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Abstract

A central goal of RNA sequencing (RNA-seq) experiments is to detect differentially expressed genes. In the ubiquitous
negative binomial model for RNA-seq data, each gene is given a dispersion parameter, and correctly estimating these
dispersion parameters is vital to detecting differential expression. Since the dispersions control the variances of the gene
counts, underestimation may lead to false discovery, while overestimation may lower the rate of true detection. After briefly
reviewing several popular dispersion estimation methods, this article describes a simulation study that compares them in
terms of point estimation and the effect on the performance of tests for differential expression. The methods that maximize
the test performance are the ones that use a moderate degree of dispersion shrinkage: the DSS, Tagwise wqCML, and
Tagwise APL. In practical RNA-seq data analysis, we recommend using one of these moderate-shrinkage methods with the
QLShrink test in QuasiSeq R package.
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Introduction

In the last five years, groundbreaking new RNA sequencing

(RNA-seq) technologies have considerably improved studies in

genetics that previously relied on microarray technologies. RNA-

seq technologies have several advantages over microarrays,

including less noise, higher throughput, and the power to detect

novel promoters, isoforms, allele-specific expression, and a wider

range of expression levels. So it is not surprising that RNA-seq

has become ubiquitous in experiments that investigate the

regulation of gene expression across different conditions, such as

levels of a treatment factor, genotypes, environmental conditions,

and developmental stages.

In a typical RNA-seq experiment, reverse transcription and

fragmentation convert each RNA sample into a library of

complementary DNA (cDNA) fragments, or tags. Next, a sequenc-

ing platform, such as the Illumina Genome Analyzer, Applied

Biosystems SOLiD, Pacific Biosciences SMRT, or Roche 454 Life

Sciences, amplifies and sequences the tags. After sequencing, a

subsequence within each tag, called a read, is recorded. After the

resulting collection of reads, or library, is assembled, the reads are

mapped to genes in the original organism’s genome. The number of

reads in a library mapped to a gene represents the relative

abundance of that gene in the library. The investigator typically

assembles all the read counts of multiple libraries into a table with

rows to indicate genes and columns to indicate libraries. Please

consult references by Oshlack, Robinson, and Young [1] and by

Wang, Li, and Brutnell [2] for details regarding sequencing

technologies, gene mapping, and data preprocessing.

A central goal of RNA-seq experiments is to detect genes that

are differentially expressed : i.e., ones for which the average

number of reads differs significantly across treatment groups.

Improving the detection of differentially expressed genes opens

new ways to control organisms at the molecular level, advancing

fields like agriculture engineering, personalized medicine, and the

treatment of cancers, contributing to social welfare.

Some of the most popular new statistical methods that detect

differentially expressed genes from RNA-seq data rely on the

negative binomial (NB) probability distribution. If a random

variable, Y , has an NB(m, w) distribution –i.e., a negative binomial

distribution with mean parameter m and dispersion parameter w –

then the probability mass function (pmf), expected value, and

variance of Y are:

f (y)~
C(yzw{1)

C(w{1)C(yz1)

w{1

mzw{1

 !w{1

1{
w{1

mzw{1

 !y

,

E(Y )~m,

Var(Y )~mzm2w:

Cameron and Trivedi [3] show that as w?0, f converges to the

pmf of the Poisson(m) distribution, a distribution with mean and
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variance both equal to m. So the dispersion parameter, w, is a

measure of the extra variance of Y that the Poisson(m) distribution

does not account for.

In an RNA-seq dataset, the number of reads, yg,i, mapped to

gene g in library i is treated as a random draw from an NB(mg,i,wg)

distribution. Here, mg,i is the unnormalized mean count of gene g

in library i, and wg is the gene-wise (‘‘tagwise’’) dispersion assigned

to gene g. In addition, the model assumes that mg,i~sing,k(i), where

k(i) is the treatment group of library i, si is the normalization

factor of library i, and ng,k(i) is the normalized mean count for gene

g in each library of treatment group k(i).

It is common practice to include in the model the library-wise

normalization factors, si, because counts in an RNA-seq data

table may differ significantly across treatment levels for reasons

other than the differential expression of genes. For instance,

different RNA samples may be sequenced to different depths,

making the libraries vary in size (total number of reads per

library). To account for a possible variation in sequencing depth

and other factors that may cause variation in library size, each

column is assigned a normalization factor, si, to be used in later

analyses. There are several choices for the normalization factors.

For instance, according to Si and Liu [4], taking each si to be the

0.75 quantile of the counts in library i is a simple method that

performs relatively well. Another popular option is the method

proposed by Anders and Huber [5], which divides each count by

the geometric mean count of the corresponding gene and then

takes the medians of the these scaled counts within each library.

The Trimmed Mean of M Values (TMM) method by Robinson

and Oshlack computes each normalization factor from the

trimmed mean of the gene-wise log fold changes of the current

library to a reference library [6].

With the above preliminaries taken care of, we now turn to the

main issue of this article: the estimation of the dispersion

parameters, wg. Each wg is a measure of the extra variance, relative

to the Poisson (mg,i) distribution, of the read counts of gene g. Since

they control the variances of the counts, these wg’s play an im-

portant role in hypothesis tests that detect differentially expressed

genes. Underestimating a dispersion parameter is equivalent to

underestimating the variance relative to the mean, which may

generate false evidence that a gene is differentially expressed.

Inversely, overestimating a dispersion may cause a truly differen-

tially expressed gene to go undetected. For the sake of accurately

detecting differentially expressed genes, it is important to choose an

effective method for estimating dispersion parameters.

First, we briefly review several popular dispersion estimation

methods (implemented in freely-available R-language packages,

AMAP.Seq, DSS, edgeR, and DESeq). We also touch on some

popular tests for differential expression. Next, using a simulation

study that draws fundamental information from real datasets, we

compare the practical effectiveness of the methods in terms of the

accuracy and precision of the point estimates and the effect on the

performance of tests for differential expression. In the results and

discussion sections, we discuss the distinguishing features of the

most successful dispersion estimation methods.

