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Abstract

Co-expression network analysis provides useful information for studying gene regulation in

biological processes. Examining condition-specific patterns of co-expression can provide

insights into the underlying cellular processes activated in a particular condition. One chal-

lenge in this type of analysis is that the sample sizes in each condition are usually small,

making the statistical inference of co-expression patterns highly underpowered. A joint net-

work construction that borrows information from related structures across conditions has

the potential to improve the power of the analysis. One possible approach to constructing

the co-expression network is to use the Gaussian graphical model. Though several methods

are available for joint estimation of multiple graphical models, they do not fully account for

the heterogeneity between samples and between co-expression patterns introduced by con-

dition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a

data-driven approach to incorporate condition specificity in the estimation of co-expression

networks. We show that this method improves the accuracy with which networks are

learned. The application of this method on a rat multi-tissue dataset and The Cancer

Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In

both analyses, we identify numerous modules enriched for Gene Ontology functions and

observe that the modules that are upregulated in a particular condition are often involved in

condition-specific activities. Interestingly, we observe that the genes strongly associated

with survival time in the TCGA dataset are less likely to be network hubs, suggesting that

genes associated with cancer progression are likely to govern specific functions or execute

final biological functions in pathways, rather than regulating a large number of biological pro-

cesses. Additionally, we observed that the tumor-specific hub genes tend to have few

shared edges with normal tissue, revealing tumor-specific regulatory mechanism.
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Author summary

Gene co-expression networks provide insights into the mechanism of cellular activity and

gene regulation. Condition-specific mechanisms may be identified by constructing and

comparing co-expression networks of multiple conditions. We propose a novel statistical

method to jointly construct co-expression networks for gene expression profiles from

multiple conditions. By using a data-driven approach to capture condition-specific co-

expression patterns, this method is effective in identifying both co-expression patterns

that are specific to a condition and that are common across conditions. The application of

this method to real datasets reveals interesting biological insights.

Introduction

Gene co-expression network analysis is a useful tool for studying the complex regulatory

machinery in organisms [1][2][3][4]. When the gene expression profiles under multiple condi-

tions are available, comparing co-expression networks across conditions could reveal co-

expression patterns that are common across conditions and those that are unique to a condi-

tion [5][6][7][8][9], providing insights on how genes work together to regulate biological pro-

cesses under different conditions. It has been demonstrated that complex diseases are likely to

be regulated by condition-specific mechanisms while condition-specific hub genes are likely to

be drug targets [10][11][12].

The Gaussian graphical model and its variants have been widely used for studying biologi-

cal networks [13][14][15][16][17][18][19]. This method models the joint distribution of a set

of variables and characterizes the conditional dependence between each pair of variables given

all the other variables through the precision matrix (a.k.a. inverse covariance matrix) of the

joint distribution [20]. Unlike co-expression models based on marginal correlation, e.g.

WGCNA [21], which do not distinguish the direct and indirect (e.g. through intermediate

genes) relationship between genes, the direct relationship between a pair of genes can be

inferred from the conditional independence estimated from the Gaussian graphical model.

Many algorithms have been proposed to obtain a sparse estimate for the precision matrix, for

example, graphical lasso [22] and neighborhood selection [23]. These algorithms make it pos-

sible to construct gene co-expression networks using graphical models. A graph generated

from this estimate, where genes are represented as nodes and entries in the estimated precision

matrix as edges, provides a useful tool for visualizing the relationships between genes and for

generating biological hypotheses.

In a multi-condition gene expression study, the co-expression profiles across conditions

typically are related, for example, due to shared pathways in different tumor subtypes, or com-

mon regulatory mechanisms for housekeeping genes in different tissues. A joint analysis that

borrows information across conditions potentially can reveal common structures and increase

the power of statistical inference, which is especially useful when the sample sizes are small.

Recently, several methods have been proposed to jointly analyze multiple graphical models.

Meinshausen et al. [24] incorporated a non-convex hierarchical group lasso penalty into the

graphical lasso to encourage common 0’s (i.e. absence of edges) in the precision matrix across

conditions. Danaher et al. [6] proposed a joint graphical lasso model by adding an additional

convex penalty to the graphical lasso objective function. They proposed two choices for the

convex penalty: a group penalty that encourages a shared pattern of sparsity and a fused lasso

penalty that encourages similarities in both network sparsity and edge weights.

CFGL: An adaptive procedure for inferring condition-specific gene co-expression network
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Despite their differences, these methods encourage similarities equally across all edges and

all conditions. This inherently assumes that the similarity across conditions is similar for all

edges and that the precision matrices in all conditions are equally similar to each other. For

gene co-expression networks across different conditions, however, both assumptions are vio-

lated due to the heterogeneity across genes and across conditions. First, edges in the networks

often have different levels of conservation across conditions. For example, in a network con-

sisting of multiple pathways, the pathways involving basic cellular functions tend to be more

conserved across tissues than those involving tissue-specific functions. Second, when there are

multiple conditions, some conditions may be more similar to each other than others. For

example, tissues with the same embryonic origin may have more similar pathways than those

with different origins. More recently, several methods have been proposed to allow more struc-

tural heterogeneity in joint estimation. Zhu et al. [25] introduced a non-convex truncated l1
penalty on the pairwise differences between the precision matrices to encourage elementwise

clustering of similar entries across conditions. To incorporate external information on shared

subgraphs across conditions, Ma et al. [26] grouped edges shared across conditions based on

external information and extended the neighborhood selection method to a joint analysis with

the proposed penalty. To handle heterogeneity in similarities across conditions, Seagusa et al.

[27] proposed a Laplacian shrinkage penalty to incorporate the pairwise distance between con-

ditions, and proposed using hierarchical clustering to obtain the pairwise distance when it is

unknown a priori. While these methods improve the flexibility in estimation, they do not

completely address the issues in studying condition-specific co-expression networks. For

example, though the approach in Zhu et al. [25] allows abrupt elementwise difference across

conditions, it still implicitly assumes that the majority of edges are common across conditions

and penalizes condition-specificity. The approach in Ma et al. [26] relies on the availability

and the quality of external information, which is still limited for gene co-expression relation-

ships. The approach in Seagusa et al. [27] uses external information or hierarchical clustering

to define the weighted subpopulation network and only partially addresses the issue of condi-

tion specificity.

In this work, we propose an adaptive approach to simultaneously addressing condition

specificity and heterogeneity across conditions in the estimation of multiple co-expression net-

works. Our strategy is to incorporate a binary weight matrix that contains information on

whether or not an edge is common between conditions in the fused graphical lasso framework.

We propose a strategy to learn this matrix adaptively from the data based on a test for differen-

tial co-expression, though it can also be obtained from external sources. The incorporation of

this matrix not only accounts for the difference between condition-common edges and condi-

tion-specific edges but also makes the estimation adaptive to the distance between different

conditions. In this way, one can borrow information across conditions for common edges,

while estimating differential edges in a condition-specific manner. We provide a computation-

ally efficient implementation using the alternating direction method of multipliers (ADMM)

algorithm. Our simulations show that this method generates more accurate results in both

edge detection and edge weight estimation. We applied our method to a rat multi-tissue data-

set and a TCGA breast cancer dataset (TCGA BRCA) and obtained interesting biological

insights.

Results

Review of graphical lasso model and fused graphical lasso model

We first briefly describe the Graphical Lasso (GL) method [22] and the Fused Graphical Lasso

(FGL) method [6]. Suppose the gene expression profiles are available across K conditions,

CFGL: An adaptive procedure for inferring condition-specific gene co-expression network
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where conditions are, for example, different tissues or disease statuses. Denote the gene expres-

sion levels Y(k) for the condition k, k = 1,2,. . .,K, as a nk × p matrix, where p is the number of

genes, which is common across all conditions, and nk is the number of observations, which

can vary across conditions. Suppose that gene expression levels within each condition,

yðkÞ1 ; y
ðkÞ
2 . . . yðkÞnk 2 R

p, are identically drawn from N(μk, Sk), where μk 2 R
p and Sk is a positive

definite p × p matrix. Then zero entries in the precision matrix Σ� 1

k correspond to the pairs of

genes that are conditionally independent given all other genes in the dataset. Based on the pre-

cision matrix ΘðkÞ � Σ� 1

k , a gene co-expression network can be constructed by representing

the genes as nodes and conditional dependencies as edges in a graph.

