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Abstract

The neural mechanisms mediating sensory-guided decision making have received considerable 

attention but animals often pursue behaviors for which there is currently no sensory evidence. 

Such behaviors are guided by internal representations of choice values that have to be maintained 

even when these choices are unavailable. We investigated how four macaque monkeys maintained 

representations of the value of counterfactual choices– choices that could not be taken at the 

current moment but which could be taken in the future. Using functional magnetic resonance 

imaging, we found two different patterns of activity co-varying with values of counterfactual 

choices in a circuit spanning hippocampus, anterior lateral prefrontal cortex, and anterior cingulate 

cortex (ACC). ACC activity also reflected whether the internal value representations would be 

translated into actual behavioral change. To establish the causal importance of ACC for this 
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translation process, we used a novel technique, Transcranial Focused Ultrasound Stimulation, to 

reversibly disrupt ACC activity.

Introduction

Every day, chacma baboons, an old world primate, navigate to and from the safety of their 

sleeping post and distant foraging or watering sites1. The decision to move to alternative 

locations is not simply guided by accumulation of sensory evidence for that choice but by 

internal representation or memory of the alternative choice’s value. The same is true when 

they move back towards the sleeping post in the evening. While sensory and associative 

decision making have been well-studied2, less is known about how representations of 

counterfactual choices – choices not currently taken but which may be taken in the future – 

are held in memory and guide behavior.

In humans, lateral frontal polar cortex (lFPC) holds counterfactual information3–5. This may 

underlie its role in exploratory behavior6. However, many questions remain. First, some of 

the same studies report a similar pattern of activity in anterior cingulate cortex (ACC)3,5,6. 

Other studies have emphasized a related role for ACC in encoding the value of switching 

behavior and rejection of the default choice7,8. Here we introduce a simple paradigm that 

makes separation of the roles of the areas possible and distinguishes them from a third 

region: hippocampus. Within the hippocampal formation, the subiculum projects 

monosynaptically to ACC9. Information held in memory in such medial temporal structures 

may guide decision making2. Although little is known about whether or how activity in 

hippocampus encodes counterfactual choices, it is clear that hippocampal lesions disrupt 

switching between choices in other tasks10.

We also address a second issue: whether macaques possess a brain region with a functional 

role corresponding to that of human lFPC. Human frontal polar cortex can be subdivided 

into lateral and medial sub-regions lFPC and mFPC11,12. While resting state connectivity 

pattern exhibited by human mFPC and macaque FPC are similar, human lFPC’s more 

closely resembles macaque lateral prefrontal cortex (lPFC). It is therefore unclear if 

macaques hold counterfactual information as humans do and, if they can, whether it is 

mediated by macaque FPC or lPFC. We know that when macaques are given feedback about 

what would have happened had another choice been made, they use it to guide their next 

choice13,14. However, how information about the multiple counterfactual choices that 

typically exist in natural environments is retained while another choice is actually made is 

unknown.

Finally, our experiment allowed comparison of two fundamentally different ways in which 

counterfactual choice information might influence behavior. On the one hand, information 

about currently unavailable choices must be held if future behavior is to be accurate when 

that choice once again becomes available. This might be mediated by some combination of 

ACC/lPFC/lFPC. On the other hand, holding information about currently unavailable 

choices may impact on the current decision being made. We show that the second influence 

of counterfactual choice is mediated by a distinct neural circuit centered on ventromedial 

prefrontal / medial orbitofrontal cortex (vmPFC/mOFC).
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Four macaques chose between pairs of abstract visual stimuli while in the MRI scanner 

(fig.1a, b). On each trial, the two stimuli available for choice (available options) were drawn 

from a set of three, each associated with distinct reward probabilities (fig.1a). The rewards 

were delivered probabilistically in a manner that fluctuated across the session, with two of 

the options reversing towards the middle of a session (fig.1c). Each stimulus’ reward 

probability was uncorrelated from that of the others (<22% mean shared variance). On each 

trial one of the two available options was chosen by the monkey, the other was unchosen, 

and a third option was invisible and unavailable for choice. Both the unchosen option and 

the unavailable option can be considered counterfactual choices – although these choices 

were not made on the current trial, they might be made on a future occasion.

