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Exposure to fungal pathogens from the environment is inevitable and with
the number of at-risk populations increasing, the prevalence of invasive
fungal infection is on the rise. An interesting group of fungal organisms
known as thermally dimorphic fungi predominantly infects immunocom-
promised individuals. These potential pathogens are intriguing in that
they survive in the environment in one form, mycelial phase, but when
entering the host, they are triggered by the change in temperature to
switch to a new pathogenic form. Considering the growing prevalence of
infection and the need for improved diagnostic and treatment approaches,
studies identifying key components of fungal recognition and the innate
immune response to these pathogens will significantly contribute to our
understanding of disease progression. This review focuses on key endemic
dimorphic fungal pathogens that significantly contribute to disease, includ-
ing Histoplasma, Coccidioides and Talaromyces species. We briefly describe
their prevalence, route of infection and clinical presentation. Importantly,
we have reviewed the major fungal cell wall components of these dimorphic
fungi, the host pattern recognition receptors responsible for recognition and
important innate immune responses supporting adaptive immunity and
fungal clearance or the failure thereof.
1. Introduction
Fungi can be found in almost every environment on earth and are particularly
abundant in organic substrates such as soil and plant debris. Despite the millions
of fungal species that humans are exposed to, only an estimated 600 species can
colonize our bodies or cause opportunistic infection [1]. Infection may arise from
commensal overgrowth leading to fungal dysbiosis or from exposure to environ-
mental fungal pathogens [2], with the increasing numberof immunocompromised
patients being particularly vulnerable. Over millions of years, fungi have evolved
and adapted to survive stressors in their environment. They have developed
mechanisms to alter their cell shape and form, as well as stress responses and
developmental strategies as they react to triggers in their immediate environment.
Althoughmanypathogenic fungi are able to alter theirmorphology as part of their
lifecycle, relatively fewer species are considered to be truly dimorphic. The mor-
phological shift in these pathogens is triggered by a change in temperature
when entering the host. These pathogens are thermally dimorphic fungi.

These dimorphic fungi have adapted to switch between multicellular fila-
mentous growth or hyphae to unicellular growth forms or yeasts. Dimorphic
fungi are found in three main phyla, namely: Ascomycota, Basidiomycota
and Zygomycota. There are different environmental stimuli that trigger this
strict transition to generate either a hyphal or yeast morphology. While there
are many fungi that show aspects of dimorphism, in this review, we will
focus on a specific group of fungi belonging to the phyla Ascomycota that
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exhibit a trait known as thermal dimorphism. Thermally
dimorphic fungi are generally found in the soil growing at
22–25°C as mycelia that generate conidia, which are released
into the air by wind and soil disruptions along with hyphal
fragments. Transition into the yeast phase (or spherules for
Coccidioides spp.) occurs at 37°C upon inhalation by the
host into the lungs, which can lead to infection [3]. The symp-
toms of infection can vary; they can be mild and undetected
or develop into more serious conditions such as pneumonia,
acute respiratory distress syndrome and disseminated disease
[3]. The severity of disease depends on exposure and
the immune status of the individual, with immunocompro-
mised patients at higher risk of severe disease and death.
Thermally dimorphic fungi produce conidia that are respon-
sible for geographical dispersal and host infection. However,
it is the transition into yeast form that drives pathogenicity, as
these organisms have evolved to alter their cell wall com-
ponents and proteins to survive at mammalian body
temperature and evade immune responses. The main ther-
mally dimorphic pathogens of humans are globally
distributed and include Histoplasma capsulatum, Blastomyces
dermatiditis, Coccidioides immitis/posadasii, Paracoccidioides bra-
siliensis/lutzii, Talaromyces marneffei (formerly known as
Penicillium marneffei), Sporothrix schenckii and newly ident-
ified, Emergomyces spp. These organisms are primary
pathogens, but for this review, we will focus on key patho-
gens that cause the most infections, including, Histoplasma
Coccidioides and Talaromyces spp.

