questionnaire
completed by 2209 NEST participants at enrollment. Nearly all participants who used
clomifene and/or underwent ART were non-smokers and had at least some college edu-
cation. Due to known offspring methylation changes from maternal smoking [73–75] and
social adversity [76–78] and because nearly all NEST participants who underwent ART
were both college-educated and non-smokers, we excluded from the analysis participants
who smoked or had no college education (exposed, n = 5 and not exposed, n = 717), leaving
574 mother/offspring pairs. NEST participants were asked questions about medications
used to assist conception in only one of the two enrollment waves, resulting in different
denominators for the ART and clomifene exposure groups (Figure 1).

For ART, we classified participants who answered yes to “Did you use in vitro fertil-
ization or embryo transfer (IVF/ET)? (Yes, No)” or “Did you use intracytoplasmic sperm
injection? (Yes, No)” as exposed (n = 27). We classified participants who answered no
to both questions as non-exposed (n = 516). We further excluded from the analysis nine
participants who indicated they used ART in the index pregnancy but did not answer
questions about whether they underwent ART/ET or ART/ICSI and 22 participants who
reported clomifene use without ART exposure.

For clomifene, we excluded from the analysis 235 of the 574 participants who an-
swered questions about ART during the index pregnancy but did not complete a follow-up
questionnaire on medications used to assist conception. Of the 339 remaining participants,
we excluded 14 who were in the ART-exposed group. We classified 22 who answered yes
to the use of clomifene/Serophene as exposed and the remaining 303 as non-exposed.

Information on the reasons for ART or clomifene use or how many cycles/attempts
were conducted was not available.

4.3. Statistical Analyses

We assessed associations of clomifene- and/or ART-conceived offspring with percent
methylation of 48 CpGs in nine ICRs using complete-case linear regression stratified by
offspring sex. We adjusted models for the year/plate batch of methylation assessment,
parity (first child vs. other), maternal BMI at last menstrual period, maternal age, dia-
betes status (none vs. any of type 1, type 2, or gestational), and race. We sex-stratified
the analyses because prior work has demonstrated sex-specific differential methylation
patterns of imprinted genes from maternal exposures [79]. Frequencies and percentages of
demographics and covariates are reported using non-missing data, which vary by variable.
Although extensive quality control has been performed for the pyrosequencing data [11],
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we conducted an additional analysis by removing outliers based on mean +/− 3 standard
deviations. All analyses were conducted in R version 4.0.3 (Vienna, Austria).

4.4. Nomenclature

When discussing ICRs and DMRs, there is often a degree of conflation. An imprint
control region (ICR) refers to the CpG sites within a given stretch of DNA sequence
that exhibit a uniform, binary pattern of methylation in sperm versus oocyte, and that
contributes to the establishment of parent-of-origin-dependent expression in the resulting
somatic tissues for the associated gene(s). Throughout the paper, we use the phrase
“differentially methylated region” (DMR) to refer to the CpGs, or subsets of CpGs, within
ICRs that are known to contribute to regulating the parent-of-origin-dependent monoallelic
expression of the imprinted gene(s) controlled by that ICR.

5. Conclusions

Despite the limitations detailed in the discussion, with limited candidate epigenetic
locus interrogation, our study provides additional evidence to the growing body of litera-
ture (reviewed in [80]) demonstrating a relationship between ART and altered offspring
methylation in ICRs. When taken together, our data suggest a perturbation of methylation
marks at known ICRs. These findings also highlight the importance of treating sex as a
biological variable. Further, our study suggests the need for additional research on methods
of inducing and collecting ovum as well as the effects of the treatment conditions of ART
use on offspring methylation alteration in offspring. Lastly, we highlight the critical need
for larger, better-powered studies that can utilize epigenome-wide interrogation in an
offspring-sex-dependent manner.
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