Behavioral analyses demonstrated that animals maintained representations of counterfactual 

choice values to guide future behavior on subsequent trials. We therefore used fMRI to test 

whether neural activity reflected counterfactual choice values according to one of several 

possible schemes. FMRI allowed us to search for activity related to counterfactual choice 

value throughout the brain. First, neural activity might represent the value of the unavailable 

option (Hypothesis 1, fig.1e). Alternatively, it might reflect the value of any counterfactual 

option – options that are currently unavailable for choosing, and options that are available on 

the current trial but which are unchosen. In such a scheme, it may not be important whether 

a counterfactual choice is unavailable or unchosen, however, if such a representation is to 

guide future behavior, then it should reflect the ranked values of the alternative options 

(Hypothesis 2, fig.1f). We also compared this with a third scheme in which an unavailable 

option’s value had no influence on neural activity (Hypothesis 3, fig.1g). Notably such a 

coding scheme corresponds to the claim that ACC activity simply reflects decision 

difficulty8,15. According to this view, it is the difference in value between the choices 

available that determines decision difficulty (when the difference is large it is easy to 

identify the better choice but this is not the case when the difference is small). However, 

according to this view, an option not actually available does not affect difficulty of the 

current decision and therefore does not influence ACC.

In our animal model it was possible to investigate not just correlation between neural activity 

and behavior but the activity’s causal importance for behavior16. We used transcranial 

focused ultrasound stimulation (TUS). Like transcranial magnetic stimulation (TMS), TUS 

can alter neural activity17 but unlike TMS, it can even do so in relatively deep structures 

such as ACC18. The TUS 250 kHz ultrasound stimulation was concentrated in a cigar-

shaped focal spot several centimeters below the focusing cone. A series of five experiments, 

each conducted in three macaques, has demonstrated that this protocol transiently, 

reversibly, reproducibly, and focally alters neural activity17,18. A similar TUS protocol 

altered saccade planning in macaques when applied to the frontal eye fields but not to a 

location 10-12mm distant19. Importantly the minimally invasive nature of the stimulation 

made it possible to examine not just a region of interest such as ACC but also a control 

region in the same animals and to do so without MRI incompatible implants. In the current 

study, consistent with our ranked counterfactual hypothesis (Hypothesis 2), ACC TUS 

impaired translation of counterfactual choice values into actual behavioral change.
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Results

Animals learned option values and maintained them in memory without forgetting

To behave adaptively in this task, animals should estimate each option’s reward probability 

and maintain these estimates in memory. If there are three options (A, B, C) then animals 

should retain what they have learned about option C even if subsequent trials involved 

presentation of only options A and B. The representations of C’s value should then guide 

future decisions when C becomes available again. We therefore modeled animals’ choices 

using a reinforcement learner20,21 and tested whether the unavailable option’s estimated 

reward probability (which in our experiment determines expected value) either decayed over 

time and/or became distorted to account for risk preference22,23. After simulating behavior 

with several reinforcement learning models (Methods and Supplementary fig.1), Bayesian 

model comparison revealed that monkeys did not forget unavailable option values nor 

distorted probability. Thus, animals learned the options’ values and maintained them in 

memory without forgetting even when options were not available on a given trial.

To confirm the relationship between the better model’s predictions and behavior, we 

compared choice probabilities predicted by the Maintain model and the actual recorded 

frequencies of animals’ responses and found that the model matched behavior well (fig.1d; 

Pearson R2=0.92). Having established the goodness of fit of the Maintain model to behavior, 

all further analyses were conducted using the expected values estimated with this model. To 

predict behavior as in humans and artificial decision making networks24, estimates for the 

two available options were categorized as “high value” (HV) and “low value” (LV) and 

accuracy was categorically defined as HV selection. With these estimates, we found that the 

difference in value between the two available options (sometimes called “difficulty” as 

depicted in fig.1g) as well as the total value of available options were reliable predictors of 

animals’ choice accuracy (value difference: Cohen’s d=1.42; t24=7.12, P=2.3x10-7; total 

value: Cohen’s d=0.82; t24=4.10, P=4.04x10-4) and reaction times (value difference: 

Cohen’s d=-0.74; t24=-3.68, P=0.001; total value: Cohen’s d=-1.11; t24=-5.54, P=1.07x10-5; 

fig.1d).