2. Prevalence and route of infection
Very few fungal infections are notifiable diseases and therefore,
precise information on their prevalence throughout the world is
very limited. In fact, until recently, Coccidioides was the only
nationally notifiable diseasewith theCDC in theUSA.However,
the WHO is generating a priority list of fungal pathogens of
public health importance, and this will likely improve the epide-
miological data generated for these pathogens. Histoplasmosis,
caused by Histoplasma capsulatum, is primarily a respiratory
infection, but in patients with impaired T-cell function, it can
progress to a life-threatening systemic infection. In some parts
of Latin America, the deaths resulting from histoplasmosis
among HIV/AIDS patients outnumber those from tuberculosis
[4]. The distribution of H. capsulatum is worldwide but it is
highly endemic in central North America (especially the USA
Midwest) and South America. Considering the high burden of
both tuberculosis and advanced HIV disease in sub-Saharan
Africa, it is possible that the incidence of Histoplasmosis is
higher than previously anticipated, but not being detected. Coc-
cidioidomycosis, also known as Valley fever, is a disease caused
by Coccidioides immitis (endemic to Northern Mexico and both
central and southern California) and Coccidioides posadasii
(detected throughout Arizona, Mexico, Texas and other regions
of South America). Exposure to the fungus is common, with an
estimated 40% of the population in hyperendemic areas infected
[5]. Most immunocompetent individuals exposed are asympto-
matic, some experiencingmild symptoms, and they can clear the
infection without medical intervention. However, in certain
endemic areas, Coccidioides spp. has been reported to be a
common cause of community-acquired pneumonia, requiring
antifungal treatment [6]. Valley fever, referring to the infection
of the lungs, is more common, but in severe cases, disseminated
coccidioidomycosis can occur. While Histoplasma spp. and
Coccidioides spp. can cause disease in both immunocompetent
and immunocompromised individuals, Talaromyces marneffei
[7] is an AIDS-defining illness in South and Southeast Asia.
The endemic regions of the fungal disease include Northern
Thailand, Southern China, Vietnam, Northern India, Hong
Kong and Taiwan [8]. LikeHistoplasma spp., T. marneffei can dis-
seminate from the lung to other organs, with the potential to
reactivate at a later stage, but infection in healthy individuals
is not common.

Histoplasma spp. are soil-dwelling fungi, found particularly
inmoist soils of river valleys and in bird or bat guano,with par-
ticularly high concentrations in caves [9]. Similarly, Coccidioides
spp. are found in dust, but the low numbers isolated from soil
suggest that this organism is better adapted to an animal host.
It has not yet been established if Talaromyces spp. occur in the
soil, but it is known to infect wild rodents such as the
bamboo rat, constituting a reservoir in endemic countries
[10,11]. Infection with Histoplasma spp. and Talaromyces spp.
occurs through the inhalation of conidia and a shift in tempera-
ture inside the host triggers a switch to the pathogenic yeast
form. Uniquely, Coccidioides spp. form arthoconidia, which
transition into pathogenic spherules in the host [12].

Most patients infectedwithHistoplasma spp. have no symp-
toms. In cases of inhalation of a large inoculum of conidia,
acute infection may develop, characterized by fevers, malaise,
dry cough and lymphadenopathy. Systemic infection develops
in approximately 1 in 2000 acute cases and clinical presentation
can be quite diverse due to the ability of the fungus to colonize
several organs: lung, bone marrow, skin and gastrointestinal
tract [13]. For Coccidioides spp., infected individuals generally
present with symptoms 1–3 weeks after exposure, which may
include the development of a cough, shortness of breath,
fever, night sweats, fatigue, headache, muscle or joint pain
and skin rash on legs or upper body. Common infected tissues
include bones, joints, meninges and skin; dissemination to
pericardium, abdomen, adnexa and larynx has been reported,
although less commonly [14]. Similarly, Talaromyces spp. are
usually cleared by the immunocompetent host within 2–3
weeks. However, impaired T cell function leads to systemic
infection, as shown in T cell-deficient hosts [15]. Systemic infec-
tion with Talaromyces spp. is life-threatening, with one of the
highest mortality rates of AIDS-defining illnesses [16]. Clinical
manifestations of disseminated infection include fever, weight
loss, skin lesions and hepatomegaly. Skin lesions on the face
and neck are characteristic (approximately 85% of patients) as
the fungus colonizes the skin [17]. Misdiagnoses are common
in the absence of widely available diagnostic tools [18] and
highlight the important need to improve tests, which should
be widely available.
3. The dimorphic fungal cell wall
The fungal cell wall is a protective barrier against environ-
mental stresses and functions to maintain intracellular turgor
pressure. Across fungal species, there are carbohydrate poly-
mers in common that serve to maintain the structural
integrity of the cell wall. Thermally dimorphic fungi share
many of these core components such as chitin—a polymer of
N-acetyl glucosamine—and β-(1,3) glucan (table 1). β-(1,6)
glucan, shown in Saccharomyces cerevisiae to be lower in abun-
dance and to cross-link multiple cell wall layers, such as
chitin to β-(1,3) glucan layers (table 1) [36]. These polymers



Table 1. Major pathogen-associated molecular patterns (PAMPs) found on the cell walls of thermally dimorphic fungal pathogens and associated pathogen
recognition receptors (PRRs). Relevant references are indicated in the text. Abbreviations: Hsp60, heat-shock protein 60; Yps3, yeast phase-specific protein-3; CR3,
complement receptor 3; VLA-5, very late antigen-5; TLR, toll-like receptor; Mp1, mannoprotein 1; DC-SIGN, dendritic cell-specific ICAM-3-grabbing non-integrin;
Gp70, glycoprotein-70 kDa; BAD1, blastomyces adhesin-1; MCL, murine macrophage C-type lectin; MR, mannose receptor; SOWgp, spherule outer‐wall glycoprotein.