The most direct way to analyze such data is to estimate K individual graphical models sepa-

rately. We can use the graphical lasso method to compute a separate l1 penalized estimator of

Σ� 1

k for each condition by solving,

maximizefΘðkÞg ðlogfdetðΘ
ðkÞÞg � trðSðkÞΘðkÞÞ � lkkΘ

ðkÞk1Þ; ð1Þ

where S(k) = (Y(k))TY(k)/nk is the empirical covariance matrix of Y(k),λkkΘ(k)k1 is a penalty

term with non-negative tuning parameter λk and kΘ(k)k1 is the L1 norm of Θ(k). However,

when the conditions are related, separate estimation ignores the common structure shared

across conditions and can also mask differences critical in understanding condition-specificity

in the co-expression pattern.

To address this issue, Danaher et al. [6] developed a fused graphical lasso model to jointly

estimate multiple graphical models from related conditions. This model incorporates the gen-

eralized fused lasso penalty P({Θ}) [28] to the log-likelihood,

lðfΘgÞ ¼
PK
k¼1
nk½logfdetðΘ

ðkÞÞg � trðSðkÞΘðkÞÞ� � PðfΘgÞ; ð2Þ

such that information can be borrowed across conditions. The penalty P({Θ}) is a convex pen-

alty with two terms,

PðfΘgÞ ¼ l1

PK
k¼1

P
i6¼jjy

ðkÞ
ij j þ l2

PK
k<k0
P
i6¼jjy

ðkÞ
ij � y

ðk0Þ
ij j; ð3Þ

where λ1 and λ2 are non-negative tuning parameters, and y
ðkÞ
ij is the (i,j)-th element of the

matrix Θ(k). The first term, which is the lasso penalty in GL [23][22], is applied to the off-diag-

onal entries of the K precision matrices to encourage sparsity. The second term, which is the

fused lasso penalty [28], is applied to the differences between elements of each pair of precision

matrices to encourage similarity between conditions. A large λ2 leads to similar edge patterns

across conditions. It has been shown that FGL outperforms GL when conditions are related

[6].

Condition-adaptive fused graphical lasso

While borrowing strength across conditions is helpful for enlarging effective sample sizes, dif-

ferences in co-expression patterns are present between different conditions. For example, if

one were studying tumor-specific co-expression by analyzing two subtypes of tumor tissues

and a normal tissue jointly (Fig 1), some edges in the co-expression networks may be common

across all three conditions, while others may be specific to one condition or both tumor sub-

types. A primary interest of the study would be to identify the tumor-specific or subtype-spe-

cific edges. If FGL is used to construct the co-expression network, it would encourage

similarities among all edges across all conditions equally by imposing a constant penalty

parameter. This has two drawbacks. First, it does not distinguish between shared edges and

CFGL: An adaptive procedure for inferring condition-specific gene co-expression network
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those unique to a condition, thus condition-specificity of edges is not preserved. Second, it

imposes an equal amount of similarities across all pairs regardless of whether the pair consists

of two tumor subtypes or a tumor tissue and a normal tissue. This is problematic as the two

tumor subtypes are likely to be more similar to each other than to the normal tissue.

To address these issues, we extend the fused graphical lasso method to incorporate condi-

tion-specificity in the integration of networks across conditions. Our strategy is to add a binary

screening matrix W(kk0) to the fused lasso penalty as follows,

PðfΘgÞ ¼ l1

PK
k¼1

P
i6¼jjy

ðkÞ
ij j þ l2

PK
k<k0
P
i6¼jw

ðkk0Þ
ij jy

ðkÞ
ij � y

ðk0Þ
ij j; ð4Þ

where wðkk
0Þ

ij is the (i,j)-th element of W(kk0) with

wðkk
0Þ

ij ¼
1; if y

ðkÞ
ij and y

ðk0Þ
ij are nondifferential between conditions k and k

0

0; if y
ðkÞ
ij and y

ðk0Þ
ij are differential between conditions k and k

0

8
<

:

The matrix W(kk0) controls whether similarity should or should not be encouraged between

each pair of condition for each edge. It allows different edges to be penalized differently, and

also allows the penalties for different pairs of conditions to vary according to the distance

between the conditions. In doing so, one can borrow strength across conditions for estimating

common edges, while allowing differential edges to be estimated in a condition-specific way.

Therefore, we call our method condition-adaptive fused graphical lasso (CFGL). Fig 2 illus-

trates the workflow of our method.

Fig 1. An illustrative example of condition-specific co-expression patterns. Yellow: module common across all three conditions; Blue: tumor-specific module shared

across the tumor subtypes; Unshaded: module specific to each condition. The co-expression networks in the two tumor subtypes are more similar to each other than to

normal tissue.

https://doi.org/10.1371/journal.pcbi.1006436.g001
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Determine the screening matrix W(kk0)

The screening matrix can be obtained using prior knowledge, learning directly from the data,

or a combination of both strategies. To determine the screening matrix using prior knowledge,

one may extract information on co-expression regulation from public databases, such as the

KEGG pathway database [29], COXPRESdb [30] or MSigDB [31]. For example, if a pathway is

known to be conserved across tissues [5][32], one may specify the corresponding elements in

W(kk0) as 1 to reflect the conservation of co-expression regulation.

However, it is difficult to construct the entire screening matrix solely based on prior infor-

mation, because the gene relationships in the databases often are not provided in a condition-

specific way (e.g. not available for a specific disease type) and the genes of interest may not be

included. Therefore, we propose a data-driven strategy to estimate the screening matrix W(kk0)

from the data. As W(kk0) reflects the status of differentiation between a pair of conditions, we

determine W(kk0) by identifying differential entries between the precision matrices of the two

conditions, Σ� 1

k and Σ� 1

k0 , through a hypothesis test. If the test determines that the entry ij is dif-

ferential, we set wðkk
0Þ

ij ¼ 0, otherwise we set wðkk
0Þ

ij ¼ 1. As wðkk
0Þ

ij is binary, this approach is

equivalent to using a l0 penalty to determine the support of the condition-specific edges. It is

Fig 2. The computational workflow of our method.

https://doi.org/10.1371/journal.pcbi.1006436.g002
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somewhat analogous to the Sure Independent Screening procedure for feature selection meth-

ods such as the lasso, Dantzig selector, and SCAD [33], where an elementwise screening is first

performed to reduce the dimension from ultra-high to moderate before variable selection.

Here we test for differentiation using the test proposed by Xia et al.[34]. This method tests

for a difference between a pair of precision matrices and reports differential entries in the pre-

cision matrices with proper false discovery rate (FDR) control. It directly estimates the differ-

ence between precision matrices, bypassing the estimation of the individual precision

matrices. Other tests for differential entries are available[35][36], but we selected Xia’s test as it

has been shown to provide more accurate estimates than the tests that require separate estima-

tion of precision matrices due to leveraging information on the sparsity of the difference

between precision matrices [37]. To avoid falsely imposing similarity for edges that are moder-

ately differential, we use a relaxed FDR threshold in the test to encourage similarity only to the

edges that are obviously non-differential across conditions.

Parameter estimation and selection of penalty parameters

Similar to FGL and other penalty-based methods, this model can be estimated using the

ADMM algorithm. We used BIC to guide the selection of penalty parameters. In the real data

application, when the sample size is reasonably large to afford subsampling, we performed an

additional stability selection [38] step. Instead of constructing networks using all the samples,

the stability selection procedure constructs networks for a large set of subsamples generated

from the original data and keeps only the edges that frequently occur across subsamples to

obtain robust edges. Details on the stability selection procedure can be found in Methods.