Studies by Wu, Wang, and Wu [7] and by Yu, Huber, and

Vitek [8] also include simulation-based comparisons of methods

for estimating negative binomial dispersions from RNA-seq.

However, the authors of these studies were primarily concerned

with inventing and validating their own methods. Since we do not

propose any new methods here, our study has less personal bias

than otherwise. In addition, our comparison is broader in scope.

Only three methods were compared in the article by Wu, Wang,

and Wu, six were compared in the study by Yu, Huber, and Vitek,

and both studies ignored alternate versions of these methods. On

the other hand, we consider alternate versions of five classes of

methods (for example, the ‘‘Common’’, ‘‘Tagwise’’ and ‘‘Trend-

ed’’ versions of the APL method described later), giving us a total

of ten methods to compare. Considering alternate versions not

only broadens the comparison, but also helps us isolate key

features that help the good methods succeed. Lastly, our scheme

for simulating datasets from the negative binomial model is based

on real data and preserves observed relationships between the

dispersions and the gene-specific mean counts. On the other hand,

in the study by Wu, Wang, and Wu, dispersion parameters were

simulated independently from the means. Yu, Huber, and Vitek

use several simulation schemes and real datasets, but none of their

realistic schemes simulates the negative binomial model, and

according to these authors, the rest of the simulations favor either

sSeq (their method) or DESeq (described later).

Methods

Existing Methods
Dispersion estimation methods. In RNA-seq data analy-

sis, we could apply methods based on counts for each gene

separately to estimate model parameters, such as the Quasi-

Likelihood (QL) method reviewed below. However, in RNA-seq

data, there are typically tens of thousands of genes, but only a few

counts per gene with which to estimate gene-specific parameters, a

typical example of a ‘‘large p small n’’ scenario. In such cases,

methods based on each gene separately are sub-optimal because

they do not make use of most information contained in the whole

dataset. Several methods proposed recently try to improve

dispersion parameter estimation by using more information from

the dataset. We review them after introducing the QL method.

The Quasi-Likelihood (QL) method. The QL method

estimates a dispersion parameter independently for each gene.

This method [9] [4], implemented in the AMAP.Seq R package

by Si and Liu, iteratively estimates the mean and dispersion as

follows:

N The MLE, m̂mg,i, of each mg,i is obtained by maximizing the

negative binomial log likelihood given wg~ŵwg and the read

count, yg,i.

N The tagwise dispersion estimate, ŵwg, given mg,i ~ m̂mg,i, is

computed via the quasi-likelihood (QL) technique reviewed

by Robinson and Smyth [10].

The QL method estimates tens of thousands of dispersion

parameters, but uses only a few read counts to compute each

estimate. More sophisticated techniques make use of a larger

number of read counts to estimate each wg. Specifically, they

borrow information across genes and shrink the wg’s towards a

common center. Each of the next four dispersion estimation

methods applies some form of shrinkage.

The Weighted Quantile-Adjusted Conditional Maximum

Likelihood (wqCML) method. As explained by Robinson and

Smyth [11], the wqCML method shrinks the dispersions towards a

common value using a weighted likelihood approach. The method

first calculates pseudo-data from the original data with a quantile-

adjustment procedure so that all the library sizes become equal.

Next, the method estimates each wg by maximizing the weighted

likelihood, WL(wg)~lg(wg)zalC(wg). Here, lC is the ‘‘common’’

log likelihood, the negative binomial log likelihood under the

restriction that all genes share the same dispersion value, and lg is

the negative binomial log likelihood on the pseudo-data condi-

tioned on the sum of the pseudo-counts of gene g. The tuning

Comparing RNA-seq Dispersion Estimation Methods
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parameter, a, represents the extent that the method ‘‘shrinks’’

individual tagwise dispersions towards the single dispersion given

by the common likelihood. In practice, a is calculated with the

empirical Bayes rule described by Robinson and Smyth [11].

The wqCML method is implemented in the R package, edgeR,

designed by Robinson, McCarthy, and Smyth and available

at bioconductor.org [12], [13]. The user can choose between

estimateTagwiseDisp(), which shrinks each dispersions towards a

common estimate via wqCML, and estimateCommonDisp(),

which estimates a single dispersion for all the genes by maximizing

lC .

The Cox-Reid Adjusted Profile Likelihood (APL)

method. The wqCML method only applies to completely

randomized designs with two treatment groups. In the APL

method, McCarthy, Chen, and Smyth [14] extend wqCML’s idea

of shrinkage via weighted likelihoods to the framework of

generalized linear models, which can handle more complex

designs, potentially with multiple treatment factors and/or

blocking factors. McCarthy, Chen, and Smyth [14] apply the

loglinear negative binomial model given by log mg,i~xT
i bgz

log mi, where xi is a vector of covariate values specifying the

experimental conditions on library i (i.e., xT
i is the i’th row of the

design matrix), bg is the vector of experimental design parameters

corresponding to gene g, and mi is the total number of reads in

library i.

To estimate the wg’s, McCarthy, Chen, and Smyth [14] make

use of the tagwise Cox-Reid adjusted profile likelihoods given by

the loglinear model above instead of the ordinary negative

binomial likelihoods in the wqCML method. The authors describe

three different variations on the APL method, which use these

adjusted profile likelihoods in different ways to achieve three

different kinds of dispersion shrinkage. The ‘‘Common’’ variation

sets all the dispersion estimates equal to the common value that

maximizes the arithmetic mean of the APLs over all genes. The

‘‘Trended’’ variation, which estimates a different dispersion for

each gene using adjusted profile likelihoods while modeling the

wg’s as smooth functions of the gene-wise average read counts,

heavily shrinks the dispersion estimates toward a common trend.