Value associations of counterfactual options guide future choices

To guide future behavior, it is essential to retain counterfactual choice values in case these 

choices become available again in the future. There are at least two different ways that 

animals can maintain counterfactual information for future use. The first way is to consider 

which choices are available and which are not on each trial (Hypothesis 1; fig.1e)25 and thus 

to categorize the options as “chosen”, “unchosen” and “unavailable”. A second way to 

describe the options (Hypothesis 2; fig.1f) is to think of both the unchosen and the 

unavailable options as alternative courses of action constituting the counterfactual choices – 

potential choices that were not, or could not, be taken on the current trial but which might be 

taken in the future. Animals might rank the expected value associated with the 

counterfactual options. Therefore, we characterized them as the “better” and “worse” 

counterfactual options irrespective of their availability. Finally we can test the hypothesis 

that animals only represent the difficulty of the current decision (Hypothesis 3; fig.1g)15,26.
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In line with the first hypothesis, we performed a logistic regression assessing whether the 

unavailable option’s expected value influenced its future selection when it next reappeared 

on the screen. Decisions to select the previously unavailable option were strongly related to 

its expected value (One sample t-test on regression coefficients: Cohen’s d=1.59; t24=7.95, 

P=3.5x10-8; fig.2a). A complementary analysis confirmed these results and showed that 

accuracy of the future choice was influenced by the currently unavailable option, particularly 

when its most recent expected value was the best of the three options (Cohen’s d=1.06; 

t24=5.32, P=1.87x10-5; fig.2b) beyond the effect of the current Chosen and Unchosen 

options (Chosen: Cohen’s d=0.98; P=5.04x10-5; Unchosen: Cohen’s d=-0.87; P=2.92x10-5).

In line with the second hypothesis, we performed a series of analyses similar to those 

described above but replacing value estimates for the unavailable option by estimates for 

better and worse alternative choices. These analyses revealed animals’ decisions to switch to 

the better counterfactual choice were influenced by its expected value (Cohen’s d=1.23; 

t24=6.16, P=2.32x10-6) but this was not true for the worse counterfactual choice (Cohen’s 

d=-0.09). In summary, the worse counterfactual had less of an influence on the decision to 

switch (fig.2c-d). Overall, the results demonstrate two ways of categorizing the choices 

made in the task: either by classifying them as “available” and “unavailable”, or by 

considering the current chosen option in contrast to better and worse counterfactual choices. 

These frameworks guided analysis of fMRI data (fig.1e-g).

Hippocampal activity predicts successful future choices when the unavailable option 
becomes available again

Having established that animals not only represent choice value information that cannot be 

used on the current trial, but exploit this information on pending trials, the first fMRI-related 

analysis explored the extent to which neural activity reflected the expected value of the 

currently unavailable option (Hypothesis 1; fig.1e left panel). We tested for voxels across the 

whole brain where activity correlated with the trial-by-trial estimates of the unavailable 

option’s expected value, particularly when the future selection was successful. We also 

included the expected value of the chosen and unchosen options as separate terms in the 

GLM (GLM1 in Methods). This analysis revealed one region in which the neural value 

coding of the unavailable option was different for successful future selection compared with 

unsuccessful future selection, surviving multiple correction (Z>3.1, whole-brain cluster-

based correction P<0.001): right hippocampus (peak Cohen’s d=0.72; Z=3.61, Caret-F99 

Atlas (F99): x=16.5, y=-7.5, z=-12). At a lower threshold, we also found its bilateral 

counterpart: left hippocampus (peak Cohen’s d=0.61; Z=3.05, F99 x=-14, y=-9, z=-12.5; 

fig.3a). There was, however, no significant relationship between hippocampal activity and 

the values of the choices that the monkeys were choosing between on the current trial 

(supplementary fig.2).

To illustrate the significant activity in bilateral hippocampal regions, we extracted the time 

course of the neural activation in two regions of interest (ROIs) (Methods, fig.3b left). Note 

that this analysis was performed for illustrative purposes only as the ROIs were formally 

linked to the comparison between correct and incorrect future selection used to establish the 

ROI location27. The activity pattern represented in this analysis is noteworthy as it shows 
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that the blood oxygenation level dependent (BOLD) signal in hippocampus is scaled by the 

expected value associated with the unavailable options only when the currently unavailable 

option is going to be chosen correctly on a future trial.

The hippocampus’ role in maintaining information about currently unavailable choices may 

also encompass the prospect of rejecting the currently unavailable option if it is likely to be 

worse than the others28. To demonstrate this, we repeated the analysis in the trials preceding 

those in which the animal decided not to select a currently unavailable option. Critically, this 

analysis also revealed a greater BOLD signal for the value of the unavailable option on the 

current trial when this option was correctly rejected in the future compared to when it was 

incorrectly rejected (Leave-one-out peak selection: right Hippocampus: Cohen’s d=0.59; 

t24=2.96, P=0.006; left Hippocampus: Cohen’s d=0.44; t24=2.19, P=0.03; fig.3b right). In 

summary, hippocampal activity is scaled by the currently unavailable option’s value more 

strongly (e.g. there is a stronger memory trace) when the next decision involving that option 

is going to be made correctly regardless of whether it is going to be chosen correctly 

(because it is highest in value) or rejected correctly (because it is lowest in value) in the 

future.