Simulation studies

We used simulation studies to evaluate the performance of our method and compare it to FGL

and GL. We first considered the two-condition scenario, evaluating the performance of these

methods at different levels of differentiation between conditions. Then, we increased the com-

plexity by introducing a third condition and allowing the level of differentiation to vary across

all three conditions.

In the first set of simulations, we generated the gene expression profiles from a co-expres-

sion network of 400 genes for 2 conditions. The network consists of 8 co-expression modules,

each of 50 genes. To generate different levels of differentiation between conditions, we simu-

lated four scenarios (S1-S4) with a progressively increasing number of differential edges

between conditions, where the networks in the two conditions are identical in S1 and are dif-

ferent at various levels in S2-S4. While S1 is extremely rare in practice, it exactly follows the

model assumptions of FGL and thus illustrates the methods performance under conditions

ideal to FGL. Two samples size (50, 100) are considered for each scenario.

To simulate a network, we first simulated its constituent modules. To create different levels

of differentiation, three types of modules were simulated: (1) identical network structure and

identical edge weights between conditions (II), (2) identical network structure but different

edge weights between conditions (ID), and (3) different network structures and different edge

weights between conditions (DD). We then combined these modules in various configurations

to achieve the desired level of differentiation for the networks in different scenarios. In all sce-

narios, the 8 modules are evenly split into two groups, each of which consists of 4 modules of

the same type. The configurations of modules in these scenarios are summarized in Table 1.

Detailed information on the data generating process are in Methods.

For each simulation, we constructed the co-expression network using our method, FGL,

and GL. To evaluate how the accuracy of the estimated screening matrix affects the

CFGL: An adaptive procedure for inferring condition-specific gene co-expression network
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performance of our method, we also included a version of CFGL with the true screening

matrix, which is labeled as CFGL-oracle (CFGLO) (see the Methods section). We compared

the performance of these methods based on the estimation of network topology and edge

weight across a grid of λ1 and λ2. The accuracy of estimated network structure was evaluated

according to the network topology, i.e. the presence or absence of edges. Specifically, we com-

pared the estimated network topology with the true topology, then computed the sensitivity

and specificity of the edge detection. If an edge is present in the true network but missed in the

estimated one (i.e. estimated edge weight = 0), then it was counted as a false negative. If an

edge is absent in the true network but identified in the estimated one (i.e. estimated edge

weight>0), then it was counted as a false positive. The accuracy of edge weight estimation was

assessed by computing the sum of squared error (SSE) between the estimated edge weight and

the true precision matrix. We plotted the ROC curve for edge detection and the SSE for edge

weight estimation at a varying level of λ1 with λ2 fixed at the value that achieves the minimal

BIC value (λ2 = 0.15 for n = 50 and λ2 = 0.10 for n = 100). Because edges detected at a low false

positive rate are of primary interest, we computed the partial area under the curve (pAUC)

from the ROC curve for the range of FPR < 0.05.

Fig 3 shows the results at n = 50. In all scenarios, our approach (CFGL) had a higher partial

AUC (pAUC: S1: 0.711, S2: 0.671, S3: 0.688, S4: 0.620) than GL (pAUC: S1: 0.583, S2: 0.594,

S3: 0.588, S4: 0.590), and also a lower SSE. The gain is more apparent when the two conditions

are relatively similar (S1-S3). This is because data integration improves the accuracy of edge

detection, especially when networks are similar between conditions. The advantage is espe-

cially obvious when n = 50 (S1 Table and S2 Fig for n = 100), as this small sample size is likely

not enough to support accurate estimation with GL based on the samples from a single condi-

tion. FGL performs well in these scenarios too (pAUC: S1: 0.714, S2: 0.609, S3: 0.660); how-

ever, when the two conditions are fairly different (S4), FGL performs worse than GL (pAUC:

0.578 vs. 0.590). Compared with FGL, our method has a higher AUC and an apparently lower

SSE in all scenarios with between-condition differences (S2-S4). Even in the scenario without

between-condition differences (S1), i.e. the ideal setting for FGL, our method is still competi-

tive: it has an almost identical ROC curve as FGL and a slightly higher SSE than FGL. In prac-

tice, it is much more common to encounter S2-S4 than S1, as the networks of two different

conditions are likely to be different. CFGLO has the best AUC (pAUC: S1: 0.714, S2: 0.717, S3:

0.715, S4: 0.723) and SSE among all the methods, suggesting that the performance of CFGL

can be further improved by improving the estimation of screening matrix, for example, by

incorporating external information. We also reported simulation results under several other

λ2’s. The results are similar and can be found in S1 Table.

Next, we allowed the level of differentiation between conditions to vary across conditions.

Such a situation commonly arises when one performs co-expression network analysis for mul-

tiple conditions. Here, we simulated the gene expression profiles under three conditions for

Table 1. Configurations of simulation scenarios. The level of differentiation between two conditions in the constitu-

ent modules is shown in Columns 2–3. II: identical network structure and identical edge weight; ID: identical network

structure and different edge weights; DD: different network structures and different edge weights.

Scenario Group 1 (4 modules) Group 2 (4 modules)

S1 II II

S2 II ID

S3 ID ID

S4 ID DD

https://doi.org/10.1371/journal.pcbi.1006436.t001
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450 genes comprised of 9 modules of 50 genes each. Similar to the 2-condition simulation, we

included two groups of 4 modules of the same type. To better imitate real networks, we also

included an additional type II module to mimic housekeeping co-expression across 3 condi-

tions. In total, we considered 4 scenarios. Table 2 summarizes the configurations of these sim-

ulations. S1 and S2 represent the cases where pairwise similarities between conditions are

constant across conditions, with a higher similarity in S1 than in S2. S3 and S4 represent the

case where pairwise similarities vary across conditions, with a higher similarity in S3 than S4.

In this simulation, we compared CFGL, FGL and GL. CFGLO was not included as its perfor-

mance is similar to the previous case.

In all scenarios, our approach has a higher AUC (pAUC: S1: 0.649, S2: 0.508, S3: 0.650, S4:

0.513) and a lower SSE than both GL (pAUC: S1: 0.597, S2: 0.474, S3: 0.593, S4: 0.472) and

FGL (pAUC: S1: 0.605, S2: 0.494, S3: 0.615, S4: 0.499) (Fig 4, S2 Table). The gain over GL is

most apparent when the differentiation between conditions is low (S1). This is again because

data integration is most beneficial when networks are similar across conditions. FGL performs

well in this case too. However, when the distance between conditions is different across condi-

tions (S3), the advantage of FGL over GL diminishes; and when the differentiation between

conditions is relatively high (S2 and S4), FGL performs worse than GL. This is expected, as

imposing similarity across conditions as in FGL is improper for these scenarios. However, our

method performs well in all scenarios.

Taken together, we attribute the gain of our methods to its adaptive way of enforcing simi-

larities. When networks are highly similar across conditions, enforcing similarities across all

edges, as in FGL, is optimal. Our method adapts to this situation and produces similar results

to FGL. In contrast, when networks are different across conditions, similarity should be

Fig 3. Performance comparison for simulations with two conditions. Top row (A-D): ROC curves for edge detection in the settings of S1-S4. Bottom row (E-H):

SSE for edge weights estimation in the settings of S1-S4. Red line: CFGL, Green line: FGL, Blue line: GL, Purple line: CFGL-oracle.

https://doi.org/10.1371/journal.pcbi.1006436.g003
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encouraged only among the shared edges in data integration. Our method is again adaptive to

the differential patterns across conditions, thus shows more gain when the difference between

conditions is present.