The ‘‘Tagwise’’ variation shrinks each gene’s dispersion estimate

towards the common dispersion estimate of a set of neighboring

genes. McCarthy, Chen, and Smyth [14] implement this method

in the edgeR R package with the functions, estimateGLMCom-

monDisp(), estimateGLMTrendedDisp(), and estimateGLMTag-

wiseDisp().

The Differential Expression for Sequence Count Data

(DESeq) method. Like the wqCML and APL methods, the

DESeq method by Anders and Huber [5] borrows information

across genes to shrink the dispersion parameters. DESeq differs

from the other methods mainly in that it uses directly normalized

read counts and makes more use of the observed variance-mean

relationship in the data.

Anders and Huber [5] reparameterize the negative binomial

model in terms of the mean and variance, and further

parameterize the variance in terms of the mean, normalization

factor si, and a new ‘‘raw variance parameter’’. They then use the

normalized counts, yg,i=si, to compute the normalized negative

binomial means and raw variance parameters for each gene-

treatment group combination. The dispersions are calculated

directly from these means and raw variance parameters.

As with the APL method, there are three variations on the

DESeq method giving different ways to shrink the dispersions. The

no-shrinkage variation transforms the estimated raw variance

parameters directly into the estimated gene-wise dispersions

without any shrinkage. The ‘‘Trended’’ variation performs a

regression of the raw variance parameter estimates on the

estimated means, and then computes the estimated dispersions

from the fitted values on the trend. (In the DESeq R package, the

implementation of the DESeq method, the user can choose

between local and parametric regression to compute this trend.

However, the parametric regression in the package is prone to

failure and leads to poor point estimation test performance in our

simulation study. Hence, only the local regression results are

presented in this article.) The ‘‘Maximum’’ variation computes the

maximum of each raw variance parameter estimate and its fitted

value on the trend and then computes the dispersion estimates

from these maxima. This last method of dispersion shrinkage is

conservative, allowing overestimation of the dispersions, but

guarding against underestimation in order to avoid false positives

in tests for differential expression. The DESeq method is

implemented in the R package, DESeq, available at bioconductor.

org.

The Dispersion Shrinkage for Sequencing (DSS)

method. The Bayesian paradigm more naturally accommodates

the notions of ‘‘borrowing information’’ and ‘‘shrinkage’’ than the

Frequentist paradigm. Hence, the DSS method by Wu, Wang,

and Wu [7], an empirical Bayes approach, is particularly elegant.

Rather than explicitly force the dispersions to shrink to a common

value or trend as in the wqCML, APL, and DESeq methods, the

DSS method seamlessly incorporates shrinkage with a Gamma-

Poisson hierarchical model in which the dispersion estimates

naturally shrink towards a common log-normal prior. The

hierarchical model in the DSS method is

yg,i Dhg,i*Poisson(hg,isi),

hg,i Dwg*Gamma(ng,k(i),wg),

wg*log{normal(m0,t2
0):

Here, the gamma distribution is parameterized in terms of its

mean, ng,k(i), and dispersion, wg, where wg is the reciprocal of the

shape parameter. The marginal distribution of yg,i is NB(mg,i,wg),

where mg,i~sing,k(i) as before. Each dispersion estimate is taken to

be the mode of the conditional distribution of wg given

m0,t2
0,yg,i,ng,i, and hg,i (i~1, . . . ,n). An adapted method of mo-

ments technique is used to estimate m0 and t0. Wu, Wang, and Wu

[7] implement this method in the R package, DSS, available at

bioconductor.org.

Methods of testing for differential expression. With a

model specified and all the parameters estimated, we can test for

the differential expression of genes. The simulation study in the

next section uses the following five recently-proposed testing

methods. The first two tests, found in the edgeR and DESeq

packages, extend Fisher’s exact test to data following negative

binomial distribution. The next three tests, developed by Lund,

Nettleton, McCarthy, and Smyth [15], are implemented in the

QuasiSeq R package, available from the Comprehensive R

Archive Network (CRAN). The QL test in the QuasiSeq package

uses a quasi-negative binomial model in which a quasi-likelihood

dispersion, Wg, is assigned to each gene (separately from the

negative binomial dispersion, wg) for additional flexibility. The QL

test executes a quasi-likelihood ratio test for the differential

Comparing RNA-seq Dispersion Estimation Methods
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expression of each gene. The QLShrink test improves on the QL

test by borrowing information across genes to estimate the Wg’s.

The QLSpline test extends the QLShrink test by using a spline fit

to account for the relationship between the Wg’s and the gene-wise

means in the data.

The Simulation Study
This article presents a simulation study that puts the featured

dispersion estimation methods to the test. We first generate

pseudo-datasets for which the true negative binomial dispersion

parameters and truly differentially expressed genes are known.

Then, we apply the featured dispersion estimation methods and

testing methods to the pseudo-data, compare the results to the

truth, and measure the performance of the dispersion estimation

methods in terms of point estimation and performance in testing

for differential expression.

The underlying real datasets. The simulation study uses

two real RNA-seq datasets to generate the pseudo-datasets. The

‘‘Pickrell dataset’’ (Gene Expression Omnibus accession number

GSE19480) comes from a study by Pickrell, Marioni, Pai, Degner,

Engelhardt, et al. [16], who studied 69 lymphoblastoid cell lines

derived from unrelated Nigerian individuals who were subjects in

the International HapMap Project. The ‘‘Hammer dataset’’ (Gene

Expression Omnibus accession number GSE20895) comes from a

study by Hammer, Banck, Amberg, Wang, Petznick, et al. [17],

who compared gene expression in the L4 dorsal root ganglia of

control rats with those in rats with experimentally induced chronic

neuropathic pain. Both of these datasets are publicly available

at the Recount database at http://bowtie-bio.sourceforge.net/

recount/ [18].

