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Abstract
Background: The peptidyl-proline isomerase, Protein Never in Mitosis Gene A Interacting-1 (PIN1), regulates
turnover of inducible nitric oxide synthase (iNOS) in murine aortic endothelial cells (MAEC) stimulated with E.
coli endotoxin (LPS) and interferon-γ (IFN). Degradation of iNOS was reduced by a calpain inhibitor, suggesting
that PIN1 may affect induction of other calpain-sensitive inflammatory proteins, such as cyclooxygenase (COX)-
2, in MAEC.

Methods: MAEC, transduced with lentivirus encoding an inactive control short hairpin (sh) RNA or one targeting
PIN1 that reduced PIN1 by 85%, were used. Cells were treated with LPS/IFN, calpain inhibitors (carbobenzoxy-
valinyl-phenylalaninal (zVF), PD150606), cycloheximide and COX inhibitors to determine the effect of PIN1
depletion on COX-2 and calpain.

Results: LPS or IFN alone did not induce COX-2. However, treatment with 10 μg LPS plus 20 ng IFN per ml
induced COX-2 protein 10-fold in Control shRNA MAEC. Induction was significantly greater (47-fold) in PIN1
shRNA cells. COX-2-dependent prostaglandin E2 production increased 3-fold in KD MAEC, but did not increase
in Control cells. The additional increase in COX-2 protein due to PIN1 depletion was post-transcriptional, as
induction of COX-2 mRNA by LPS/IFN was the same in cells containing or lacking PIN1. Instead, the loss of COX-
2 protein, after treatment with cycloheximide to block protein synthesis, was reduced in cells lacking PIN1 in
comparison with Control cells, indicating that degradation of the enzyme was reduced. zVF and PD150606 each
enhanced the induction of COX-2 by LPS/IFN. zVF also slowed the loss of COX-2 after treatment with
cycloheximide, and COX-2 was degraded by exogenous μ-calpain in vitro. In contrast to iNOS, physical interaction
between COX-2 and PIN1 was not detected, suggesting that effects of PIN1 on calpain, rather than COX-2 itself,
affect COX-2 degradation. While cathepsin activity was unaltered, depletion of PIN1 reduced calpain activity by
55% in comparison with Control shRNA cells.

Conclusion: PIN1 reduced calpain activity and slowed the degradation of COX-2 in MAEC, an effect
recapitulated by an inhibitor of calpain. Given the sensitivity of COX-2 and iNOS to calpain, PIN1 may normally
limit induction of these and other calpain substrates by maintaining calpain activity in endothelial cells.
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Background
Protein Never in Mitosis Gene A Interacting-1 (PIN1) is an
enzyme that regulates transcription, and turnover of
mRNA and proteins. PIN1 is a cis-trans peptidyl-prolyl iso-
merase that contains an amino-terminal domain, the tryp-
tophan-tryptophan (WW) domain, which is characterized
by two tryptophan residues separated by 22 amino acids
that can bind to phosphorylated serine- or threonine-pro-
line sequences in substrate proteins. PIN1 also isomerizes
this motif with its carboxy-terminal catalytic domain [1].
Isomerization of the phosphorylated serine- or threonine-
proline motif has a significant effect on conformation of
many phospho-proteins. The conformational switching
catalyzed by PIN1 allows it to regulate transcription fac-
tors, mRNA stabilization factors, and the susceptibility of
a growing list of proteins to post-translational modifica-
tions and proteases [1-5].

Previously, we found that depletion of PIN1 and treat-
ment with a calpain inhibitor each reduced the degrada-
tion of inducible nitric oxide synthase (iNOS) in murine
aortic endothelial cells (MAEC) stimulated with E. coli
endotoxin (LPS) and interferon-γ (IFN). PIN1 bound to
iNOS suggesting that it might directly regulate the sensi-
tivity of iNOS to calpain [6]. PIN1 may also regulate
expression of inflammatory proteins by an effect on cal-
pain.