Finally, having established that hippocampal activity is related to memory of unavailable 

options we hypothesized that variation in such activity (at trial t) across sessions might 

predict variation in influence of the unavailable option’s value on future accurate switching 

behavior (at t+1) (fig.2b). We found a significant correlation in the case of future decisions 

in which the unavailable option became accessible (Pearson R=0.43, P=0.03) but no 

correlation for the current decision while the unavailable option remained inaccessible 

(Pearson R=0.01; fig.3c). This result again suggests that the hippocampus is involved in 

future planning but not current, on-going decision making.

ACC ranks counterfactual options according to their expected value

The previous analysis was predicated on the idea that the brain maintains information in 

memory pertaining to currently unavailable choices while encoding what is relevant for the 

current decision elsewhere in the brain. Therefore, we next sought brain regions encoding 

the key decision variable – how much better is the currently chosen available option 

compared to the currently rejected available option. We searched for activity parametrically 

encoding the difference in value between the currently chosen and unchosen options 

(GLM2: chosen vs. unchosen expected values). Such a neural pattern, when locked to 

decision time, is sometimes referred to as a choice or value comparison signal. We found 

strong bilateral activations in a distributed network including ACC (peak Cohen’s d=-0.75; 

Z=-3.75, F99 x=1, y=20.5, z=10.5), lPFC (right peak: Cohen’s d=-0.92; Z=-4.61, F99 

x=14.5, y=17.5, z=9.5; left peak: Cohen’s d=-0.86; Z=-4.29, F99 x=-15, y=16, z=9.5) and 

ventromedial prefrontal cortex and adjacent medial orbitofrontal cortex (vmPFC/mOFC; 

peak Cohen’s d=-0.80; Z=-4.01, F99 x=-5, y=14, z=2) encoding the (negative) difference in 

expected value between the chosen and unchosen options (fig.4a; |Z|>3.1, whole brain 

cluster-based correction P<0.001). In other words, activity in these areas increased as 

decisions became harder (e.g., because the subjective value of the chosen option became 

lower or the subjective value of the unchosen option became higher or both).
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To first illustrate the relationship between option values and lPFC and ACC activity, we 

extracted BOLD time courses (using a leave-one-out cross-validation approach to avoid 

circularity of analyses) from ROIs over each region and performed further analyses 

(Methods). For each region, we found activity related to the difference between chosen and 

unchosen values was mainly driven by the negative relationship of the BOLD signal with the 

expected value of the chosen option (all |Z|>3.1 for the Chosen regressor); there was no 

significant activity for the Unchosen option. Importantly, the analysis contained an extra 

regressor representing the unavailable option’s value, which also had no significant effect in 

ACC and lPFC. Importantly, the negative relationship between the ACC BOLD signal and 

the value of the chosen option may reflect the opportunity cost of switching away from the 

current choice.

Following this idea, in a second step, we tested whether the ACC might represent the 

possible alternatives that the animal might switch to in the future (Hypothesis 2). In this 

scheme, the two options not selected on the current trial, the unchosen option and the 

unavailable option, could both be considered counterfactual options that might be taken in 

the future and which could be ranked according to their expected value (GLM3: better vs. 

worse alternatives model, as per behavioral analyses). Using Bayesian statistics for each 

region within the same network (see Methods), we found that the activity pattern 

representing better and worse alternatives provided a significantly better account of neural 

activity in both ACC and lPFC compared to either the subjective choice comparison model 

(GLM2) or a third model (GLM4) that does not represent alternative options but rather the 

difficulty of selecting the current response (Hypothesis 3 in fig.1g) with φs>0.95 (fig.4b; see 

supplementary fig.3 and methods for full Bayesian Model Comparison29). Thus while ACC 

does not code for the value of the unchosen and unavailable options individually, it 

maintains a value of the best current alternative, and this effect is only visible in the data 

when the reference frame is altered from focusing on unchosen/unavailable to best 

alternative. One interpretation of the activity pattern is that it forecasts choosing the better of 

the counterfactual options during future decisions.