pathogen phase PAMP PRR references

Histoplasma capsulatum yeast [β-(1,3) glucan]? Dectin-1 [19]

Hsp60 CR3 [20]

cyclophilin-A VLA-5 (dendritic cells) [21]

Yps3 TLR2 [22]

yeast DNA TLR7, TLR9 (dendritic cells) [23]

Talaromyces marneffei conidia unknown TLR1, TLR2, TLR4, TLR6 [24]

Mp1 mannoprotein unknown [25]

conidia/yeast unknown CR3 [26]

yeast Unknown DC-SIGN (dendritic cells) [27]

N-acetyl-β-D-glucosaminyl groups unknown [28]

Coccidioides spp. spherule unknown TLR2 [29]

[β-(1,3) glucan]? Dectin-1 [30]

mannose MR [31,32]

SOWgp ? [33–35]

?? 

a-(1-3) glucan

b-(1-3) glucan

b-(1-6) glucan

melanin

cell membrane
ergosterol

cell wall proteins

Figure 1. Schematic representation of the cell wall of select dimorphic fungi. All common components are shown here, though not all may be present in each
species. Chitin and β-(1,3) glucan form the structural core of the cell wall, which may be cross-linked by β-(1,6) glucan. The type of melanin and its distribution can
vary by species and its position shown here is speculated, as is the location of β-(1,6) glucan. Alpha-(1,3) glucan is common on the cell wall exterior of dimorphic
fungi. Created with BioRender.com.
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forma structural inner layer, uponwhich an outer cellwall layer
can be formed (figure 1). Specific to many dimorphic fungi, α-
(1,3) glucan is present in this outer cell wall layer [37–39]. While
mannans are common in other fungal organisms, they have not
yet been described for dimorphic fungi. For Aspergillus fumiga-
tus, galactomannan is present as a linear α-mannan which is
modified with short chains of β-(1,5) glucofuranose residues
[40]. While galactomannan detection in urine is the basis of
an enzyme immunoassay diagnostic test for Histoplasmosis
[41], whether this is a component of the dimorphic cell wall
or only present in a soluble form needs to be clarified. Melanin
is also present in the dimorphic organisms discussed here
[42,43]. Within dimorphic fungal species, there can be consider-
able variation in the cell wall composition of the different
morphological forms (mycelia, conidia and yeast). The
filamentous forms have adapted to survival as free-living
environmental organisms, whereas the yeast forms survive at
elevated temperatures within the mammalian host, interacting
with the immune system [44]. Components of the cell wall
which are recognized as foreign by pathogen recognition recep-
tors (PRRs) of the host immune system are referred to as
pathogen-associated molecular patterns (PAMPs).
4. Pathogen-associated molecular patterns
4.1. Chitin
Chitin is a widely conserved structural polymer in the fungal
cell wall. For T. marneffei, chitin has been shown to be an
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essential fungal cell wall component. Cánovas and colleagues
demonstrated the importance of myosin (MyoB) in chitin depo-
sition. Defects in MyoB were associated with chitin defects
leading to the absence of conidiophore cell types [45]. Although
conserved, chitin content can vary greatly between species and
between chemotypes of the same species. Furthermore, the level
of chitin in the cellwall also changes upondimorphic switching.
For Coccidioides posadasii, particular subsets of chitin synthases
are responsible for the production of chitin at different stages
of differentiation. Comparing the expression of seven synthase
genes, Mandel et al. identified the pattern of expression during
morphogenesis. While the genes CpCHS2, CpCHS3 and
CpCHS6 were expressed during the saprobic phase, CpCHS1
and CpCHS4 were associated with the pathogenic phase.
CpCHS5 and CpCHS7 were found in both phases [46].
The host environment can also influence the chitin cell wall
content, as shown recently for Histoplasma spp. [47].
Here Assunção et al. demonstrate that low zinc availability in
macrophages increases the chitin and glycan content in fungal
cell wall. This causes a smoother cell surface and is suggested
to increase pathogenicity by inhibiting the production of cyto-
kines released by the host. Despite the importance of these
findings, and even though several proteins in the human host
have been shown to interact with chitin, the role of chitin as a
PAMP in dimorphic fungal infections remains unclear.