Cyclooxygenase (COX)-2 is induced by LPS, IFN, and
other factors in endothelial cells cultured from various
organs and species [7-14]. Elevated endothelial COX-2
may contribute to vascular pathogenesis [15,16]. This
enzyme is also significant for endotoxin action as COX-2
knockout mice are resistant to LPS-induced inflammation
and death [17]. COX-2 has a relatively short half-life, indi-
cating that turnover may effectively control its expression
[8]. While COX-2 and iNOS can be degraded by several
processes [6,8,18-20], calpain inhibitors are known to
suppress cleavage of iNOS [6] and COX-2 [18].

The purpose of this investigation was to determine
whether PIN1 regulates the expression of COX-2, which is
induced by LPS and IFN in MAEC. It was hypothesized
that PIN1 would associate with COX-2 and that depletion
of PIN1 would enhance its induction in MAEC. The
impact of PIN1 depletion on calpain activity was also
determined.

Methods
Endothelial cell growth supplement, heparin, phenyl-
methylsulfonyl fluoride, Bradford reagent, E. coli LPS,
serotype 0111:B4, and arachidonic acid were obtained
from Sigma Chemical Co. (St Louis, MO). Recombinant
mouse IFN was from R&D Systems (Minneapolis, MN).
Cycloheximide, carbobenzoxy-valinyl-phenylalaninal

(zVF, MDL-28170 or calpain inhibitor III), PD150606,
porcine μ-calpain, [4-((4-(dimethylamino)phe-
nyl)azo)benzoic acid, succinimidyl ester]-threonine-pro-
line-leucine-lysine~serine-proline-proline-proline-serine-
proline-arginine-[5-((2-aminoethyl)amino)naphthalene-
1-sulfonic acid], and carboxybenzyl-phenylalanine-
arginine-7-amido-4-methylcoumarin were obtained from
Calbiochem (La Jolla, CA). Fetal bovine serum was from
Hyclone Laboratories (Logan, UT). Agarose, ethidium
bromide, ethylenediamine tetraacetic acid, sodium
dodecyl sulfate, NaCl, Na3VO4, NaF, tris-base and tween
20 were obtained from Fisher Scientific (Fair Lawn, NJ).
Triton X-100 was from Pierce (Rockford, IL). Dulbecco's
minimum essential medium, trypsin, Trizol, Superscript
Reverse Transcriptase Taq DNA polymerase, RNAse-free
DNAse, deoxynucleotides, and protein G agarose were
purchased from Invitrogen (Carlsbad, CA). Glutathione-
sepharose was purchased from Amersham Biosciences
(Uppsala, Sweden). A prostaglandin E2 competition
enzyme-linked immunosorbent assay kit was obtained
from R and D Systems, Minneapolis, MN. Anti-COX-2
antibody directed against a 16 amino acid sequence, end-
ing 7 residues from the C-terminus of the protein, SC-560
and NS-398 were purchased from Cayman Chemical
(Ann Arbor, MI). Anti-PIN1 was from R&D Systems (Min-
neapolis, MN). Horseradish peroxidase-conjugated goat
anti-mouse and goat anti-rabbit secondary antibodies
were from Jackson Immunoresearch Laboratories, Inc.
(West Grove, PA). Renaissance Enhanced Chemilumines-
cence Reagent was purchased from New England Nuclear
Life Sciences (Boston, MA).

Cells
MAEC were cultured from aortas of mice in accordance
with the Guide for the Care and Use of Laboratory Ani-
mals from the U.S. National Institutes of Health [21]. As
described previously, cells were transduced with short
hairpin RNA (shRNA) to knockdown (KD) PIN1 or with
an inactive mutant sequence (Control), and selected for
stable modification. This produced KD MAEC with
approximately 15% of the level of PIN1 protein found in
Control and non-transduced MAEC [6].