The top two panels of Figure 1 show the gene-wise log

geometric mean counts and log dispersion estimates, estimated

with the QL method, of each of the datasets. The Hammer dataset

has higher mean counts and lower dispersions relative to the

Pickrell dataset. Hence, tests for differential expression will, in

general, have higher power when applied to the Hammer-

generated pseudo-datasets than when applied to the Pickrell-

generated pseudo-datasets. See the top two panels of Figure 2 for

the relationship between the log quasi-likelihood dispersions and

the gene-wise log geometric mean counts.

Generating a pseudo-dataset. For each one of the real

datasets (Hammer or Pickrell), we first compute the two quantities,

ag and bg, for each gene g, where ag is the geometric mean and bg

is the dispersion parameter estimated with the quasi-likelihood

(QL) method. (All zero read counts are set to a small constant for

the geometric mean calculation.) Then, we generate each pseudo-

dataset with 10,000 genes as follows:

Figure 1. A look at the data. Hammer data and Hammer-generated pseudo-data are in blue, while Pickrell data and Pickrell-generated pseudo-
data are shown in black. The top two panels show the gene-wise log geometric mean counts and log dispersion estimates, estimated with the QL
method, for the Hammer and Pickrell datasets. The bottom two panels plot the analogous quantities for example simulated pseudo-datasets, except
that the log dispersions plotted are the true dispersions used to simulate the pseudo-counts and the gene-wise log geometric mean counts are the
ag ’s (log geometric mean counts from the real data) used in the simulations. The vertical bar at around {12 in the plots of the log dispersions is an
artifact of the QL method, which sets extremely low dispersions (i.e., dispersions of non-overdispersed genes) to a common minimum value.
doi:10.1371/journal.pone.0081415.g001
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1. Randomly select 10,000 genes from one of the real datasets

(Hammer or Pickrell) without replacement. The corresponding

10,000 pairs of ag and bg will be used as the the geometric

mean expression level across treatments and true dispersion,

respectively, of simulated gene g.

2. Randomly select simulated gene g to be either differentially

expressed across the two treatments or equivalently expressed

such that exactly 20% of the simulated genes are differentially

expressed and the remaining 80% are equivalently expressed.

3. Set the log fold change across treatment levels, dg, to be zero

for all equivalently expressed genes. In order to build a

correlation structure into the differential expression pattern of

the simulated genes, we draw the dg’s of all differentially

expressed genes from a multivariate normal distribution with

mean 0 and a block-diagonal variance-covariance matrix. Each

of the 40 blocks is a 50|50 correlation matrix randomly

drawn from a uniform distribution on the space of all possible

50|50 correlation matrices. The study in this article used the

rcorrmatrix() function in the ClusterGeneration R package to

calculate the correlation matrices. Please see the reference by

Joe [19] for the algorithm behind rcorrmatrix().

4. Compute the true mean expression level mg,k of simulated gene

g for treatment levels k~1 and 2 using

Figure 2. Dispersion-mean relationships. The top two panels show the relationship between the log QL-method-estimated dispersions and the
gene-wise log geometric mean counts of the Hammer and Pickrell datasets. The bottom two plot the analogous quantities for example simulated
pseudo-datasets, except that the log dispersions plotted are the true log dispersions used to simulate the pseudo-counts (i.e., the bg ’s) and the gene-
wise log geometric mean counts are the ag ’s used in the simulations. Bins in these two-dimensional histograms are shaded by their log frequency.
doi:10.1371/journal.pone.0081415.g002
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mg,k~ag exp ({1)k dg

2

� �
:

5. Randomly draw the pseudo-count of each simulated gene g in

library i from a NB(mg,k(i), wg~bg) distribution, where k(i) is

the treatment group of library i.

6. Each gene in the pseudo-dataset should have at least one read

to be included in the following analysis. Hence, if the pseudo-

counts of simulated gene g are all zero, we keep dg and redraw

ag and bg, and then redraw the pseudo-counts as in steps 4 and

5.

Note that our method of choosing true mean and dispersion

pairs builds an empirical dispersion-mean relationship into the

simulated data. As Figures 1 and 2 show, the pseudo-datasets

match the real datasets from which they were generated in terms

of the distribution of the log gene-wise geometric mean counts, the

distribution of the log dispersions, and the dispersion-mean

relationship. In step 3, we simulate correlated differentially

expressed genes because we expect some differentially expressed

genes are dependent in real dataset. We also simulated datasets

with dg’s from independent standard normal distributions, and the

simulation results do not change significantly from what we

present later in this article.

Simulation Code S1, the R code used to generate the pseudo-

datasets and conduct the analyses, is available as supporting

information. The code requires R version 2.15.3 and the R

packages listed in Table 1.

Simulation settings. Some pseudo-datasets were generated

from the Hammer dataset, while others were generated from the

Pickrell dataset. In addition, the number of libraries per treatment

group varied from pseudo-dataset to pseudo-dataset. Hence, six

‘‘simulation settings’’, given in Table 2, were used. 30 pseudo-

datasets were generated under each simulation setting.

Normalization. Our simulation procedure was configured

such that within each pseudo-dataset, the library sizes do not vary

systematically. So when analyzing the simulated data, it would be

reasonable to set all the library-wise normalization factors, si,

equal to 1. However, since practitioners use nontrivial nor-

malization methods in the field, we borrowed a sophisticated

normalization method: specifically, the one described by Anders

and Huber [5]. As shown in unpublished work by Xiong and Liu

[20], this popular normalization method performs on par with the

ubiquitous 0.75 quantile and TMM methods described in the

introduction, sometimes even surpassing these two alternatives.

The results presented in this article were obtained using the

method by Anders and Huber, and they agree with the results

obtained from setting all normalization factors equal to 1.

Anders and Huber’s method assigns each library-wise normal-

ization factor, si, to

si~Mediang
yg,i

Pn
j~1 yg,j

� �1=n
,

where n is the total number of libraries. This article uses the

implementation in Anders and Huber’s DESeq package, which

avoids dividing by zero by skipping genes whose geometric means,

Pn
j~1 yg,j

� �1=n

, are zero.