4.2. Melanin
Melanins are a diverse group of high-molecular dark brown
or black pigments that act as fungal armour. The two most
commonly found melanins in fungi are eumelanin DOPA-
melanin and allomelanin-derived DHN-melanin. Little is
known about the organization of melanin in cell walls of
dimorphic pathogens [48], but the presence of melanin has
raised interest in whether it is associated with fungal viru-
lence. For example, Sporothrix schenckii expresses melanin in
both the conidial and yeast phase during in vivo infection
[49]. Like S. schenckii, pigmented H. capsulatum conidia and
yeast have tufts on their exterior surface and resemble the
granules seen on S. schenckii conidia [50]. The in vitro pro-
duction of melanin by H. capsulatum conidia without the
addition of phenolic precursors suggests that the pigment
may be DHN melanin [42]. However, the genome of T. mar-
neffei, which encodes several laccases associated with both
DOPA- and DHN-melanin synthesis, suggests that both are
types of melanin are synthesized [51–53]. Melanin may also
confer resistance to antifungal drugs. Several fungi are stimu-
lated to produce melanin in vitrowhen grown in the presence
of L-DOPA. H. capsulatumwas shown to increase resistance to
Amphotericin B and caspofungin if stimulated to generate
melanin under these conditions [54].

4.3. Beta-glucans
β-glucans are the most abundant fungal cell wall polysacchar-
ides. Due to the highly immunogenic nature of β-(1,3) glucan,
concealment or ‘masking’ is a desirable immune evasion strat-
egy, as demonstrated with H. capsulatum [55]. By contrast,
β-(1,6) glucan has relatively low abundance in the cell wall
and is not considered to have a significant role in the
immune response. However, in other non-dimorphic fungal
organisms, β-(1,6) glucan is incorporated in branch points in
β-(1,3) glucan chains and can influence the degree of branching
and molecular weight of β-glucan polymers. Therefore, β-(1,6)
glucan is thought to be an important factor in the immuno-
stimulatory activity of β-(1,3) glucan, but this has not been
shown for thermally dimorphic fungi [56,57].

4.4. Cell wall proteins
Proteins anchored to the cell wall have important functions in
cell wall maintenance, nutrient acquisition and stress resist-
ance. Some of these may be recognized by the host immune
system and trigger phagocytosis, which, in the case of some
fungal pathogens, is a survival strategy due to their prefer-
ence to multiply within macrophages, and aids in
dissemination in the host. Heat-shock proteins (Hsps) are
an example of cell wall proteins recognized by the immune
system. For example, Hsp60 of H. capsulatum is recognized
by complement receptor 3 on macrophages and neutrophils,
triggering phagocytosis [20]. Cell wall proteins, such as Mp1
in T. marneffei, are often highly immunogenic and species-
specific and are therefore attractive candidates for vaccine
and diagnostics development [58]. Similarly, in Coccidioides
spp., a spherule-abundant protein (Pmp1), secreted fungal
aspartyl proteases (Pep1) and recombinant β-1,3-glucanosyl-
transferase (Gel1) have all shown promise as effective
vaccine targets in the murine model of coccidioidomycosis
[59–61]. Therefore, identifying cell wall proteins in vaccine
strategies is incredibly important.

4.5. Alpha glucans
Increasing evidence suggests that most pathogenic dimorphic
fungi display α-(1,3) glucan on their cell wall surface
[38,39,55]. However, more information is needed to determine
the specific detail of α-(1,3) glucan’s contribution to the cell
wall structure of other dimorphic organisms such as
Coccidioides spp. Furthermore, very little information is avail-
able about α-glucan recognition by the host and the
associated immune response. However, this cell wall polymer
has been shown to be required for virulence in Histoplasma
spp. [55,62,63]. Removal of α-(1,3) glucan from the outer cell
wall increases immune recognition by Dectin-1, suggesting
that α-(1,3) glucan may mask underlying β-(1,3) glucan [64].
Furthermore, the β-glucanase Eng1 trims exposed β-(1,3)
glucan and therefore blocks recognition by the host receptor
Dectin-1 [19]. Considering that α-(1,3) glucan is a major cell
wall component in dimorphic fungi, this is an important area
for future research.
5. Dimorphic fungal recognition and
associated host response