Treatments
KD and Control MAEC were incubated in Dulbecco's
minimum essential medium/0.5% fetal bovine serum for
18 h, and then treated with medium or 10 μg LPS and 20
ng IFN per ml, and other agents for various times. zVF or
PD150606 were added 1 h before LPS/IFN to inhibit cal-
pain [22]. Ninety μg cycloheximide/ml was used to
inhibit protein synthesis after induction of COX-2 with
LPS/IFN [6]. COX-2-dependent prostaglandin E2 produc-
tion was measured after incubating cells with LPS/IFN for
24 h. Cells were then incubated in fresh medium contain-
ing 20 μM arachidonic acid, LPS, IFN and the COX-1
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selective antagonist, SC-560 (1 μM) [23], with or without
the COX-2 selective antagonist, NS-398 (10 μM) [24]. The
medium was collected after 2 h and stored at -80 degrees
C. Prostaglandin E2 was measured by competition
enzyme-linked immunosorbent assay in comparison with
prostaglandin E2 standard by the manufacturer's instruc-
tions.

mRNA Levels
RNA was extracted with Trizol, precipitated, and dissolved
in water. cDNA was produced from 3 μg of RNA. cDNA
was amplified by polymerase chain reaction for β-actin as
described previously [25], and for COX-2. COX-2 primers
were sense, 5'-CCG GAC TGG ATT CTA TGG TG, and anti-
sense, 5'-AGG AGA GGT TGG AGA AGG CT from Gen-
bank accession BC052900, producing a 263 base pair
product. Half of each reaction was electrophoresed in 1%
agarose. Gels were imaged and analyzed after ethidium
bromide staining [25].

Immunoprecipitation, glutathione s-transferase pulldown, 
and Western blotting
As previously described [6], cells were washed, sonicated
in lysis buffer, and protein concentration was measured.
For western blotting, 12 μg of sample protein were dena-
tured and separated on 4–20% Tris-gylcine, SDS-polyacr-
ylamide gels and transferred to nitrocellulose. For
immunoprecipitation, 500 μg of cell lysate protein was
incubated with 5 μg anti-PIN1 antibody and protein G
agarose. For pulldown, glutathione S-transferase or glu-
tathione S-transferase-PIN1 fusion protein was added to
500 μg of cell lysate protein and glutathione-sepharose.
Samples were then denatured for electrophoresis and
western blotting. Blots were immunostained and imaged
on X-ray film by enhanced chemiluminescence. Films
were scanned and digital images of proteins were ana-
lyzed.

Calpain activity
Calpain activity was measured as described by Tompa et
al. [26]. Cells were washed with and scraped in 1 ml of ice-
cold PBS, and collected by centrifugation (1500 × g, 2 min
at 4°C). Collected cells were resuspended in 100 mM Tris-
HCl, 5 mM EDTA, 1 mM dithiothreitol, 5 mM benzami-
dine, 0.5 mM phenylmethylsulfonyl fluoride, and 10 mM
β-mercaptoethanol, and sonicated four times for 10 s at
4°C with 1 min pauses in between. The lysate was centri-
fuged at 15,000 × g for 20 min at 4°C to remove the cell
debris. Calpain activity was measured with the fluoro-
genic calpain substrate, [4-((4-(dimethylamino)phe-
nyl)azo)benzoic acid, succinimidyl ester]-threonine-
proline-leucine-lysine~serine-proline-proline-proline-ser-
ine-proline-arginine-[5-((2-aminoethyl)amino)naphtha-
lene-1-sulfonic acid]. The reaction mixture contained 40
μg protein and 15 mM calcium in 50 μl of buffer (10 mM

HEPES, 150 mM NaCl, 1 mM EDTA, 5 mM benzamidine,
0.5 mM phenylmethylsulfonyl fluoride, 10 mM β-mer-
captoethanol, pH 7.5). The reaction at 30°C was started
by adding substrate to 100 μM. The initial velocity of
increasing fluorescence, using 320 nm excitation and 480
nm emission, was determined.

The susceptibility of COX-2 to degradation by exogenous
calpain in vitro was also determined. Extracts were incu-
bated in calpain reaction buffer as above in the presence
of porcine μ-calpain for 30 min at 30°C. Reactions were
stopped by addition of denaturing sample buffer and sub-
jected to western blotting as described above.