Application to rat expression data

We applied our method to a microarray dataset collected from a recombinant inbred (RI) rat

panel and compared with FGL, GL and WGCNA, which is a widely used network analysis

method based on marginal correlation [21]. The gene expression profiles in the brain and

heart tissues were measured for 19 rat strains using Affymetrix Rat Exon Array 1.0 ST. Details

on data processing and normalization are provided in Methods. Because of the small sample

size, we restricted the network construction to the 500 most differentially expressed (DE)

genes between brain and heart (see Methods). We used BIC to guide the selection of penalty

parameters for CFGL, FGL and GL and used default parameters for WGCNA analysis.

Tissue specificity for edges. Since brain and heart have different embryonic origins and

functions, a considerable number of tissue-specific co-expression relationships are expected.

We first compared the co-expression networks constructed by each method in terms of tissue

specificity (S2 and S3 Figs). Fig 5A shows the number of edges identified by each method cate-

gorized by their tissue specificity. For graphical model based methods, the number of edges are

reported at the optimal BIC (λ1 = 0.0010 and λ2 = 0.0008 for both CFGL and FGL, and λ1 =

0.0009 for GL). Our method and FGL identify substantially more tissue-common edges than

GL and WGCNA. For example, at λ2 = 0.0008 (Fig 5A), 26.0% (356 out of 1374) and 35.6%

(354 out of 994) of edges detected by our method and FGL, respectively, are common between

tissues; whereas only 0.2% (3 out of 1491) and 0.3% (5 out of 1495) of edges detected by GL

and WGCNA are common between tissues (S3 Table). This is expected, as the fused penalty in

CFGL and FGL enforces similarities across tissues. Compared with FGL, our method detects

substantially more tissue-specific edges. To check if this pattern is related to the choices of λ2,

we also performed the same analysis at λ2 = 0.0010 and 0.0012 (Fig 5B and 5C). This observa-

tion persists at all λ2 levels. This difference is especially obvious when a relatively high λ2 is

applied: the proportion of tissue-specific edges detected by FGL rapidly reduces, whereas our

method still maintains a considerable proportion of tissue-specific edges. For example, when

λ2 = 0.0012 (Fig 5C), our method detects 23.6% (191) brain-specific edges and 20.6% (161)

heart-specific edges, whereas FGL detects only 1.1% (7) brain-specific edges and no heart-spe-

cific edges.

Tissue-specific hub genes identified by CFGL demonstrate highly tissue-specific biolog-

ical functions. Because the estimated heart- and brain-specific networks are both consider-

ably dense, it is difficult to identify disjoint co-expression modules. Instead, we first identified

Table 2. Configurations of scenarios in the 3-condition simulation. The pairwise similarity between condition 1 and other conditions is reported.

Scenario Condition Group 1 (4 modules) Group 2 (4 modules) Housekeeping module

S1 C1-C2 II ID II

C1-C3 II ID II

S2 C1-C2 ID DD II

C1-C3 ID DD II

S3 C1-C2 II ID II

C1-C3 ID DD II

S4 C1-C2 II ID II

C1-C3 DD DD II

https://doi.org/10.1371/journal.pcbi.1006436.t002
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tissue-specific hub genes. Then we formed a tissue-specific module for each hub gene using

the hub gene and the genes directly connected with the hub by tissue-specific edges. To iden-

tify these hub genes, we counted the number of edges that are specific to each tissue for each

gene and reported the five genes with the highest number of tissue-specific edges identified by

our method (at λ1 = 0.001,λ2 = 0.0008) in Table 3. Because the genes used to construct net-

works in this analysis are differentially expressed genes, any random set of them presumably

would show some tissue specificity. However, a random set of DE genes is much less likely to

Fig 5. The numbers of tissue-specific and tissue-common edges detected in two tissues (B: brain, H: heart) by our method, GL, and FGL. (A) λ2 =

0.0008, (B) λ2 = 0.0010 and (C) λ2 = 0.0012.

https://doi.org/10.1371/journal.pcbi.1006436.g005

Fig 4. Performance comparison for simulation with 3 conditions. Top row (A-D): ROC curve for edge detection for the settings of S1-S4; Bottom row (E-H):

SSE for edge weights estimation for the settings of S1-S4. Red line: CFGL, Green line: FGL, Blue line: GL.

https://doi.org/10.1371/journal.pcbi.1006436.g004
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form a functionally coherent module than a set of co-expressed DE genes. Thus the functional

coherence of a module helps establish confidence in the identified co-expression pattern. To

examine the functional coherence for these modules, we performed a Gene Ontology (GO)

enrichment analysis using the non-hub genes in each module and checked its agreement with

the functionality of the hub gene. As a comparison, we also performed a GO enrichment analy-

sis using a set of the most differentially expressed genes with the same size as that of the identi-

fied module.

Among the brain-specific hub genes, Mobp has been found to be specifically expressed in

oligodendrocytes. It encodes the protein related to sheath compaction in rat brain and spinal

cord [39]. Its peripheral genes also show a significant GO enrichment in myelin sheath

(FDR = 1.558E-3), consistent with the function of Mobp. Interestingly, this GO term was not

enriched using the set of 30 most differentially expressed genes in brain, providing an example

of how differential co-expression analysis can uncover biologically important findings not

revealed by differential expression analysis alone. Cacng3 is a protein-coding gene that encodes

type I trans-membrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

receptor regulatory protein (TARP). Its product, TARP gamma-3, is abundant in the cerebral

cortex and amygdala, and has been found to be associated with childhood absence epilepsy in

humans [40][41]. The genes specifically co-expressed with Cacng3 in brain are also enriched in

the GO terms related to neuron differentiation (FDR = 1.332E-2), anterograde trans-synaptic

signaling (FDR = 1.332E-2) and synapse (FDR = 4.161E-6). Among heart-specific hub genes,

Nppb (also known as BNP) is a member of the natriuretic peptide family and encodes a secreted

protein that functions as a cardiac hormone. It has been reported that Nppb is associated with

an intra-cardiac counterregulatory mechanism that prevents the development of cardiac fibrosis

in vivo. It has been suggested that this gene serves as a local regulator during the process of ven-

tricular remodeling [42]. The genes specifically connected with Nppb in heart are also enriched

in the GO terms related to cardiac muscle tissue development (FDR = 3.886E-3). Another

heart-specific hub gene, Xirp2 (also known as CMYA3), has been reported to be related to the

formation of intercalated disc (ICD), which is a juncture that links cardiac muscle cells and

plays vital roles in signaling among cardiomyocytes[43]. The genes connected to Xirp2 are also

enriched in GO terms related to muscle fiber development (FDR = 1.517E-2).

Table 3. Top-5 tissue-specific hub genes identified by our method. The numbers of tissue-specific edges linked to the hub and the corresponding rankings are reported,

in comparison with the results from FGL and GL. "-" indicates that the ranking is outside of top 50.

Tissue Gene

CFGL FGL GL WGCNA

#edge #edge #edge #edge #edge #edge #edge #edge

Ranking Ranking Ranking Ranking

Brain

Cox8b 59 1 54 1 4 - 1 -

Scrg1 39 2 34 3 1 - 0 -

Cryab 37 3 36 2 9 43 3 -

Cacng3 31 4 29 4 4 - 23 18

Mobp 30 5 28 5 9 42 0 -

Heart

Nppb 38 1 9 2 0 - 4 -

LOC100365047 18 2 14 1 14 21 3 -

Xirp2 17 3 4 3 0 - 1 -

Eno3 17 4 1 - 0 - 0 -

Cxcl11 7 5 1 - 18 11 0 -

https://doi.org/10.1371/journal.pcbi.1006436.t003
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FGL identifies the same set of brain-specific hubs and a similar brain-specific subnetwork

as our method. However, our method detects more heart-specific hubs than FGL, and each

hub harbors more heart-specific edges (Table 2). GL and WGCNA report drastically different

results (S4 and S5 Tables) from FGL and our method in both tissues. None of the hubs

reported by FGL and CFGL (Table 2) are ranked among the top 5 by these two methods. We

also identified co-expression modules for rat brain and heart tissue using WGCNA. In total, 7

modules were identified for brain tissue (module size: 26–102 genes) and 3 for heart tissue

(module size: 89–202 genes), with enriched GO terms related to neuron projection morpho-

genesis and chemical synaptic transmission for brain and transmembrane transporter activity

and channel activity for heart (S6 Table). These modules generally are larger than those identi-

fied by CFGL. We discuss the observed differences in the Conclusion.