Phagocytes widely express membrane-bound PRRs that can
directly recognize PAMPs on cell wall components of fungi.
The nature of fungal dimorphism presents a challenge for
immune detection and activation because the form in which
the organism enters the host changes. As described above,
Histoplasma, Coccidioides and Talaromyces spp. all express chit-
ins and α- and β-glucans in their outer cell wall. It is
postulated that these cell components are recognized by a
variety of host toll-like receptors (TLRs) and C-type lectin
receptors (CLRs) to elicit strong inflammatory responses
from local immune cells (figure 2). However, receptors for
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Figure 2. Innate recognition of select thermally dimorphic fungal pathogens and the downstream activation pathways. PRRs on innate immune cells recognize
PAMPs during fungal infection. The main PRRs involved in dimorphic fungal recognition are TLRs (such as TLR2, TLR7 and TLR9) and CLRs (such as Dectin-1,
Dectin-2, DC-sign and MR). Upon binding and dimorphic fungal recognition of specific fungal PAMPs by TLRs and CLRs, certain downstream intracellular signalling
pathways are induced resulting in multiple antifungal immune responses. CARD9, Caspase recruitment domain‐containing protein 9; MyD88, Myeloid differentiation
primary response 88; NF‐κB, nuclear factor kappa. Created with BioRender.com.
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chitin, α-1,3-glucan or galactose polymers remain to be ident-
ified. Several TLRs have been shown to recognize fungal
PAMPs and play a role in antifungal immunity, triggering
inflammatory responses, mainly working together with
CLRs (e.g. Dectin-1 and mannose receptor (MR)).

An elegant review by Ray & Rappleye [65] highlights
Histoplasma spp. recognition by host cells and can likely be
applied to other similar dimorphic pathogens. However, so
much remains unknown, particularly the signalling pathways
and cell types involved in the recognition of and response to
these dimorphic pathogens. The ability of the innate
immune system to trigger an adaptive T cell response is critical
to resolution of infection. However, equally important is the
role of innate receptors. MyD88, an adaptor protein vital to
multiple TLR signalling pathways, was critically required for
the host response to Histoplasma spp. MyD88-deficient mice
were unable to control the fungal burden and were more sus-
ceptible than wild-type, with reduced early inflammatory
cytokine production. Interestingly, cell-specific deletion of
MyD88 from alveolar macrophages or dendritic cells did not
affect mouse survival, suggesting an additional cell type or
compensatory mechanisms for clearance [66]. TLR2 binds to
a protein, Yps3, expressed on the surface of the yeast phase
of H. capsulatum [22]. Yps3 stimulated nuclear factor kappa B
(NF-κB) production via TLR2 in both HEK293T cells and in
murine microglia; however, further research is required
using lung phagocytes or in vivomodels to determine the pre-
cise role of TLR2. A recent study showed that dendritic cells
were able to mount a type I interferon response via TLR7
and TLR9 and proved to be a major driver of the T cell
activation required to clear Histoplasma spp. infection [23].
A role for TLR recognition was also demonstrated using
myeloid differentiation primary response 88 (MyD88−/−) mice
for Coccidioides spp. infection. MyD88−/− mice were more sus-
ceptible to Coccidioides spp. infection, with a higher fungal
burden in the lung and spleen and impaired cytokine pro-
duction [67]. Here, interleukin-1R1 (IL-1R1) also uses MyD88
in signallingbutnotTLR2was required for clearance.Whileper-
itoneal macrophages elicited from TLR2-deficient mice had
impaired cytokine production in response to Coccidioides spp.
spherules [68], TLR2−/− mice were able to control infection
with no increase in susceptibility. Similarly, the susceptibility
ofmice lackingTLR4or IL-18Rwasnot affected [69]. Bycontrast,
IL-1R1-deficient mice were reported to have increased dissemi-
nated fungal burden, suggesting signalling via IL-1R1 and
Myd88 may play a role in coccidioidomycosis immunity in
mice [70].Talaromycesmarneffei conidiaare recognizedbyseveral
PRRs. A study using monoclonal antibodies against PRRs on
human monocytes to investigate binding to T. marneffei conidia
showed that the MR, TLR1, TLR2, TLR4, TLR6, CD14, CD11b
and CD18 were all involved in phagocytosis [24]. Recently, a
study in AIDS patients in China linked talaromycosis severity
with single-nucleotide polymorphisms in TLR2 but not
in TLR3 or TLR9 [71].

CLRs have been shown to play key roles in the recognition
of fungal pathogens. While evidence is limited for dimorphic
fungi, studies suggest a role for CLRs in mediating immunity.
CLRs recognize PAMPs on fungal cell wall components and
initiate downstream signalling pathways that regulate innate
immune responses such as phagocytosis, respiratory burst
(resulting in reactive oxygen species (ROS) production), inflam-
masome activation, neutrophil extracellular trap formation
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(NETosis), antigen presentation and dendritic cell maturation,
as well as the production of inflammatory mediators (e.g. cyto-
kines, chemokines, eicosanoids, etc.) [72]. Both Dectin-1 and
Dectin-2 were shown to interact with H. capsulatum, although
recognition by Dectin-1 was limited by β-glucan masking.
Both receptors, especially Dectin-2, were found to be important
for NOD‐, LRR‐ and pyrin domain‐containing protein 3
(NLRP3) inflammasome activation in dendritic cells, leading
to IL-1β production. While Dectin-1, MR, DC-SIGN/specific
intercellular adhesion molecule‐3‐grabbing nonintegrin‐related
1 (SIGNR1) and FcγRwere shown not to be involved in the pha-
gocytosis of yeasts by murine macrophages [73]. Dectin-1
maintained the ability to mediate the production of TNF-α
and IL-6 by associating with the complement receptor type 3
(CR3) in murine macrophages [74]. It has long been known
that phagocytosis of H. capsulatum by macrophages is depen-
dent on recognition by CR3 and not β-glucan recognition [75].
However, it was only later shown that themajor ligand facilitat-
ing this binding was heat-shock protein 60 (Hsp60) on the yeast
cell wall [20]. For dendritic cells, however, phagocytosis is not
mediated through CR3 but rather by the fibronectin receptor
VLA-5 [76], which recognizes cyclophilin A, a protein on the
surface of the yeast cell wall [21].