Cathepsin activity
Cells were washed three times with PBS and scraped in 1
ml of ice-cold PBS. Cells were collected by centrifugation
at 1500 × g for 2 min at 4°C. The pellet was resuspended
in reaction buffer (50 mM Na-acetate, 1 mM EDTA and 2
mM dithioerythritol pH 5.5), and sonicated four times for
10 s with 1 min breaks. The lysate was centrifuged at 1500
× g for 5 min at 4°C to remove debris. The reaction was
started by mixing 20 μM cathepsin substrate, carboxyben-
zyl-phenylalanine-arginine-7-amido-4-methylcoumarin,
in the reaction containing 2 μg supernatant protein, as
described by Werle et al. [27]. 7-amido-4-methylcou-
marin release was monitored at 37°C for 30 min by fluo-
rescence, with excitation at 380 nm and emission at 460
nm, and the initial velocity was determined.

Data analysis
Bands in images of polymerase chain reaction gels and
scanned western blots were measured with Image J 1.34 s
(NIH). Prostaglandin E2 concentrations were estimated
from a standard curve and calpain activity was indicated
by the fluorescence increase per minute. Data were ana-
lyzed by Student's t test or analysis of variance with Bon-
ferroni correction for multiple comparisons [28].

Results
Previously, KD shRNA was shown to reduce PIN1 by 85%
compared with Control shRNA in MAEC [6]. COX-2 pro-
tein was very low in vehicle-treated KD and Control
MAEC (figure 1), and incubation with either LPS or IFN
alone did not induce it (data not shown). However, stim-
ulation with 10 μg LPS plus 20 ng IFN per ml increased
COX-2 expression. The protein appeared to increase as
early as 1 h after treatment, and induction persisted
through 24 h. Differences between KD and Control cells
were qualitatively noticeable by 4 h after treatment and
became greater with time (figure 1A). After 24 h, the signal
for COX-2 protein was increased 10-fold in Control
shRNA MAEC (figure 1B). The COX-2 signal was signifi-
cantly more induced in PIN1 KD cells (47-fold). Similar
results were obtained in 2 other independent pairs of cul-
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tures selected for the KD and Control shRNA (data not
shown). COX-2-mediated prostaglandin E2 production
increased 3-fold in KD MAEC, but not in the Control cells
(figure 2). LPS/IFN induced COX-2 mRNA in KD and
Control shRNA cells as indicated by RT-PCR. The message
increased within 1 h and remained elevated at 24 h. How-
ever, there was no difference between KD and Control
shRNA MAEC at any time (figure 3).

PIN1 KD and Control shRNA MAEC were pretreated with
vehicle or the calpain inhibitors, zVF or PD150606, for 1
h, and then treated with LPS and IFN for 24 h. Again,
COX-2 increased more in KD than Control cells (figure 4).
In Control cells, COX-2 was induced 5.5-fold more in the
presence of zVF than in its absence. zVF also increased the
induction of COX-2 from its elevated level in KD MAEC
by a factor of two (figure 4A). PD 150606, which is more
selective than zVF for calpain relative to cathepsin activi-
ties [29,30], also increased the induction of COX-2 in KD
and Control cells. zVF did not increase the induction of
COX-2 mRNA in cells treated with LPS/IFN for 1 or 24 h
(figure 5).

The effect of PIN1 depletion and zVF on degradation of
COX-2 was assessed. Cells were induced with LPS/IFN
and then treated with 90 μg cycloheximide/ml to block
translation. The level of COX-2 protein fell to 44% of its
initial value 2 h after addition of cycloheximide to Con-
trol shRNA cells (figure 6). However, a similar decrease to
47% was delayed until 4 h in KD MAEC. COX-2 protein
fell only to 78% of initial 2 h after cycloheximide in zVF-
treated Control cells. zVF also inhibited the loss of COX-2
in KD cells at 4 h.

To confirm that COX-2 is a potential substrate for calpain,
its digestion in vitro was examined. Addition of porcine μ-
calpain to extracts of LPS/IFN-treated Control cells
caused a concentration-dependent loss of COX-2 signal
(figure 7).