Application to TCGA BRCA data set

We applied our method to the breast cancer data from the TCGA project [44]. Breast cancer is

the most common cancer among women [43]. According to the presence and absence of the

estrogen receptor (ER) in cancer cells, breast cancer can be classified into two subtypes, ER+

and ER-. Approximately two-thirds of breast cancer are ER+ at the time of diagnosis, and the

rest are ER-. The ER status provides important clinical implications for both mechanisms of

carcinogenesis and therapeutic treatment [45].

The TCGA BRCA project [44] has collected gene expression RNA-seq data for 1100 breast

cancer patients. Among them, 112 individuals have both tumor tissue and matched peripheral

normal tissue. Our goal is to identify co-expression modules that are specific to ER+ or ER-

subtype and those that are shared between the two tumor subtypes but are not present in nor-

mal tissue. To ensure the independence of the samples in our analysis, we used the normal tis-

sue samples from these 112 individuals and tumor samples that are annotated as ER+ (187

samples) or ER- (98 samples) from different individuals. Due to the limited sample size, we

restrict our analysis to a subset of 1000 genes that either show a significant association with

survival time in a Cox model or have been reported to be related to breast cancer (Details in

Methods). To obtain robust co-expression networks, we applied the stability selection proce-

dure in [38] in conjunction with CFGL, FGL and GL. In addition, we also performed

WGCNA on the same dataset as a comparison. Details of the data processing steps and the

procedure of the stability selection can be found in Methods.

Disease type specificity of the co-expression edges. To investigate disease type specificity

of the edges, we partitioned the identified edges into seven mutually exclusive categories: nor-

mal tissue only, ER+ subtype only, ER- subtype only, normal and ER+ shared, normal and ER-

shared, ER+ and ER- shared, and all tissue common. The number of edges identified by each

method in each category is summarized in S7 Table. Fig 6 compared the disease type specificity

of the edges identified by the three methods. Similar to the rat dataset, the majority of the

edges identified by GL and WGCNA are unique to one tissue with a very small percentage

(GL: 68/5978 = 1.1%, WGCNA: 12/2834 = 4.2%) of edges shared by all tissues. In contrast, a

high percentage of edges identified by FGL (1330/4448 = 30.0%) and our method (684/

2624 = 26.1%) are common across all tissues.

We also evaluated the pairwise similarity of the co-expression networks between each pair

of tissues (Fig 6). As ER+ and ER- tumors both are subtypes of breast cancer, they are expected

to be more similar to each other than to normal tissue. However, we observed that FGL and

GL show a higher proportion of shared edges between normal tissue and ER+ tumor (FGL:

446/4448 = 10.0%; GL: 290/5978 = 4.9%) than between the two tumor subtypes (FGL: 226/

4448 = 5.1%; GL: 218/5978 = 3.6%). WGCNA identifies a very small proportion of shared
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edges between any two tissues. Among them, more edges are shared between normal tissue

and ER- tumor (30/2834 = 1%) than between the two tumor subtypes (22/2834 = 0.7%). In

contrast, our method shows a much higher proportion of shared edges between the two tumor

subtypes (332/2624 = 12.6%) than between the normal tissue and either of the tumor subtypes

(normal and ER+: 250/2624 = 9.5%; normal and ER-: 60/2624 = 2.3%), reflecting the expected

biological similarity. The proportion of common edges between the two tumor subtypes is also

substantially higher in the network constructed by our method than in those constructed by

the other three methods (CFGL: 332 (12.6%), FGL: 226 (5.1%), GL: 218 (3.6%), and WGCNA:

22 (0.7%)).

Genes most significantly associated with survival time usually are not hubs. To investi-

gate the biological relevance of the hub genes in the co-expression network constructed by our

method, we examined the relationship between the hubness of each gene, i.e. the number of

edges connected to the gene, and its association with survival time. Strikingly, we found a clear

negative correlation between the hubness of a gene and the significance of its association with

survival time (Fig 7): the genes that have the most significant p-values in the Cox model usually

are not hub genes, whereas hub genes tend to have less significant p-values. One possible

explanation is that many genes that are significantly associated with survival time govern very

Fig 6. Disease type specificity of the estimated co-expression edges for the TCGA data.

https://doi.org/10.1371/journal.pcbi.1006436.g006

Fig 7. Hubness of a gene and its association with survival time in (A) normal tissue, (B) ER+ tumor tissue and (C) ER- tumor tissue. Y-axis: -log10 (p-value) of a

gene in the Cox model. X-axis: the number of edges connected to a gene. The gene set consists of 961 genes that are significant associated with survival time (p-

values<0.05) and 39 genes that are not significant but are known to be related to breast cancer (see Methods).

https://doi.org/10.1371/journal.pcbi.1006436.g007
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particular functions or are located downstream in pathways to execute the final biological

functions, thus they are not correlated with the expression of many other genes. On the other

hand, the regulators upstream in pathways, which are often hub genes, are less directly

involved in the execution of final biological functions, thus they are less correlated with the

survival time. This agrees with the observation in the previous analysis [5] of the co-expression

network for 35 human tissues in the GTEx project, in which genes with tissue-specific func-

tions were observed to have fewer co-expression edges than average. Certainly, cancer progres-

sion is also determined by many other factors, such as mutation, CNV or other structural

alterations. Further biological or clinical evidence is still needed to confirm this interpretation.

Hubs specific to a disease type tend to not share edges across all tissues. To understand

the role that a gene plays in condition-specific and condition-common co-expression, we clas-

sified edges according to their disease type specificity and compared the hubness of a gene in

the network shared by all three tissues (3T) and the network specific to one tissue (1T). We

observed a clear negative correlation between these two types of hubness (Fig 8), especially in

the two tumor tissues. For all genes with at least 5 edges, the Spearman correlation between the

numbers of 1T edges and the numbers of 3T edges is -0.23, -0.69, and -0.43 in normal, ER

+ tumor, and ER- tumor tissue, respectively. It can be clearly seen that several ER+ or ER- spe-

cific hubs have very few edges shared across all tissues. This indicates that co-expression hubs

specifically triggered in tumor tissues are usually not the co-expression hubs in normal tissue.

These hubs may provide important insights in carcinogenesis and cancer treatment. The

tumor-specific hubs and their possible biological functions are discussed in the next sections.

Biological functions of tumor-related modules. Next, we characterized the subnetwork

shared between ER+/ER-, ER+ specific subnetwork and the ER- specific subnetwork in order

to further study the biological function of the co-expression network of tumor tissues. We

obtained each subnetwork by extracting the corresponding disease type specific edges from

the networks constructed using our method. For each subnetwork, we identified major dis-

joint modules and then annotated their biological functions using GO enrichment analysis. To

determine the hub gene in each module, we counted the number of edges for each node in the

module. For ER+ specific and ER- specific modules, we characterized all genes that have more

than 10 edges. Because the size of tumor-shared modules is relatively small, we only character-

ized the genes with the most edges in the module.