Studies investigating the role of CLRs have suggested a
role in controlling coccidioidomycosis. First, in vitro studies
using RAW 264.7 macrophages overexpressing Dectin-1
infected with C. posadasii spherules produced an increased
cytokine response. Similarly, using antibodies to block
Dectin-1 in elicited mouse peritoneal macrophages impaired
proinflammatory cytokine production [68]. Bronchoalveolar
lavage fluid collected from Dectin-1-deficient mice after
Coccidioides spp. infection contained reduced levels of IFN-γ
and IL-17a cytokines [29]. Associated with this reduction
was an increase in fungal burden in the lung and spleen of
Dectin-1−/− mice. Linked to the role of Dectin-1, caspase
recruitment domain‐containing protein 9 (CARD9) was
shown to be vital in triggering Th-1- and Th-17-mediated
immune responses towards coccidioidomycosis. Mice that
lack CARD9 were highly susceptible to pulmonary and
subcutaneous Coccidioides spp. infection and failed to produce
protective immunity to the disease [70]. By contrast, Dectin-2
and MR had no apparent role in the resistance to Coccidioides
spp. infection in mice, as there was no difference in suscepti-
bility to infection in mice lacking either or both receptors
[30]. However, in vitro studies using MR/Dectin-1−/− perito-
neal macrophages and bone marrow‐derived dendritic cells
(BMDCs), less proinflammatory cytokine production was
seen in response to infection with spherules [30]. Furthermore,
in vitro studies using human dendritic cells show that MR
recognizes C. posadasii spherules and initiates cytokine pro-
duction [31,32].

For Talaromyces spp., a very recent study has suggested a
role for Dectin-1 in initiating signalling through the activation
of Syk, which triggered phosphorylation of IκBα and NF-κB.
This study was carried out in vitro using THP-1 macrophages
and heat-killed T. marneffei [77]. The fact that heat-killed
T. marneffei was used and that there is the potential for unna-
tural exposure of β-glucan polysaccharides to Dectin-1 should
be considered. Therefore, further evidence using in vivo
models is required to draw conclusions. It was found
that MR was important for yeast phagocytosis in human
monocyte-derived macrophages, and that DC-SIGN was
involved in adhesion to dendritic cells [27]. Interestingly,
another study found that MR was not involved in the binding
of heat-killed yeasts in murine macrophages. Perhaps heat
killing the organism affects the ligand recognized by MR.
Phagocytosis was strongly inhibited by competition with
wheatgerm agglutinin, suggesting that the yeast phase is
recognized by exposed N-acetyl-β-D-glucosaminyl groups
[28]. These studies showed that cell wall differences between
the morphological forms of dimorphic fungi led to differen-
tial engagement of host PRRs. Lastly, the integrin CR3
(a heterodimer of CD11b and CD18) has been shown to
recognize a wide variety of fungal pathogens. In response
to T. marneffei, murine macrophages were shown to upregu-
late the expression of CD11b, and the inhibition of CD11b
significantly reduced phagocytosis of the yeast. This recog-
nition led to the secretion of IFN-γ, TNF-α, IL-4, IL-10 and
IL-12 [25,26]. The surface ligand in T. marneffei that binds to
CR3 has not yet been identified.