We directly tested this hypothesis using multiple regressions to investigate whether the 

activity in lPFC or ACC would predict upcoming switching behavior. For each ROI, we 

employed four regressors time-locked to the stimulus period of trial t, including i) the 

expected value of the better alternative if the future trial is a switch to that option; ii) the 

expected value of the better alternative if the future trial is a stay (i.e. repetition of the same 

choice as on current trial); iii) the expected value of the worse alternative if the future trial is 

a switch to that option; iv) the expected value of the worse alternative if the future trial is a 

stay. ACC activity predicted upcoming decisions to switch to the better and avoid the worse 

counterfactual (fig.4c; leave-one-out procedures for peak selection: post-hoc one sample t-

tests: Best: Cohen’s d=0.48; t24=2.41; P=0.02, Worst: Cohen’s d=-0.59; t24=-2.94, P=0.007) 

but this was not true in lPFC (all Cohen’s d<0.23, Ps>0.02). Such a pattern is consistent with 

a role for ACC in evaluating future strategies before execution3,30–32. By contrast, macaque 

anterior lPFC holds estimates of counterfactual choice values that are less immediately 

linked to behavior. Similarly, human frontal polar cortex activity reflects the values of 

alternative choice strategies in a manner that is also less immediately linked to behavior26.
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It has been suggested that ACC activity simply reflects decision difficulty8,15 (fig.1g). When 

one option’s value is much higher than the other option’s, the decision is easy. But when the 

values of the two options are similar, the decision is difficult because it is hard to reject an 

alternative that is close in value. Our neural model comparison rejected this hypothesis 

(Supplementary fig.3c). Another possible index of decision difficulty is the reaction time 

(RT). We controlled for this in all our analyses by parametrically modulating the duration of 

the boxcar regressor locked at time of the decision by RT (regressor DEC in GLMs1, 2, 3, 

and 4).

ACC disruption impairs translation of counterfactual choice values into actual behavioral 
change

To test whether counterfactual choice value representations in ACC were causally important 

for effective behavioral switching, TUS was applied to the same ACC region. We previously 

demonstrated, using resting state fMRI (rs-fMRI) data that 40s sonification at 250 kHz 

reaches ACC and does so in a relatively focal manner having less effect on adjacent, even 

overlying, brain areas18. Here we provide an additional demonstration that ACC TUS 

increases activity correlation within the stimulated region but reduces correlation between 

the stimulated region and other regions (fig. 5a). Rs-fMRI scans were collected for two 

healthy animals (rs-fMRI from the two animals were acquired under no stimulation; rs-fMRI 

from one animal was acquired post ACC-TUS). As in previous investigations, the effects are 

specific to the stimulated area (fig. 5b). In two of the four macaques, the same stimulation 

was applied to ACC using MRI-guided frameless stereotaxy19,33 immediately prior to nine 

testing sessions that were interleaved, across days, with nine control sessions in which no 

TUS was applied (fig.5a; Supplementary fig.4; Methods). We used a similar experimental 

design as in all previous fMRI sessions. There were clear differences in choice patterns 

between the ACC TUS and control conditions (fig.5c). For example, option 1 was often the 

best choice to take for most of the first part of the task (inset in fig.5c shows that this was the 

case for approximately the first 120 trials of the task). The frequency with which option 1 

was chosen during this period was, however, reduced after TUS (Cohen’s d=0.66; t34=1.92; 

p=0.06). However, closer analysis revealed that option 1 was not always chosen less 

frequently after TUS. For example, the rate of choosing option 1 was unaffected on trials 

that followed those on which option 1 had previously been chosen (Cohen’s d=0.36). The 

rate of choosing option 1 was, however, significantly reduced on trials that followed those on 

which it had previously been a counterfactual option – on trials on which it had previously 

been unavailable (Cohen’s d=0.67; t34=1.97; p=0.05, see fig.5d).

One possibility is that decisions are made differently after ACC TUS when they are difficult. 

Such a pattern of impairment would be expected by accounts of ACC function emphasizing 

monitoring the difficulty or conflict involved in action selection8,15. According to such 

accounts, decisions are difficult if the values of the options are similar. We therefore 

examined accuracy as a function of the difference in value between the best and worse 

available options (HV and LV), defined as the objective values (reward probability over the 

last ten trials). While once again we found evidence for a difference in ACC TUS versus 

control performance (Cohen’s d=0.53; t17=2.31, P=0.033) there was no evidence that TUS-

induced impairment increased as difficulty increased (fig.5e; left hand side; see 
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supplementary fig.5d for analysis of accuracy using RL estimates); instead, if anything, the 

opposite was the case. In this respect the pattern of impairment is distinct to that seen after 

vmPFC/mOFC lesions when decision making is more impaired when decisions are 

difficult34.