Since PIN1 is known to bind its substrate proteins, inter-
action with COX-2 was investigated. Immunoprecipita-
tion of PIN1 from extracts of vehicle- or LPS/IFN-treated
Control cells did not produce any COX-2 detectable on
western blots. COX-2 was not pulled down with glutath-
ione-S-transferase-PIN1 fusion protein or glutathione-S-
transferase (not shown).

Given the effect of calpain inhibitors on COX-2, calpain
and cathepsin activities were measured. LPS/IFN
increased calpain activity 6.0-fold in KD cells, and 5.9-
fold in Control MAEC. Calpain activity in vehicle-treated
KD cells was approximately 45% of the activity in the
Control cells with or without treatment with LPS/IFN (fig-

Effect of PIN1 knockdown on COX-2 proteinFigure 1
Effect of PIN1 knockdown on COX-2 protein. A, KD 
and Control (Con) shRNA MAEC were treated with LPS and 
IFN for 0–24 h. B, Cells were treated with medium or LPS 
and IFN for 24 h. Representative western blots of COX-2 
and α-tubulin are shown. Bars in B represent mean + SE ratio 
of COX-2/α-tubulin from densitometric analysis of 3 cul-
tures of each group. *:p < 0.05 for comparison between 
medium- and LPS/IFN-treated cells, and +, p < 0.05 for com-
parison between KD and Control cells treated in the same 
manner.

Effect of PIN1 knockdown on prostaglandin E2Figure 2
Effect of PIN1 knockdown on prostaglandin E2. COX-
2-dependent prostaglandin E2 (PGE2) production was meas-
ured in cells treated with LPS, IFN, 20 μM arachidonic acid 
and 1 μM SC-560, with or without 10 μM NS-398. Bars rep-
resent mean + SE concentration of prostaglandin E2 in 
medium for 5 cultures in each group. *:p < 0.05 for between 
KD and Control cells treated in the same way.
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ure 8A). Cathepsin activity was measured since zVF might
also inhibit it. There were no differences in cathepsin
activity in extracts of KD and Control MAEC, with our
without treatment with LPS/IFN (figure 8B).

Discussion
PIN1 regulates the levels and activity of factors that can
affect COX-2 synthesis in various cell types [2,4,31-36].

Here, suppression of PIN1 in endothelial cells increased
the induction of COX-2, and COX-2-dependent produc-
tion of prostaglandin E2 by LPS/IFN (figures 1 and 2).
Despite a nearly 5-fold greater induction of COX-2 pro-
tein in KD compared with Control MAEC, there was no
difference in the induction of COX-2 mRNA (figure 3).
This suggests that PIN1 regulates COX-2 by a post-tran-
scriptional mechanism. Consistent with a post-transcrip-
tional effect, PIN1 depletion reduced the turnover of
COX-2 (figure 6). Since COX-2 has a relatively short half-
life, inhibition of turnover could lead to large, cumulative,
post-transcriptional increases after induction with LPS/
IFN [8].

One prior study revealed that cleavage of COX-2 was
reduced by the inhibitor, E-64d, in human synovial
fibroblasts [18]. Here, the calpain inhibitor, zVF,
increased the induction of COX-2 (figure 4) and reduced
its degradation (figure 6), without increasing its mRNA
(figure 5). As for E-64d, zVF can also inhibit cathepsin
activity at concentrations similar to those that inhibit cal-
pain [29,37,38]. Therefore, PD 150606, which is more
selective for calpain compared with cathepsin [30], was

Effect of PIN1 knockdown on COX-2 mRNAFigure 3
Effect of PIN1 knockdown on COX-2 mRNA. A, KD 
and Control (Con) shRNA MAEC were treated with LPS and 
IFN for 0–8 h. B, Cells were treated with medium or LPS and 
IFN for 24 h. mRNAs encoding COX-2 and β-actin were 
determined by RT-PCR and agarose gel electrophoresis. 
Representative ethidium bromide-stained gels are shown. 
Replicate COX-2 or β-actin products in a single gel were 
imaged for analysis. Bars represent mean + S.E. ratio of 
COX-2: β-actin products from densitometric analysis of 
images from 3 independent cultures. *:p < 0.05 for compari-
son with cells treated for 0 h in A, or with medium in B.