The methods implemented in edgeR { the wqCML and APL

dispersion estimation methods and an exact test for differential

expression { use adjusted library sizes instead of normalization

factors. We borrow from the si’s computed with DESeq to

calculate these adjusted library sizes,

ti~
si

Pn
i~1 si

� �1=n
:Mediani(mi),

where mi is observed size of library i.

Results

With 30 pseudo-datasets generated for each of 6 simulation

settings, we apply each dispersion estimation method to each

pseudo-dataset, and we use the dispersion estimates to test for the

differential expression of genes. We use the true dispersions, the

knowledge of which genes are truly differentially expressed, the

dispersion estimates, and the test results to compare the dispersion

estimation methods. We assess the quality of the methods in terms

Table 1. R Packages Required for the Simulation Study’s
Implementation.

Package Version Repository

abind 1.4–0 CRAN

AMAP.Seq 1.0 CRAN

Biobase 2.18.0 Bioconductor

clusterGeneration 1.3.1 CRAN

DESeq 1.10.1 Bioconductor

DSS 1.0.0 Bioconductor

edgeR 3.0.8 Bioconductor

ggplot2 0.9.3.1 CRAN

hexbin 1.26.1 CRAN

iterators 1.0.6 CRAN

magic 1.5–4 CRAN

MASS 7.3–23 CRAN

multicore 0.1–7 CRAN

plyr 1.8 CRAN

QuasiSeq 1.0–2 CRAN

pracma 1.4.5 CRAN

reshape2 1.2.2 CRAN

For the full implementation, please see Simulation Code S1.
doi:10.1371/journal.pone.0081415.t001

Table 2. Simulation Settings.

Setting Dataset Group 1 Libraries Group 2 Libraries

I Pickrell 3 3

II Pickrell 3 15

III Pickrell 9 9

IV Hammer 3 3

V Hammer 3 16

VI Hammer 9 9

See the end of the Methods section for details.
doi:10.1371/journal.pone.0081415.t002
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of the accuracy and precision of point estimation and performance

in tests for differential expression.

Point Estimation
The overall quality of any point estimator can be measured in

terms of its mean squared error. For each pseudo-dataset and each

dispersion estimation method, we calculate the mean squared

error of the transformed estimated dispersions,

MSE~
X10,000

g~1

1

10,000

ŵwg

ŵwgz1
{

wg

wgz1

 !2

:

Here, the wg’s are the true dispersions, and the ŵwg’s are

estimates computed with one of the methods described previously.

The idea of transforming the dispersions by wg.
wg

1zwg

, which

improves the robustness of MSE to the presence of outliers, was

taken from an article by Robinson and Smyth [11].

Figure 3 displays the MSEs according to dispersion estimation

method and simulation setting. The columns correspond to

different dispersion estimation methods, and the rows correspond

to different simulation settings. There are several types of

dispersion shrinkage methods, which are indicated by the labels

at the bottom of the figure. The ‘‘None’’ type indicates no

shrinkage at all, which means dispersion parameters are estimated

for each gene separately. ‘‘Common’’ denotes the methods that

Figure 3. Mean squared error of the transformed dispersions.
doi:10.1371/journal.pone.0081415.g003
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give all genes the same estimated dispersion parameter. ‘‘Trend-

ed’’ indicates the methods that fit each parameter to a common

trend between dispersion and mean expression. ‘‘Maximum’’

refers to the variation of the DESeq method that effectively takes

the maximum of the no-shrinkage estimate and the one obtained

from the analogous ‘‘Trended’’ option. Lastly, ‘‘Tagwise’’ denotes

the methods besides the DESeq ‘‘Maximum’’ method with a

moderate level of shrinkage.

Wu, Wang, and Wu [7] show a similar figure (their Figure 3) for

the Tagwise wqCML method (called ‘‘edgeR’’ in their paper), the

DESeq Maximum method, and the DSS method under their two

simulation settings. Their figure suggests that under the MSE

metric, the DSS method performs better than the Tagwise

wqCML method, which in turn performs better than the DESeq

Maximum method. Our results from simulation settings II though

VI do not contradict this result. However, in simulation setting I,

where sample sizes are extremely small, gene-specific mean counts

are relatively low, and dispersions are relatively high (see Figure 1),

this ranking is reversed.

Overall, the results for the Hammer-generated pseudo-datasets

(simulation settings IV-VI) naturally group the dispersion estima-

tion methods into three categories. The first group includes

Maximum DESeq and the no-shrinkage DESeq methods. These

methods produce the largest MSE, which is not surprising because

the Maximum DESeq method is conservative and designed to

obtain larger dispersion and because the no-shrinkage DESeq

method applies a naive dispersion estimation technique for

each gene independently. The next category includes the QL

Figure 4. Simulation setting II: estimated vs true dispersions for an example pseudo-dataset. Dispersions with gene-wise log geometric
mean counts below the median (log mean from {2.17 to 1.63) are shown in black, while those above the median (log mean from 1.63 to 10.6) are
shown in light blue. Overlapping points are shown in dark blue. Results for simulation settings I and III are similar.
doi:10.1371/journal.pone.0081415.g004
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method alone, which performs better than the Maximum and

no-shrinkage DESeq methods, but worse than others when the

number of libraries is small (simulation setting IV). The other

methods all perform similarly and form a group of MSE-best

methods. This demonstrates that shrinkage indeed helps improve

the point estimators by borrowing information across genes.

However, too much shrinkage is detrimental, as the Common

methods perform slightly worse than their Trended and Tagwise

counterparts.