Receptors on phagocytic cells such as macrophages, neu-
trophils, monocytes and dendritic cells play a vital role in
activating immune cells and promoting fungal killing. Histo-
plasma and Talaromyces spp. are both intracellular pathogens
engulfed by host cells. Although Coccidioides spp. has an intra-
cellular component during infection, the interaction with host
cells is predominantly extracellular. Alveolar macrophages
are among the first innate immune cells with whichH. capsula-
tum comes into contact in the lung. Recent evidence suggests
that dendritic cells are the major antigen-presenting cell
during H. capsulatum infection and are important for initiating
T-helper type 1 (Th1) responses required to clear the organism
[78]. Taken up by macrophages and neutrophils,H. capsulatum
yeasts proliferate intracellularly, andwithin these cellsmay dis-
seminate to other organs via blood or the lymphatic system.
Innate immune cells that are not activated are ineffective in kill-
ing intracellular yeasts; only once a Th1 cell-mediated adaptive
response has developed may phagocytes contain the infection
[79]. Even then, infection may persist and remain dormant in
granulomas and can be reactivated following compromised
immunity such as immunosuppressive therapy or HIV/AIDS
[80]. After the inhalation of the airborne fungal particles, the
host phagocytic cells engulf Coccidioides spp. arthroconidia.
The arthroconidia is triggered to transition into spherule initi-
als and eventually into multinucleate spherules [81].
Endospores are formed within the spherules that become
enlarged, causing the cell wall to rupture upon maturation.
Endospores are then released to infect nearby tissue capable
of forming new spherules, repeating the life cycle [82]. Phago-
cytes are able to ingest arthroconidia, sphere initials and
endospores; however, mature spherules are too large to
engulf. Therefore, Coccidioides spp. have both intracellular
and extracellular relationships with the host. Endospores and
sphere initials are more susceptible to killing and inhibition
of growth by activated phagocytes [83,84]. Lastly, Dong et al.
have established that cytokines produced by innate immune
cells are critical for resolution of T. marneffei infection in AIDS
patients [85]. In a study of 41 AIDS patients infected with
T. marneffei, cytokine profiles were tracked over a six-month
period after initiation of antifungal therapy. Inflammatory
cytokines TNF-α, IFN-γ, IL-6, IL-12, IL-18 and IL-1β were
important for resistance of the disease. However, excessive
inflammatory responses led to poor patient outcomes.
T. marneffei proliferates within macrophages to evade host
immunity. A recent study using a zebrafish embryo model
found that the conidia are predominantly taken up by
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macrophages, which supports growth in the yeast phase and
protects against the myeloperoxidase fungicidal activity of
neutrophils [86]. However, caution should be taken when
interpreting these data as the zebrafish model would not
represent a host temperature of 37°C and therefore not comple-
tely represent true yeast form. Furthermore, T. marneffei was
recently shown to promote M2-like polarization of human
macrophages, thereby promoting fungal survival. By downre-
gulating SOCS3 expression, or degrading SOCS3, the organism
was able to suppress host protective M1 activation. Here, the
authors showed that by inhibiting TLR9 activation, this
response was partially blocked. This study suggests that the
antifungal ability of macrophages depends on their activation
status [87].
pen
Biol.12:210219
6. Virulence-associated traits of dimorphic
fungi

As β-(1,3) glucan is a key PAMP for fungal recognition and
clearance, many fungal pathogens conceal this PAMP to
avoid an immune response [55,88]. H. capsulatum has several
mechanisms to avoid a Dectin-1 response. A layer of α-(1,3)
glucan covers underlying β-(1,3) glucan [89], and the yeast
may also secrete endoglucanases such as Eng1 to trim back
any exposed β-(1,3) glucan [19]. Independent studies of
H. capsulatum chemotype II strains, inwhich α-(1,3) glucan pro-
duction has been disrupted, have been shown to exhibit
reduced virulence in mouse models of infection [62,90]. A for-
ward genetic screen identified Hsp82 as another important
virulence factor, highlighting the importance of heat-shock
proteins in resistance to stresses imposed by the host [90]. To
survive the ROS produced in the phagosome of macrophages,
H. capsulatum produces superoxide dismutase (SOD) and cata-
lase [91]. Without Sod3, an extracellular SOD produced during
infection, H. capsulatum cannot survive in activated macro-
phages. Nearly all mice infected with a lethal dose of wild-
type yeast survive for approximately 5 days, whereas almost
all mice survive infection with the same dose of the sod3Δ
strain after two weeks [92]. The virulence mechanisms of Coc-
cidioides spp. are largely unknown; however, arthroconidia
significantly increase in sizewhen transitioning into spherules,
which contain between 100 and 300 endospores. The large size
of the spherulemakes phagocytosis by innate cells challenging.
The spherule also contains three unique genes that contribute
to virulence factors and host tissue damage: BLG2, SOWgp
and MEP1 [33–35]. BLG2 cleaves β-1,3-glucan from the
spherule cell wall to allow for expansion and growth. Spherule
outer-wall glycoprotein (SOWgp) enables the spherule to
adhere to host cells by binding to laminin, fibronectin and
collagen in the extracellular matrix. The host immune system
can recognize SOWgp; however, a Th2 response is activated
that assists pathogen survival. Endospores are coated with
SOWgp during spherulematuration; however, MEP1 degrades
SOWgp, which is another mechanism of preventing immune
recognition [3]. For Talaromyces spp., a distinguishing feature
when grown in vitro is the production of a soluble red pigment.
Laccases are responsible for the formation of melanin-like pig-
ments. The deletion of a laccase gene pbrB in T. marneffei
resulted in a strain that was more readily phagocytosed
by THP-1 human monocyte cells and stimulated increased
cytokine production, suggesting that laccases may have a func-
tion in immune evasion [93]. Furthermore, the cell wall
mannoprotein Mp1 was found to be important for virulence.
Mice infected withMp1 knockout mutants all survived, in con-
trast to the 100% mortality when infected with the wild-type
strain [94]. To conclusively demonstrate that this was associ-
ated with increased survival within macrophages, a direct
comparison of phagocytosis rates of wild-type and mutant
fungal strains would need to be made. A recent study also
found that Mp1 was able to sequester proinflammatory lipid
arachidonic acid, thus interfering with host signalling. Mp1 is
abundant on the surface of conidia, highly antigenic and
found in the sera of infected patients. An enzyme-linked
immunosorbent assay with high sensitivity and specificity
using an anti-Mp1 antibody was developed, demonstrating
that mannoproteins could be an attractive target for diagnostic
assay development for other fungi [58].
7. Conclusion, open questions and
perspectives