The fMRI analyses suggested ACC activity encodes the better counterfactual alternative but 

not the worse counterfactual alternative (fig.2f; 4b). Therefore, we examined whether ACC 

TUS diminished the influence of counterfactual options in general or diminished the 

influence of the better counterfactual option on behavior. We regressed the frequency with 

which monkeys switched, on one trial, onto the values of choices that, on a previous trial, 

had been counterfactual alternatives (fig.5d). As in previous analyses, without TUS, the 

value of the better counterfactual option significantly influenced the frequency with which 

monkeys subsequently switched to it (Cohen’s d=1.57; t17=6.7; P=3.62x10-6) but this was 

not the case for the worse counterfactual option (Cohen’s d=0.24, t17=1.03, P=0.3). This 

was, however, not true for the TUS condition. When comparing control with TUS data, 

linear mixed-effect analysis revealed a significant difference between the effect of TUS and 

the influence of the best counterfactual values on switching (Cohen’s d=0.70, t34=2.05, 

P=0.04). The significant difference between the influence of the better and worse 

counterfactual option value on future switching behavior that was present in the baseline 

condition (post hoc test: Cohen’s d=0.79; t17=3.39; P=0.003) was abolished (Cohen’s 

d=0.24; t17=1.05; P=0.3) after ACC TUS (fig.5f).

We further hypothesized that this behavioral change would impact the monkeys’ search 

strategies7 and reduce the influence of entropy (the unpredictability of the environment; see 

Methods for computational definition of entropy) on their exploratory behavior35. In a 

running window analysis, we used the slope of entropy to predict the slope of cumulative 

stay choices (i.e. successive choices of the same option)36. As lower entropy favors 

exploiting knowledge to maximize gains and higher entropy favors exploring new options 

and discovering new outcomes, we expect to see a negative relationship between entropy and 

the frequency of stay choices. In the control condition, we found such a relationship 

(Cohen’s d=-1.20; t28=-6.59; P=3.77x10-7) but this was not the case after ACC TUS 

(Cohen’s d=0.04; t28=0.22; P=0.82) (fig.5g). Note that, while local entropy and cumulative 

stay are negatively related to value difference (TUS-ACC: Cohen’s d=-0.67; t28=-3.65, 

P=0.001; SHAM-ACC: Cohen’s d=-0.90; t28=-4.95, P=3.17x10-5 supplementary fig.5a&b), 

we did not find any difference in the nature of the relationship between SHAM and TUS 

conditions (local entropy and value difference: Cohen’s d=-0.03; t34=-0.11, P=0.91; 

cumulative stay and value difference: Cohen’s d=-0.28; t34=0.83, P=0.41).

In a final TUS experiment, to control for the anatomical specificity of the observed effects, 

we examined the effect of TUS to lateral orbitofrontal cortex (lOFC) in four macaques, a 

brain region also associated with distinct aspects of reward-guided learning and decision 

making37,38 (Methods). LOFC-TUS, however, had no impact on the way in which 

counterfactual choice value was translated into subsequent actual behavioral switching 

(supplementary fig.6). There was no difference for the effect of the best counterfactual on 

switching behaviours between the TUS-lOFC and SHAM-lOFC (Cohen’s d=0.19; t19=0.58, 

P=0.56; similarly if we only apply the test to the same two animals that had been examined 
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in the TUS-ACC experiment: Cohen’s d=0.21; t9=0.46, P=0.66). Further direct comparisons 

between TUS-lOFC and TUS-ACC showing significant differences between the two types of 

TUS are reported in supplementary figure 6. Additionally, there was no difference between 

the strength of the relationship between entropy and cumulative stay in TUS-lOFC and 

SHAM-lOFC condition (Cohen’s d=0.32; t19=0.99, P=0.33).

The unavailable option value affects the current value comparison via vmPFC/mOFC

One other area, vmPFC/mOFC, also carried a choice value comparison signal (fig.4a and 

fig.6b). This pattern of decision-related fMRI activity in vmPFC/mOFC has been reported 

previously in macaques38. Given vmPFC/mOFC’s importance for many aspects of decision 

making34,38, it is noteworthy that unlike ACC, vmPFC/mOFC activity reflecting better and 

worse counterfactual values did not predict behavioral switches on future trials (as per 

results presented in fig4c). Instead, vmPFC/mOFC is concerned with the decision being 

taken now rather than in the future. In the following analyses, however, we tested whether 

the value of the unavailable option was associated with any other impact on vmPFC/mOFC.