Effect of calpain inhibitors on COX-2 proteinFigure 4
Effect of calpain inhibitors on COX-2 protein. PIN1 
KD and Control shRNA MAEC were treated with vehicle 
(DMSO) or 25 μM zVF (A) or different concentrations of 
PD150606 (B), and then with LPS and IFN for 24 h. Repre-
sentative western blots of COX-2 and α-tubulin are shown. 
Bars represent mean + SE ratio of COX-2 to α-tubulin from 
densitometric analysis of images from 3 independent cultures 
in each group. *: p < 0.05 for comparison between vehicle 
and zVF, and +, p < 0.05 for comparison between KD and 
Control shRNA.
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tested. Like zVF, PD 150606 increased the induction of
COX-2 in KD and Control MAEC (figure 4B), further sug-
gesting that calpain is responsible for restraining the
induction of COX-2 in MAEC.

In support of this idea, it was shown here for the first time
that PIN1 depletion reduced calpain activity in endothe-
lial cells. In contrast, cathepsin activity was not affected by
PIN1 depletion (figure 8). This result, combined with the
effects of zVF and PD150606 on COX-2 induction and
turnover, suggests again that calpain limits the expression
of COX-2 in MAEC. Indeed, COX-2 was degraded by μ-
calpain in vitro, indicating that it is a potential substrate in
cells (figure 7). The reduced calpain activity in KD extracts
(figure 8) could be due to an increase in expression or
function of calpastatin or other unrecognized endogenous
calpain inhibitors in KD cells, or to a reduction in expres-
sion or function of calpains [39]. Nevertheless, the results

suggest that PIN1 depletion reduces calpain activity, con-
sequently reducing the turnover of COX-2 in MAEC.

zVF further reduced the loss of COX-2 in cycloheximide-
treated KD cells (figure 6). This may be due to the partial
55% reduction of calpain activity in KD MAEC (figure 8).
The partially reduced calpain activity could account for
the intermediate loss of COX-2 in the cycloheximide-
treated KD cells, allowing zVF to further suppress turno-
ver. It may also explain the ability of calpain inhibitors to
increase induction of COX-2 in both KD and Control
MAEC (figure 4). The partial reduction of calpain activity
may be due to the incomplete (85%) suppression of PIN1
by the shRNA [6]. PIN1 may also function as a modulator
of calpain activity and not as an absolute requirement.

Previously, we observed that PIN1 depletion and zVF each
increased the induction of iNOS, and reduced its degrada-

Effect of zVF on COX-2 mRNAFigure 5
Effect of zVF on COX-2 mRNA. KD and Control (Con) shRNA MAEC were treated with vehicle (DMSO) or 25 μM zVF 
for 1 h, and then with medium or LPS/IFN for 1 h (A) or 24 h (B). mRNA for COX-2 and β-actin were assessed as in figure 3. 
Representative agarose electrophoresis of PCR products are shown. Replicate COX-2 or β-actin products in a single ethidium 
bromide-stained gel were imaged for analysis. Bars represent the mean + SE of ratio of COX-2/β-actin signal intensity + SE of 
3 independent cultures. *: p < 0.05 for comparison between LPS/IFN- and medium-treated cells. +: p < 0.05 for comparison 
between KD and Control cells treated with LPS/IFN and zVF.
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tion. PIN1 physically interacted with iNOS. The WW and
catalytic domains of PIN1 appeared to contribute to the
association [6]. This suggested that PIN1 depletion might
alter the susceptibility of its targets to digestion by calpain.
For example, PIN1 could associate with these substrates
and catalyze proline isomerization, affecting protease sen-
sitivity. In contrast to iNOS, however, interaction between
COX-2 and PIN1 was not detected here. A role for direct
interaction between COX-2 and PIN1 cannot be com-
pletely excluded, however, since association of the proline
isomerase with its putative substrate may be weak or tran-
sient. PIN1 could also affect association of COX-2, or
iNOS, with other proteins that may indirectly regulate
proteolysis. Thus, effects of PIN1 on calpain activity and/
or COX-2, or associated factors, could affect the sensitivity
of COX-2 to digestion with calpain.