Parameter estimation is more challenging for the Pickrell-

generated pseudo-datasets (simulation settings I–III) than the

Hammer-generated pseudo-datasets (simulation settings IV–VI)

because the counts are lower, dispersion is larger in general

(Figure 1), and dispersion parameters have a wider spread. (Please

note that Figure 1 uses a log scale for the horizontal axis.) MSEs

are far greater for settings I–III than for settings IV–VI. In

simulation setting I, where the number of libraries is small, the

Trended APL, Tagwise APL, and Trended DESeq methods form

a group of MSE-best methods. When the number of libraries

increases, the DSS and Tagwise wqCML methods also perform

well. Interestingly, the ‘‘Common’’ methods underperform, but

the QL method is relatively good within settings II and III, which

have larger sample sizes than simulation setting I. For these

extremely varied dispersions (with a spread of e{5{e2 observed in

Figure 1), shrinking them toward a common value is not as good as

estimating them separately. In all cases, the moderate shrinkage

Figure 5. Simulation setting V: estimated vs true dispersions for an example pseudo-dataset. Dispersions with gene-wise log geometric
mean counts below the median (log mean from 22.17 to 4.49) are shown in black, while those above the median (log mean from 4.49 to 12.3) are
shown in light blue. Overlapping points are shown in dark blue. Results for simulations IV and VI are similar.
doi:10.1371/journal.pone.0081415.g005
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methods are never the worst methods and are often among the

best ones.

Although useful for determining the overall quality of a point

estimator, the MSE heuristic is only a single scalar computed for

an entire dataset. It is also important to consider the way that

estimation error varies with the magnitude of the true dispersions.

Figures 4 and 5 plot the log estimated dispersions on the log true

dispersions for several dispersion estimation methods for an

example pseudo-dataset within each of simulation settings II and

V. Analogous plots for simulation settings I and III are similar to

Figure 4, and analogous plots for simulation settings IV and VI are

similar to Figure 5.

Wu, Wang, and Wu [7] show a similar figure (their Figure 1) for

the Tagwise wqCML method (called ‘‘edgeR’’ in their paper), the

DESeq Maximum method, and the DSS method. The patterns in

their figure approximately agree with our results for simulation

settings I through III. However, for simulations IV through VI,

our scatterplots of the DSS-estimated dispersions on the true

dispersions show a lower truncation that is not present in the figure

by Wu, Wang, and Wu. The DSS method may shrink dispersions

particularly aggressively under these conditions.

According to Figures 4 and 5, the methods with the least

shrinkage { i.e., the QL and no-shrinkage DESeq methods {

exhibit the widest vertical spread about the identity line, but have

patterns most closely resembling this line. Compared with the

other methods, estimation error is high for these no-shrinkage

methods, but maximally correlated with true dispersion magni-

tude. On the other hand, both of the trended methods (Trended

APL and Trended DESeq) show the lowest vertical spreads, but

the greatest systematic departures from the identity line. These

Figure 6. Simulation setting I: areas under ROC curves. Boxplots of AUC calculated based on 30 pseudo-datasets are shown for each
combination of dispersion estimation method and test for differential expression.
doi:10.1371/journal.pone.0081415.g006
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trended methods systematically underestimate large true disper-

sions and systematically overestimate small true dispersions, even

placing sharp upper and lower bounds on most of the estimated

dispersions. Interestingly, the dispersions estimated with the

moderate-shrinkage methods (DSS, Tagwise wqCML, Tagwise

APL, and Maximum DESeq) show relatively high agreement

with the true dispersions for simulation settings I-III (Pickrell-

generated pseudo-data) but much lower agreement with the low

true dispersions in simulation settings IV-VI (Hammer-generated

pseudo-data). In practice, this reluctance to produce small

dispersions may mitigate the false detection of differentially

expressed genes.

Figures 4 and 5 show that some methods systematically

overestimate low true dispersions and systematically underestimate

high true dispersions. This behavior is exactly what we should

expect from shrinkage. Intuitively, shrinkage pulls estimates

towards some common focal point. As an immediate and

important practical consequence for point estimation, low

estimates should increase, high estimates should decrease, and

the collective scatter of estimates should narrow. The practical

consequences of shrinkage for significance testing, however, are

not clear from Figures 4 and 5 alone. For real insight into

hypothesis testing, we need the results of the next subsection.

Test Performance
Since the detection of differentially expressed genes is the major

goal of most RNA-seq experiments, it is vitally important to

measure and compare the direct impact of the dispersion

estimation methods on the detection of differentially expressed

genes, which is why the pseudo-datasets are generated such that

Figure 7. Simulation setting II: areas under ROC curves. Boxplots of AUC calculated based on 30 pseudo-datasets are shown for each
combination of dispersion estimation method and test for differential expression.
doi:10.1371/journal.pone.0081415.g007
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each simulated gene is known to be either differentially expressed

or equivalently expressed. Using this knowledge and the p-values

obtained from the tests for differential expression, a receiver

operating characteristic (ROC) curve is constructed for each

pseudo-dataset/test for differential expression/dispersion estima-

tion method combination.

An ROC curve is a graph of the true positive rate (TPR) of the

detection of differentially expressed genes vs the false positive rate

(FPR). In practice, we define FPR and TPR to be functions of the

significance level, a, of the tests for differential expression.

Specifically,

FPR(a)~
FP(a)

EE
TPR(a)~

TP(a)

DE
,

where FP(a) and TP(a), respectively, are the numbers of false

positive and true positive detections at significance level a. Also,

EE and DE, respectively, are the true numbers of equivalently

expressed and differentially expressed genes. In the pseudo-data,

we know that EE is 8000 and DE is 2000. In fact, we know exactly

which genes are differentially expressed, so we can calculate FP(a)
to be the number of equivalently expressed genes with p-values less

than a and TP(a) to be the number of differentially expressed

genes with p-values less than a. Using a fixed range of a values (the

same for all ROC curves in this study), we calculate multiple points

of the form, (FPR(a), TPR(a)) and plot them on the x-y plane. To

compensate for gaps in the x direction of the graph, we interpolate

the points with a step function that lies beneath a simple linear

interpolation, the latter of which may artificially inflate the AUC

heuristic explained below.