Despite the increase in prevalence and high mortality rates of
invasive dimorphic fungal infections, they continue to be
misdiagnosed or underreported. Medical mycology has
been a neglected research area in general, but even within
this, endemic dimorphs receive far less attention than other
fungi such as Candida or Cryptococcus. Due to climate
change and increased human movement, the endemic range
of these pathogens is expanding, and the number of
infections may continue to increase [95,96].

The importance of understanding how our immune
system interacts with these dimorphic fungal pathogens
will provide critical insight into potential vaccine develop-
ment and therapeutic interventions. Innate immunity is
particularly important, as it prevents the vast majority of
exposures to fungi in the environment from developing into
systemic disease. When systemic disease does occur, innate
immune responses shape the induction of adaptive immu-
nity, which is required to clear infections. We have
described host–pathogen interactions for some of the most
common thermal dimorphic fungal pathogens. However,
this field of research is relatively new, and many questions
remain unanswered. Much information thus far has been
gained from in vitro studies using cell lines, while in vivo
data using animal models or clinical studies are lacking.
Any observed interactions of fungi with cell monocultures
in vitro may not necessarily influence disease progression in
a meaningful way; nevertheless, we include this data to
serve a record for future studies striving to elucidate the sig-
nificance of these interactions using in vivo models (table 1).

TLR signalling is a common response to dimorphic fungi,
although the role in triggering an immune response requires
further investigation. Recognition of H. capsulatum yeast DNA
by TLR7/TLR9 is a fascinating recent discovery [23], highlight-
ing the adaptation of the immune system to the intracellular
lifestyle of many of these pathogens, which could be exploited
in future therapeutic strategies. Recognition by CR3 is common
toHistoplasma, Talaromyces and Blastomyces spp. Recognition of
β-(1,3) glucan by Dectin-1 does not seem to have amajor role in
phagocytosis of dimorphic fungi, but rather, may have a role in
initiating the adaptive response and clearance once these
ligands become more exposed. In general, the role of CLRs is
not as clear for these pathogens, as for other medically impor-
tant fungi. The cell wall of most dimorphic fungi contains
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α-(1,3)-glucan, which has been shown to mask β-(1,3) glucan
recognition; however, receptors for this ligand have not yet
been identified, and the manner in which this cell wall com-
ponent directly shapes the immune response should be a
priority for investigation, given its widespread occurrence. As
listed in table 1, several fungal ligands of innate immune recep-
tors remain uncharacterized. Some components of the cell wall
of these pathogens, which induce a response, engage as yet uni-
dentified receptors. An understanding of these interactions is
necessary for the development of potential vaccines. Early
diagnostic tools are a cost-effective strategy for preventing
severe disease in at-risk populations. Development of diagnos-
tic kits requires an understanding of immunogenic fungal
components and their receptors, whether these are innate
immune receptors or antibodies. The development of inexpen-
sive and point-of-care diagnostics is particularly important in
low- to middle-income countries, where the resources and
expertise for PCR identification may not be widely available.
Despite these considerable challenges and unanswered ques-
tions, recent improvements in diagnostics and their increased
availability in endemic areas are promising signs. For example,
the development of the enzyme-linked immunosorbent assay
for diagnosis of disseminated Histoplasmosis and it simple-
mentation in Latin America are considerable steps forward in
recognizing and fighting infection [97], together with creating
awareness of the problem, such as the global call for talaromy-
cosis to be recognized as a neglected tropical disease [98]. With
commitment from funders, policy makers, researchers and
industry, the control of these endemic dimorphic pathogens is
feasible and thereby protecting vulnerable populations.
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