Overall, the results indicate that PIN1 regulates the induc-
tion of COX-2, and iNOS, by a previously unknown effect
on calpain-mediated turnover in MAEC. The mechanisms
by which PIN1 regulates calpain activity are under inves-
tigation. In particular, PIN1 could affect the expression or
activity of calpain subunits, and the endogenous inhibitor
of heterodimeric calpains, calpastatin [39].

The effects of COX-2 in acute and chronic inflammatory
responses in the vasculature are complicated by multiple
primary and secondary stimuli that may be present, and
by cellular factors, such as supply of arachidonic acid,
complement of various prostaglandin synthases, and
expression of prostaglandin receptors [16]. Here, deple-
tion of PIN1 and inhibition of calpain each caused over-
induction of both COX-2 and iNOS. The consequences of
co-induction of these two particular enzymes may be sig-
nificant. Peroxynitrite from NO increases prostaglandin
synthesis [40], and S-nitrosylation of COX-2 activates the
enzyme and contributes to cell injury [41,42]. The impact
of the co-induction of iNOS and COX-2 in endothelium
requires further investigation.

The role of calpain activity may also be complex. The most
well-studied calpains, heterodimeric μ- and m-calpain,
can cleave numerous protein substrates, and enhance or
down-regulate different signal transduction processes.
Excessive calpain activity can also cause cell injury and
death in several organs, which can be reduced with cal-
pain inhibitors [39,43]. Thus, it remains to be determined

Effect of PIN1 knockdown and calpain inhibition on COX-2 stabilityFigure 6
Effect of PIN1 knockdown and calpain inhibition on 
COX-2 stability. KD and Control shRNA MAEC were 
treated with vehicle (DMSO) or 25 μM zVF for 1 h, then 
with LPS and IFN for 24 h. Cycloheximide (90 μg/ml) was 
added, and cell extracts were collected at the indicated times 
and western blotted for COX-2 and α-tubulin. A, Represent-
ative images of COX-2 and α-tubulin. Blots were processed 
in the same reagents for each protein, and exposed on one 
film for all samples. B, The average COX-2/α-tubulin signal 
intensity ratio ± SE of 4 independent cultures for each point, 
as a percent of the value at 0 h after cycloheximide treat-
ment, is shown. The dashed line marks the 50% value. *, p < 
0.05 for comparison between vehicle- and zVF-treated KD 
cells or Control cells at the indicated time. +, p < 0.05 for 
comparison between similarly treated KD and Control cells 
at the indicated time.

COX-2 degradation by μ-calpain in vitroFigure 7
COX-2 degradation by μ-calpain in vitro. Control cells 
were treated with LPS/IFN for 24 h to induce COX-2. 
Extracts were then mixed with the indicated units of porcine 
μ-calpain, in calpain reaction buffer, incubated 30 min, and 
then denatured for western blotting. A representative blot of 
COX-2 is shown. Bars represent the average COX-2 signal 
intensity ± SE of 3 independent cultures for each point, as a 
percent of the value without added calpain.
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whether PIN1 or specific calpains in endothelial cells can
be exploited to manipulate inflammatory activation in a
therapeutically useful manner. In any case, the results here
indicate that COX-2 is degraded by calpain, and that PIN1
regulates its expression via effects on calpain activity in
MAEC.

Conclusion
Depletion of PIN1 increased induction of COX-2 by LPS/
IFN by a post-transcriptional mechanism associated with
reduced calpain activity. Consistent with the short
lifespan of COX-2 in MAEC, suppression of PIN1 and cal-
pain inhibitors increased its induction. This previously
unknown connection suggests that PIN1 may normally

function to maintain calpain activity and, consequently,
restrain the induction COX-2, iNOS, and perhaps other
substrates in MAEC. PIN1 is likely to regulate a range of
calpain-dependent endothelial activities.
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