We first assessed whether the unavailable option’s value was associated with any variation in 

monkeys’ choices between available options. We computed accuracy (HV selection) and 

used a logistic regression to predict this categorical variable as a function of the unavailable 

option’s value (including HV and LV in the model). Our results show that the higher the 

value of the unavailable option, the better animals were at discriminating between the two 

available options (Cohen’s d=0.76; t24=3.79; P=0.0005; similar results were obtain using a 

mixed-effect logistic regression model including sessions and animals as random effects 

using the lmer4 package in the R environment: χ 2 (1)=25.78; P<0.001). To illustrate this 

effect, we represented frequency of choosing an option (for example the Right option) as a 

function of the value difference between the two available options (Right-Left option values) 

for two different levels of the unavailable option values (high vs. low; median split). 

Importantly, although the unavailable option can never be chosen, its value is associated with 

a change in the efficiency of choice behavior (fig.6a; Cohen’s d=-0.53; t24=-2.66, P=0.01; 

see supplementary fig.7 for individual animal details), relative choice curves were steeper 

when the unavailable option had high versus low values.

To examine vmPFC/mOFC activity, we used a literature-based ROI selection (in area 

11m/11; fig.5b, left). We focused on activity reflecting the value difference guiding 

decisions between available options (chosen value–unchosen value) and binned it according 

to the value of the unavailable option (low: 0-33%; middle: 33-66%; high: 66-100% 

percentiles of unavailable option value). The vmPFC/mOFC response to the chosen value–

unchosen value difference was modulated by the currently unavailable option’s value (linear 

mixed-effect analysis: Cohen’s d=-1.15; t10=-4.01, P=0.002; fig.6b, right panel), in exactly 

the same way as behavior. Normally vmPFC/mOFC activity reflects the value of the chosen 

option with a negative sign (fig.4b and fig.6d); as the chosen option’s value falls and 

choosing it becomes more difficult, there is more activity in vmPFC/mOFC. This negative 

signal was diminished when the unavailable option value was very low and decisions 

between available options were less accurate. In summary, low (high) value unavailable 

options were associated with weaker (stronger) vmPFC/mOFC value comparison signals and 
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weaker (stronger) current decision accuracy. Importantly, the same analysis in the ACC and 

lPFC (both hemispheres) shows that the other areas behave differently and did not represent 

such modulation of value comparison by the unavailable option (all Ps>0.25).

To further test the strength of the link between the contextual factor’s impact on the current 

decision and its neural impact in vmPFC/mOFC we exploited variability in the behavioral 

effect across sessions. We hypothesized that variation across sessions in the size of the 

contextual influence on vmPFC/mOFC would be related to variation in behavioral accuracy. 

To test this hypothesis, we first performed a partial regression analysis to reveal the 

uncontaminated effect of the contextual effect associated with the unavailable option’s value 

on accuracy after controlling for the effects of the available options’ values (Cohen’s 

d=0.56; t24=2.84, P=0.008; see fig.6c). Separately, we extracted the contextual effect 

associated with the unavailable option’s value-related signal change across sessions (time 

course analysis performed with the GLM2, see fig.6d for illustration of the chosen and 

unavailable options). Sessions with a greater contextual impact on the value-related signal in 

the vmPFC/mOFC also exhibited a higher contextual impact on accuracy in the current trial 

(Pearson R=0.58, P=0.002, see fig.6e).

Discussion

Decision making is not only guided by accumulation of sensory evidence in favor of one 

choice over another but also by the values associated with choices that are currently 

unavailable but stored in memory2. It is both essential and a burden to store currently 

unavailable choice values when other choices are actually being taken at the current point in 

time. On the one hand, it is essential to retain unavailable choice values to guide future 
behavior; choices that are currently unavailable may be taken in the future if they become 

available again, if the value of the choice currently taken diminishes, if the current choice is 

no longer available, or if the value of the unavailable choice exceeds that of other 

alternatives offered in the future. On the other hand, holding information about unavailable 

choice values is a burden because it distracts from the current choice to be taken. Our results 

demonstrate that the value of a currently unavailable option is represented in the 

hippocampus (fig.3) where it is isolated from the values of the choices immediately 

available; currently available choice options have little effect on hippocampal activity 

(Supplementary fig.2). In accordance with several previous studies from our 

laboratory7,24,34,39 and others40,41 an area in mOFC/vmPFC is important for comparing the 

values of potential choices during the decision process. If, however, information about the 

currently unavailable option (or potentially some other factor that is correlated with the 

unavailable option’s value but which is equally irrelevant to current performance) impacts on 

mOFC/vmPFC (fig.6) then this distracts animals from the current choice to be taken. By 

contrast translating the currently unavailable choice’s value into a counterfactual plan that 

can be executed in the future depends on ACC (figure 4c). In line with this account ACC 

TUS disrupts the influence that counterfactual choice values have on behavioral switching 

(fig.5f) but it does not impact on the disruptive effect associated with an unavailable option’s 

value on the current choice that is being made (supplementary fig.7). More broadly our 

results are in accordance with a view that decision making is not accomplished by any single 

area in isolation but by multiple areas such as mOFC/vmPFC and ACC on the basis of 
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different criteria42,43. ACC is especially concerned with signaling the value of behavioral 

change and alternative courses of action7,44,45.