Fig 8. Distribution of disease type-specific edges and -common edges for genes in the co-expression network constructed using our method. (A) Normal

tissue, (B) ER+ tumor tissue, (C) ER- tumor tissue.

https://doi.org/10.1371/journal.pcbi.1006436.g008
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Tumor-shared subnetwork. The tumor-shared subnetwork consists of 203 genes and 332

co-expression edges (S4 Fig). There are 6 disjoint co-expression modules with more than 10

genes (S1 Fig). All 6 modules show significant enrichment (FDR<0.05) in the GO term analy-

sis. They are enriched in GO terms of Immunity, antigen processing and presentation,

Nucleus, and DNA damage (Table 4).

Among the hubs of the 6 modules, 5 of them (PTPN22, BRIP1, CEACAM6, LTF, and

CCNT1) have been previously found to be associated with breast cancer [46][47][48][49][50]

[51][52][53], and the other one, MXRA5, has been reported to be related to non-small cell lung

cancer[54][55]. PTPN22 encodes a protein tyrosine phosphatase that is involved in the signal-

ing pathways associated with immune response (Fig 9). Previous studies have shown that over-

expression of PTPN22 significantly inhibits the growth of human breast cancer cells. Its

product also blocks cancer cell xenografts and their metastases[46]. BRIP1 (also known as

BACH1, FANCJ), together with BRCA1, is involved in the repair process of DNA double-

strand breaks. It has been reported that BRIP1 acts as a master regulator of breast cancer [56].

Previous studies have reported that overexpression of BRIP1 promotes the migration and inva-

sion of cancer cells, while knockdown of BRIP1 suppresses this process[57]. ZKSCAN1 (also

known as KOX18, ZNF139), a node with three connections in the same module with BRIP1,

also has been reported to play regulatory roles in migration and invasion of human gastric can-

cer cells [58][59]. CEACAM6 encodes a protein in the carcinoembryonic antigen family, which

has been shown to be associated with cell adhesion. Previous studies have shown that CEA-
CAM6 is detected in approximately 70% of solid tumors, including breast cancer [43][60]. It

has been suggested that CEACAM6 is associated with tumor progression stage [61], inhibition

of cell differentiation and anoikis, and promotion of cell adhesion, invasion, and metastasis

[48]. LTF was previously found to inhibit the growth of solid tumors and the development of

experimental metastases[49][50][51]. Overexpression of CCNT1was found as an implication

of tumor growth[53].

Table 4. Modules and their significantly enriched GO terms.

Disease status Modules ID (nodes number) Hub(s) GO term enrichment FDR

ER+ ER- shared

Module 1 (20) PTPN22 antigen binding 2.60E-2

regulation of immune response 2.50E-5

Module 2 (12) MXRA5 cell adhesion molecule binding 4.60E-2

Cone-shaped epiphyses fused within their metaphyses 1.28E-2

Module 3 (17) LTF Perinuclear endoplasmic reticulum membrane 3.79E-2

Module 4 (20) BRIP1 Nucleus 5.01E-6

DNA damage 2.12E-4

Nucleoplasm 1.20E-3

Module 5 (21) CCNT1 monocarboxylic acid binding 6.99E-3

lysine-acetylated histone binding 8.28E-3

transcription elongation from RNA polymerase II promoter 9.81E-4

Module 6 (10) CEACAM6 holocytochrome-c synthase activity 1.99E-2

manganese-transporting ATPase activity 1.99E-2

ER+

Module 7 (224) LTF,

NPY1R, CEACAM6
regulation of apoptotic process 1.99E-3

regulation of intracellular signal transduction 6.31E-3

regulation of secretion 3.32E-2

response to estrogen 4.52E-2

ER- Module 8 (108) FOXA1,

CEACAM6
acute inflammatory response 4.39E-3

oncostatin-M receptor activity 3.72E-2

https://doi.org/10.1371/journal.pcbi.1006436.t004
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ER+ specific subnetwork. The ER+ specific subnetwork consists of 554 edges and 296

nodes (S5 Fig). One major co-expression module with 224 nodes is detected. Table 4 shows

the enriched GO terms and the hub genes for this module. This module is enriched in the GO

term related to the response to estrogen. One of its hub genes, NYP1R, has been reported to be

involved in the activation of estrogen signaling pathway in breast carcinoma. It is up-regulated

in ER+ tumor compared to ER- tumor [62][63]. This agrees well with the classification of ER+

subtype, which is characterized by the presence of estrogen receptors. The other two hub

genes, LTF and CEACAM6, are also hubs genes in the tumor-shared modules.

ER- specific subnetwork. The ER- specific network consists of 360 edges and 223 nodes

(S6 Fig). One major co-expression module with 108 nodes is detected. The GO term analysis

shows that ER- specific module is enriched in the activity of the oncostatin-M receptor. This

receptor is involved in the signaling event of oncostatin-M, a growth regulator that inhibits the

proliferation of a number of tumor cell lines. Interestingly, we observed that, though CEA-
CAM6 is a hub in both ER+ and ER- specific modules, it connects with different sets of genes

in the two subtypes (Table 4). This indicates that CEACAM6, which is associated with tumor

progression stage [61], may regulate cancer progression through different mechanisms in

these two tumor subtypes.

WGCNA analysis. We identified the hub genes for ER+, ER- tumor specific network and

tumor shared network based on the TOM matrix estimated from WGCNA (S8 Table). Because

very few edges are shared between any pair of networks inferred by WGCNA, there is only

one hub gene (CCNT1) in the tumor-shared network. This gene is also identified as a tumor-

shared hub gene by our method. In the ER+ and ER- specific networks, WGCNA and our

method identified distinct hub genes. We also identified the co-expression modules using

WGCNA (S9 Table). Similar to the rat analysis, WGCNA modules are generally larger (on

average 266 genes in each module) than the modules from CFGL. These differences are further

discussed in the Conclusion.

Conclusions

In this paper, we present a method, called condition-adaptive fused graphical lasso (CFGL), to

construct gene co-expression networks for multiple conditions simultaneously. By incorporat-

ing a data-driven penalty that reflects the condition-specific co-expression pattern in the FGL

Fig 9. An example of ER+/ER- shared module in TCGA breast cancer data. The genes in the module are enriched in GO term of Antigen binding. The

hub gene of the module, PTPN22, was found associated with an immune function in breast cancer. Red: common edges shared by two tumor tissues. Grey:

all other edges.

https://doi.org/10.1371/journal.pcbi.1006436.g009
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framework, this method takes condition specificity into account while borrowing information

across conditions in the network construction. Our results have shown that it effectively

accounts for heterogeneity between samples and between co-expression patterns introduced

by condition specificity. It outperforms GL and FGL methods in both edge detection and esti-

mation of edge weights across a range of scenarios in simulation studies.

Our analysis on a rat multi-tissue dataset and TCGA breast cancer data reveals interesting

biological insights. In both datasets, the modules in the condition-specific subnetwork identi-

fied by our method consistently show biologically relevant functions, demonstrating the suit-

ability of our method for studying tissue-specific or disease-specific co-expression networks.

The analysis on TCGA breast cancer data also reveals several interesting findings related to the

mechanism of ER+ and ER- tumor subtypes. We found that the genes most significantly asso-

ciated with survival time are less likely to be hubs. This suggests that most genes associated

with cancer progression may govern specific functions or locate downstream in pathways to

execute the final biological functions, rather than regulating a large number of biological pro-

cesses. Similarly, we also observed that the hub genes in the tumor-specific subnetworks tend

to not harbor edges shared with normal tissue. Several previously known cancer-related genes,

including PTPN22, BRIP1, and CEACAM6, were found as hubs in the tumor-related subnet-

works. Together, these results confirm the biological relevance of the results from our method.

Interestingly, we noticed that the methods that construct networks separately for each con-

dition (GL and WGCNA) consistently produce very few condition-common edges (< 5%), far

fewer than the joint analysis methods (FGL and CFGL). This is even the case when some com-

mon biology is expected to be shared between conditions, for example, ER+ and ER- breast

cancer subtypes. The results reported by these analysis methods, and their suitability for study-

ing condition specificity, are therefore questionable. Another interesting observation is that

the graphical lasso based methods (GL, FGL and CFGL) generally report smaller modules than

WGCNA. This is partly because the former uses sparse estimation and partly because the for-

mer evaluates conditional independence between genes, rather than marginal independence as

in the latter. It is generally believed that very large gene sets may encompass multiple cellular

processes and make GO enrichment results less specific [64][65][66], thus smaller modules

may have the benefit of improving the interpretability of results.