Figure 8. Simulation setting III: areas under ROC curves. Boxplots of AUC calculated based on 30 pseudo-datasets are shown for each
combination of dispersion estimation method and test for differential expression.
doi:10.1371/journal.pone.0081415.g008
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In this study, we use the area under each ROC curve (AUC) as

a relative measure of the quality of a test, where a high AUC

indicates relatively good test performance. Here, each AUC is

computed only for FPR v0:1 so that testing situations are

evaluated only at reasonable significance levels. Please note that

AUC not only depends on the quality of a test, but also on the

magnitude of differential expression. In Figures 6 through 11, the

AUC values are small because in our simulations, the true log fold

changes, dg, were taken from a standard normal distribution. As a

result, the magnitude of differential expression was small for a

significant fraction of truly differentially expressed genes.

Figures 6, 7, 8, 9, 10, and 11 show the relationships between

AUC and dispersion estimation method for each test setting and

simulation setting. We include the results of tests using the true

dispersion parameters and use these results as the ‘‘gold standard’’

to evaluate all dispersion parameter estimation methods.

Table 2 of the paper by Yu, Huber, and Vitek [8] suggests that

the Tagwise wqCML method (called ‘‘edgeR’’ in their paper) and

the DESeq dispersion estimation method perform roughly equally

well under the AUC metric. Our results agree, with the exception

of the DESeq testing method in simulation settings I through III,

where the DESeq dispersion estimation method performs worse

than the Tagwise wqCML method.

Overall, the three tests in the QuasiSeq package are less affected

by dispersion estimation than the edgeR and DESeq exact tests.

These tests introduce gene-wise quasi-likelihood dispersion

parameters to the negative binomial model, and the new

parameters absorb some of the variability that would otherwise

manifest solely in the negative binomial dispersions. The practical

Figure 9. Simulation setting IV: areas under ROC curves. Boxplots of AUC calculated based on 30 pseudo-datasets are shown for each
combination of dispersion estimation method and test for differential expression.
doi:10.1371/journal.pone.0081415.g009

Comparing RNA-seq Dispersion Estimation Methods

PLOS ONE | www.plosone.org 13 December 2013 | Volume 8 | Issue 12 | e81415



upshot is that all three QuasiSeq tests are relatively robust under

both noisy data and poor estimation of negative binomial

dispersions. The QL test is an extreme case, with little change in

its AUC boxplots across the dispersion estimation methods,

because it does not apply any special constraints to the quasi-

likelihood dispersions. (On the other hand, the QLShrink test

shrinks the quasi-likelihood dispersions using a common value, and

the QLSpline test shrinks them using a fitted spline.) Unfortu-

nately, the QL test also performs the worst among the five tests

overall, making it a poor choice in practice despite its otherwise

useful robustness. The QLSpline test is better than the QL test,

and the QLShrink test is better still.

The rankings of the dispersion estimation methods are similar

among the edgeR exact test, the DESeq exact test, and QLShrink

test. Specifically, the DSS, Tagwise wqCML, and Tagwise APL

– i.e., the moderate-shrinkage methods – are the best. Not only do

these dispersion estimation methods perform well relative to other

methods, but they are also extremely close to the true dispersions

in terms of AUC. Methods with an extremely large or extremely

small degree of dispersion shrinkage – i.e., the Trended, Common,

and ‘‘None’’ modes of dispersion shrinkage – are subject to

relatively poor performance in at least one of the simulation

settings. Interestingly, the Maximum DESeq method also

performs well in terms of AUC in several cases, although it does

poorly with respect to MSE. This shows that accurate and precise

estimation of dispersions and optimal test performance do not

always go together.

Across all six simulation settings, when combined with

moderate-shrinkage methods for dispersion, the best tests for

differential expression are the edgeR exact test, the DESeq exact

Figure 10. Simulation setting V: areas under ROC curves. Boxplots of AUC calculated based on 30 pseudo-datasets are shown for each
combination of dispersion estimation method and test for differential expression.
doi:10.1371/journal.pone.0081415.g010
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test, and the QLShrink test. These methods for testing perform

roughly equally well, and they are better than other combinations

of tests and dispersion estimation methods. In some cases, this

difference in AUC between the two tiers of tests is dramatic. With

the addition of the gene-wise quasi-likelihood dispersion param-

eter to the negative binomial model, the QLShrink test is more

robust to changes in dispersion estimation method than the either

of the exact tests, which is most noticeable for the Pickrell-

generated pseudo-datasets (simulation settings I-III). In practice,

we recommend using the QLShrink test because we expect the

addition of quasi-likelihood dispersion parameters to make the

QLShrink test more flexible than the edgeR and DESeq exact tests

under departures from the negative binomial model.

Discussion

It is challenging to estimate negative binomial dispersions from

RNA-seq data due to the ‘‘small n, large p’’ problem. Methods

that borrow information across genes are better than methods that

estimate parameters independently for each gene. If we assume

that the dispersion parameters are the same for all genes, then we

can use the entire dataset to compute a precise estimate of a shared

dispersion parameter. However, assuming a common dispersion

for all genes is too unrealistic in practice. For example, the

dispersion estimates for the the Pickrell dataset computed with the

QL method range from about 5:39|10{6 to about 8.35. We

expected the optimal dispersion estimation methods to instead use

Figure 11. Simulation setting VI: areas under ROC curves. Boxplots of AUC calculated based on 30 pseudo-datasets are shown for each
combination of dispersion estimation method and test for differential expression.
doi:10.1371/journal.pone.0081415.g011
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a moderate degree of shrinkage: that is, to ‘‘borrow information’’

across genes, using the whole dataset to compute a common value,

trend, or prior distribution for the dispersions, and then shrink

individual gene-wise dispersion estimates toward this chosen

anchor. Indeed, our simulation results show that the moderate-

shrinkage methods – the DSS, Tagwise wqCML, and Tagwise

APL methods – perform relatively well in terms of MSE and

optimally in terms of the performance of tests for differential

expression. Although DSS shrinks the dispersions towards a

common prior, Tagwise wqCML shrinks them towards a common

value, and Tagwise APL uses neighboring genes on a common

trend for shrinkage, these three optimal methods perform roughly

equally well in our simulations. Thus, the degree of dispersion

shrinkage is more important than how this shrinkage is achieved.

These moderate shrinkage methods outperform the others in all

five featured tests for differential expression. However, these tests

do not perform equally well. The edgeR exact test, DESeq exact

test, and QLShrink test outperform the other two. Furthermore,

the performances of the edgeR and DESeq tests depend highly

on the dispersion estimation method chosen, while the addition

of a gene-wise quasi-likelihood dispersion parameter gives the

QLShrink test extra robustness under the choice of dispersion

estimation method. We expect this same flexibility to help the

QLShrink test perform especially well under departures from the

negative binomial model, so we recommend using the QLShrink

method with either the DSS, Tagwise wqCML, or Tagwise APL

method in practice.

Interestingly, the ranking of dispersion estimation methods

according to MSE is not the same as the ranking according to

AUC. A notable example is the Maximum DESeq method, which

performs poorly in terms of MSE, but often performs extremely

well in tests for differential expression. This behavior may result

from the intentional overestimation of the dispersions, which

contributes to a high MSE, but guards against false positives. In

addition, methods with similar MSE may have very different

AUC. For example, the Trended APL and Tagwise APL methods

yield similar MSEs in simulation setting V, but the Tagwise APL

method performs much better than the Trended APL method in

the edgeR test (Figure 10). We do not have an explanation for this

behavior, but we advise practitioners to think about point

estimation and test performance separately when estimating

negative binomial dispersions.

Supporting Information

Simulation Code S1 R code used to generate the pseudo-
datasets and conduct the analyses. The software require-

ments can be found in Table 1.

(R)

Acknowledgments

We would like to thank Drs. Dan Nettleton, Dianne Cook, and Yaqing Si

for their useful feedback. We would also like to thank Dr. Gordon Smyth of

the Walter and Eliza Hall Institute in Australia for answering our

questions.

Author Contributions

Conceived and designed the experiments: WML PL. Performed the

experiments: WML. Analyzed the data: WML PL. Contributed reagents/

materials/analysis tools: WML. Wrote the paper: WML PL.

References

1. Oshlack A, Robinson MD, Young MD (2010) From rna-seq reads to differential

expression results. Genome Biology 11.
2. Wang L, Li P, Brutnell TP (2010) Exploring plant transcriptomes using ultra

high-throughput sequencing. Briefings in Functional Genomics 9: 118–128.
3. Cameron AC, Trivedi PK (1998) Regression Analysis of Count Data.

Cambridge University Press.

4. Si Y, Liu P (2012) An optimal test with maximum average power while
controlling fdr with application to rna-seq data. Biometrics 69: 594–605.

5. Anders S, Huber W (2010) Differential expression analysis for sequence count
data. Genome Biology 11.

6. Robinson MD, Oshlack A (2010) A scaling normalization method for differential
expression analysis of rna-seq data. Genome Biology 11: 1275–1282.

7. Wu H, Wang C, Wu Z (2012) A new shrinkage estimator for dispersion improves

differential expression detection in rna-seq data. Biostatistics 1: 1–24.
8. Yu D, Huber W, Vitek O (2013) Shrinkage estimation of dispersion in negative

binomial models for rna-seq experiments with small sample size. Bioinformatics
29: 1275–1282.

9. Si Y (2012). Package ‘amap.seq’. http://cran.r-project.org/web/packages/

AMAP.Seq/AMAP.Seq.pdf.
10. Robinson MD, Smyth GK (2008) Small-sample estimation of negative binomial

dispersion, with applications to sage data. Biostatistics 9: 321–332.
11. Robinson MD, Smyth GK (2007) Moderated statistical tests for assessing

differences in tag abundance. Bioinformatics 23: 2881–2887.
12. Robinson MD, McCarthy DJ, Smyth GK (2009) edger: a bioconductor package

for differential expression analysis of digital gene expression data. Bioinformatics

26: 139–140.

13. Robinson MD, McCarthy DJ, Chen Y, Smyth GK (2012). Package ‘edger’.

http://www.bioconductor.org/packages/2.10/bioc/manuals/edgeR/man/

edgeR.pdf.

14. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of

multifactor rna-seq experiments with respect to biological variation. Nucleic

Acids Research 40: 4288–97.

15. Lund SP, Nettleton D, McCarthy DJ, Smyth GK (2012) Detecting di_erential

expression in rna-sequence data using quasi-likelihood with shrunken dispersion

estimates. Statistical Applications in Genetics and Molecular Biology 11.

16. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010)

Understanding mechanisms underlying human gene expression variation with

rna sequencing. Nature 464: 768–72.

17. Hammer P, Banck MS, Amberg R, Wang C, Petznick G, et al. (2010) mRNA-

seq with agnostic splice site discovery for nervous system transcriptomics tested

in chronic pain. Genome Research 20: 847–60.

18. Langmead B, Frazee A (2012). Recount: A multi-experiment resource of

analysis-ready rna-seq gene count datasets. http://bowtie-bio.sourceforge.net/

recount/.

19. Joe H (2006) Generating Random Correlation Matrices Based on Partial

Correlations. Journal of Multivariate Analysis 97: 2177–2189.

20. Xiong Y, Liu P (2012) Evaluation of normalization methods for differential

expression analysis in RNA-seq experiments. Master of Science creative

component, Iowa State University.

Comparing RNA-seq Dispersion Estimation Methods

PLOS ONE | www.plosone.org 16 December 2013 | Volume 8 | Issue 12 | e81415