Though our method was motivated by co-expression networks, it is suitable for other data

applications with multiple conditions but shared network structures, such as learning condi-

tion-specific binary networks with sparse Ising models [67][68]. The R package for our method

CFGL is available on GitHub, https://github.com/Yafei611/CFGL.

Method

Optimization of CFGL network

CFGL estimates the precision matrices {Θ} by solving

maximizefΘgð
PK
k¼1
nk½logfdetðΘ

ðkÞÞg � trðSðkÞΘðkÞÞ� � PðfΘgÞÞ:

The penalty term P({Θ}) is

PðfΘgÞ ¼ l1

PK
k¼1

P
i6¼jjy

ðkÞ
ij j þ l2

PK
k<k0
P
i6¼jw

ðkk0Þ
ij jy

ðkÞ
ij � y

ðk0Þ
ij j;

where nk is the sample size of kth condition and S(k) = (Y(k))TY(k)/nk is the empirical covari-

ance matrix for the kth expression data set.

We implemented the ADMM algorithm [69] to solve the above problem. The detailed opti-

mization procedure can be found in the supplementary materials (S1 Text).
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Tuning parameter selection

We determine the tuning parameters λ1 and λ2 (λ2 only for CFGL and FGL) according to the

Bayesian information criterion (BIC)[70].

BICðl1; l2Þ ¼
PK
k¼1
½nktrðS

ðkÞΘ̂ðkÞðl1 ;l2Þ
Þ � nklogfdetðΘ̂

ðkÞ
ðl1 ;l2Þ
Þg þ pklogðnkÞ�;

where Θ̂ðkÞðl1 ;l2Þ
is the estimated precision matrix for the kth condition obtained at (λ1,λ2), and pk

is the number of non-zero elements in Θ̂ðkÞðl1 ;l2Þ
. We ran the analysis on a series of combinations

of λ1 and λ2, then chose the tuning parameters that achieve the minimal BIC value.

In the simulation, we used BIC to select tuning parameters. For the rat data analysis,

because the sample size is very small, it is difficult to obtain meaningful estimates from sub-

samples in the stability selection. Instead, we first identified the model that achieves the mini-

mum BIC and the models with similar BIC values, then selected the model that had the fewest

edges to obtain biologically interpretable results. In the TCGA data analysis, we applied a sta-

bility selection procedure to identify reliable edges (see stability selection section).

Determining screening matrix

We determined the screening matrix for CFGL by testing the differences between two preci-

sion matrices using the method proposed by Xia et al.[34]. This method tests whether the dif-

ference (D ¼ Σ� 1

k � Σ� 1

k0 ) between two precision matrices is 0, i.e. H0: Δ = 0 vs H1: Δ 6¼ 0. To

avoid falsely imposing similarity for edges that are moderately differential, we used a relaxed

FDR threshold (FDR = 0.4) to determine differential entries, such that only the edges that are

obviously non-differential across conditions (i.e. FDR>0.4) were encouraged to be similar

(wðkk
0Þ

ij ¼ 1). We implemented this method in R and included it in the CFGL package.

Generation of Synthetic data

In the simulation study, we generate the gene expression data for multiple network configura-

tions. Suppose each condition contains M disjoint modules and each module consists of p
genes. For each module, the gene constitution is constant across conditions, but the connectiv-

ity and the edge weight may vary across conditions. To generate conditions with a specified

level of similarity, we first generate the network for condition 1, and then generate the network

for other conditions based on their similarities to condition 1.

Step 1: Simulating network for condition 1. To generate a module in the network we

first create an unweighted scale-free network, according to the Barabasi-Albert model [71]

with an exponent of 1, to mimic real-world biological networks structure [72]. Then, we obtain

the weighted network AðmÞ1 by assigning the edge weights as follows,

AðmÞ1 ði; jÞ ¼

1; i ¼ j

0; i 6¼ j; there is no coexpression between gene i and gene j

� UðDÞ; i 6¼ j; there is coexpression between gene i and gene j

8
><

>:

where U(D) is a uniform distribution with D = [−1,−0.6] [ [0.6,1]. To ensure AðmÞ1 is positive

definite, we add values on the matrix diagonal to get the modified matrix BðmÞ1 :

BðmÞ1 ¼ AðmÞ1 þ dI; ð5Þ

where δ is the minimal eigenvalue of the matrix AðmÞ1 . Based on the matrix BðmÞ1 , the covariance
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matrix ΣðmÞ
1
¼ ½ΣðmÞ

1
ði; jÞ� is determined by

ΣðmÞ
1
ði; jÞ ¼ ½BðmÞ1 �

� 1
ði; jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½BðmÞ1 �
� 1
ði; iÞ½BðmÞ1 �

� 1
ðj; jÞ

q

ð6Þ

Finally, we obtained the covariance matrix for condition 1, S1, by combining ΣðmÞ
1

for each

module.

Σ1 ¼

Σð1Þ
1

Σð2Þ
1

. . .

ΣðMÞ
1

2

6
6
6
6
4

3

7
7
7
7
5

ð7Þ

The expression data for condition 1 were generated from N(0,S1).

Step 2: Simulating network for the other conditions. The modules in other conditions

were simulated based on their similarities to the corresponding module in condition 1. Three

types of similarities were considered: (1) identical network structure and identical edge weights

across conditions (II), (2) identical network structure but different edge weights across condi-

tions (ID), and (3) different network structures and different edge weights (DD). The genera-

tion procedure to obtain ΣðmÞ
2

from ΣðmÞ
1

for these three types of similarities is as follows.

1. II modules: the covariance matrix for condition 2 is identical to that of condition 1.

ΣðmÞ
1
¼ ΣðmÞ

2

2. ID modules: to maintain the network structure as in condition 1 but altering edge weights,

a matrix U is added to BðmÞ1 :

BðmÞ2 ¼ BðmÞ1 þ U

where U is a p × p matrix with elements:

Uði; jÞ ¼
� UðD�Þ BðmÞ1 ði; jÞ 6¼ 0; i 6¼ j

0 otherwise

(

Ans U(D�) is a uniform distribution with D� = [−0.6,0.6]. Then, SðmÞ
2

can be obtained from

BðmÞ2 as in (6).3.

DD modules: S2 is generated independently as described in step 1.

Determining true screening matrix in simulation study

To assess the performance of CFGL-oracle, we obtained the true screening matrix as

Wðkk0Þ
true ði; jÞ ¼

1 Σ� 1

k ði; jÞ � Σ� 1

k0 ði; jÞ < 0:01

0 otherwise

(

where Σ� 1

k is the simulated precision matrix for the kth condition.
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Accuracy of edge detection and edge weight estimation in the simulation

study

The accuracy of edge identification is assessed by checking if the presence of edges is correct in

the estimated matrixdΣ� 1

k . We define true positive as Σ� 1

k ði; jÞ 6¼ 0 anddΣ� 1

k ði; jÞ 6¼ 0 and false

positive as Σ� 1

k ði; jÞ ¼ 0 anddΣ� 1

k ði; jÞ 6¼ 0ði > jÞ: The accuracy of edge weight estimation is

assessed by the sum of square error (SSE) between the true and estimated edge weights

SSE ¼
PK

k¼1

PP
i¼2

Pi� 1

j¼1
ðΣ� 1

k ði; jÞ �
dΣ� 1

k ði; jÞÞ
2
;

where K is number of conditions and P is number of nodes (genes). For each λ2, we generate

an ROC curve by computing the true positive rate and false positive rate over a grid of λ1. Sim-

ilarly, SSE is computed over a grid of λ1.

To compare the performance of different methods, we calculated partial AUC (pAUC),

which is the area under the ROC curve over a restricted range of false positive rate (FPR).

Because the primary interests are edges detected at a low false positive rate, we compute pAUC

on the FPR range of (0,0.05) in the simulation study.

WGCNA analysis

We performed WGCNA analysis for rat and TCGA BRAC expression data. Because WGCNA

does not allow joint analysis for more than one condition, we performed WGCNA for each

condition separately.

We used the WGCNA R package (version 1.63) and chose the tuning parameters according

to its manual [21]. For the rat expression data, the soft threshold was set to 8 for brain tissue

and 7 for heart tissue, and the module size was set to 20 to accommodate the relatively small

total number of genes. For TCGA data, the soft threshold was set to 6 for normal tissue, 5 for

the ER+ tumor tissue and 4 for the ER- tumor tissue, and the module size was set to 50. Default

settings were used for all the other parameters.

To study hub genes and edges using WGCNA, we obtained edge weights from the topologi-

cal overlap matrix (TOM) calculated from WGCNA. The TOM is a quantity computed by

WGCNA for measuring the topological similarity between genes. Each entry can be viewed as

an edge weight between a pair of genes. Unlike graphical lasso based methods, which provide

sparse networks, the TOM matrix is dense. To ensure the comparison with graphical lasso

based methods is on the same basis, we only kept the edges with high values of TOM and

removed other edges. The number of nonzero edges is chosen according to the number of

edges identified by CFGL in the same dataset.

Construction of co-expression network for rat data

Heart and brain RNA expression levels were measured in a recombinant inbred (RI) rat panel,

HXB/BXH, using the Affymetrix Rat Exon 1.0 ST Array (Affymetrix, Santa Clara, CA). This

rat panel was originally generated using gender reciprocal crossing between the congenic

Brown Norway strain with the polydactyly-luxate syndrome (BN-Lx/Cub) and the spontane-

ous hypertensive rat strain (SHR/OlaIpcv), with sixty generations of brother/sister mating

after the F2 generation [73]. The CEL files for the heart and brain RNA expression data from 3

to 4 male rats per strain (19 strains) are publicly available through the PhenoGen website

(http://phenogen.ucdenver.edu) [74] along with a probe mask for the ‘core’ (Affymetrix

defined) transcript clusters that eliminates probes that do not align uniquely to the RN6 ver-

sion of the rat genome or align to a region of the genome that harbors a single nucleotide
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polymorphism between either of the parental strains (SHR and BN-Lx) and the reference

genome. Further detail about this type of probe mask are available in Saba et al 2015 [75].

Transcript cluster estimates on the log2 scale were estimated using the rma-sketch pipeline for

normalization and aggregation using Affymetrix Power Tools (Irizarry et al 2003; Lockstone

2011) [76][77]. Individual rat estimates were summarized as strain mean values for each tran-

script cluster and strain combination.

Given the small sample size, we restricted the network construction to the 500 most differ-

entially expressed genes between the two tissues. The differential expression was determined

using the R package LIMMA with the default parameter settings.

We ran CFGL and FGL for a grid of λ1 and λ2. They both achieved the lowest BIC at λ1 =

0.001 and λ2 = 0.0008. To investigate the effect of λ2, we report the results at λ1 = 0.001 and

λ2 = 0.0008,0.0010,0.0012. We set λ = 0.0009 for GL since it gives similar sparsity (edge num-

ber) to the other two methods. For WGCNA analysis, we kept the edges with the highest TOM

values (1000 for brain and 500 for heart) from the WGCNA results, such that the number of

edges is consistent with that of the estimated network from CFGL/FGL.

Construction of co-expression network with TCGA breast cancer data

TCGA has collected gene expression RNA-seq data for 1092 breast cancer patients [44]. We

used the normal tissue samples from the individuals (n = 112) who have both tumor tissue and

matched peripheral normal tissue, and all tumor samples from different individuals that were

annotated with ER+ (n = 187) and ER- (n = 98)[44]. We obtained the gene expression level by

downloading the RNA-seq V2 data, which are reads counts normalized by RSEM, from the

TCGA website (https://cancergenome.nih.gov/). We then took log transformation for the

expression level (with 0.5 added to the counts of each gene to avoid 0) and standardized the

transformed expression level to mean 0 and standard deviation 1. Prior to network construc-

tion, we first removed genes with very low counts (less or equal than 5) in more than 10% (40)

samples. After this step, the log summed read counts over all samples approximately follow a

normal distribution.

Due to the limitation of sample size, we restricted our analysis to a subset of 1000 genes. To

select 1000 genes in the analysis, we first included 39 genes that were previously reported as

breast cancer-related genes (S10 Table) [23][44]. Then we selected other 961 genes that are

most strongly associated with the survival time based on a univariate Cox regression:

hðtÞ ¼ h0ðtÞ � expðbxgÞ

where t is the survival time and xg is the expression level of the gth gene.

We constructed the co-expression network using CFGL/FGL/GL in conjunction with the

stability selection procedure (See next section). For the WGCNA-based network, we kept the

edges with the highest TOM values (920 edges for normal tissue, 1154 edges for ER+ tumor tis-

sue and 840 edge for ER- tumor tissue).

Stability selection for TCGA data set

In order to obtain reliable co-expression networks, we applied the stability selection procedure

in [78] to CFGL, FGL, and GL. This procedure first generates a large set of subsamples from

the original data and then builds networks based on the subsamples. The edges that frequently

occur in subsamples are kept. This method provides an upper bound for the FDR control and

has been shown to outperform the standard GL when being applied to GL [78][38].

In our analysis, we created 100 subsamples, each of which contains half of the original sam-

ples. To reduce the computational load, we first determined the optimal choice of λ1 based on
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the original dataset, and then used this value for all subsamples. For all methods, λ1 = 0.2

achieves both reasonable sparsity and low BIC across a series λ1 (0.01–0.50) on the original

dataset, thus we fixed λ1 = 0.2 in all subsamples. For FGL and CFGL, we performed the analysis

on a series of λ2 for each subsample and then used the tuning parameters that achieve the min-

imal BIC value to select edges. The minimal BIC for all subsamples was found in the range of

λ2 = 0.002–0.02. We keep the edges that appear in more than 90% subsamples. According to

the false discovery rate (FDR) calculation in [38], this threshold guarantees that the number of

wrong edges is less than 800 among the 499500 possible edges in the graph.

GO enrichment analysis

The GO enrichment analyses were conducted using ToppFun[79], which is publicly available

at https://toppgene.cchmc.org/enrichment.jsp. All parameters are used at their default setting.
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tures database (MSigDB) 3.0. Bioinformatics. 2011; 27(12):1739–40. https://doi.org/10.1093/

bioinformatics/btr260 PMID: 21546393

32. Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene connectivity, function, and

sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics.

2006; 7:40. https://doi.org/10.1186/1471-2164-7-40 PMID: 16515682

33. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Ser B

Stat Method. 2008; 70(5):849–911.

34. Xia Y, Cai T, Cai TT. Testing differential networks with applications to the detection of gene-gene inter-

actions. Biometrika. 2015; 102(2):247–66. https://doi.org/10.1093/biomet/asu074 PMID: 28502988

35. Cai T, Liu W, Luo X. A constrained ℓ 1 minimization approach to sparse precision matrix estimation. J

Am Stat Assoc. 2011; 106(494):594–607.

36. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Bio-

statistics. 2008; 9(3):432–41. https://doi.org/10.1093/biostatistics/kxm045 PMID: 18079126

37. Zhao SD, Cai TT, Li H. Direct estimation of differential networks. Biometrika. 2014; 101(2):253–68.

https://doi.org/10.1093/biomet/asu009 PMID: 26023240
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