Like ACC, lPFC held counterfactual choice values. In this respect, lPFC activity resembles 

that seen in or near human FPl3–6,11,12. The cytoarchitecture of the macaque lPFC region 

studied here is not homologous with human FPl cytoarchitecture46. There are therefore two 

ways in which the current findings might be related to previous findings in humans. First, 

the encoding of counterfactual choice values in humans may have been incorrectly attributed 

to FPl and ought to be attributed to a specialized part of area 46 located in anterior prefrontal 

cortex that is distinct to more posterior regions 9/46v and 9/46d47. Alternatively, FPl may be 

a comparatively new and specialized region in humans. While we know that human FPl and 

FPm share cytoarchitectonic features it is possible that some of the circuit level interactions 

and functions of macaque 46 are associated with FPl in humans11. When species diverge 

over the course of evolution, what was originally a single area may become duplicated in 

one species but not another and connections previously associated with another area may 

become associated with the new area48.

Notably, while lPFC held counterfactual choice values in a relatively straightforward manner 

that was unaffected by the likelihood that they would influence a change in behavior, this 

was not the case in ACC (fig.4). By contrast, both fMRI and TUS results suggest ACC is 

concerned with the translation of counterfactual information into a change of behavior.

ACC and lPFC have both been linked to the use of counterfactual information in macaques 

in previous neurophysiological recording studies13,14. One advantage of the approach taken 

in the present study is that we were able to record activity from both regions simultaneously 

and from the hippocampus and vmPFC/mOFC. The previous studies focused on the use of 

counterfactual feedback – after making a choice. By contrast, here we focus on how this 

information is held at the time of decision making while another choice is actually taken. In 

addition, we consider how counterfactual information is held even when a choice is 

temporarily unavailable.

While hippocampus, dlPFC, and ACC hold information about currently unavailable choices 

to guide future behavioral change, other mechanisms associated with vmPFC/mOFC have 

been linked to comparison of the values of specific choice options on the current trial 

(Figure 7). Information about currently unavailable choices is not relevant for such a 

mechanism but if it impinges on it then it distracts from the current choice to be taken. 

Although the presence of high value distracting information can impair decision making via 

a process of divisive normalization of choice values39,49 so can distracting low value choice 

information39. The two effects may depend on the distinct manner in which choices are 

encoded in intraparietal cortex and vmPFC/mOFC respectively and it is possible that they 

may even act to cancel one another in many situations. However, manipulations to augment 

or diminish the influence of one mechanism or another may reveal one type of distracting 

influence more clearly. For example, while low value distractors may disrupt decision 

making via vmPFC/mOFC, in the absence of vmPFC/mOFC, the opposite effect prevails 

and decisions are particularly vulnerable to disruption by high value alternatives34,50.
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Online Methods

Subjects

Four male rhesus monkeys (Macaca mulatta) were involved in the experiment. They 

weighed 10.4–11.9 kg and were 7 years of age. They were group housed and kept on a 12 hr 

light dark cycle, with access to water 12–16 hr on testing days and with free water access on 

non-testing days. All procedures were conducted under licenses from the United Kingdom 

(UK) Home Office in accordance with the UK Animals (Scientific Procedures) Act 1986 

and with the European Union guidelines (EU Directive 2010/63/EU).

Four animals were trained to perform the behavioural task in the MRI scanner. FMRI data 

from all four animals are reported. In a second part of the study we investigated the effect of 

TUS. Because of the positions of the head posts in two animals it was only possible to place 

the TUS cones to target ACC in two animals. It was, however, possible to apply TUS to the 

lateral location appropriate for targeting lOFC in all four animals.

Behavioral Training

Prior to the data acquisition, all animals were trained to work in an MRI compatible chair in 

a sphinx position that was placed inside a custom mock scanner simulating the MRI 

scanning environment. They were trained to use custom-made infra-red touch sensors to 

respond to abstract symbols presented on a screen and learned the probabilistic nature of the 

task until reaching a learning criterion. The animals underwent aseptic surgery to implant an 

MRI compatible head post (Rogue Research, Mtl, CA). After a recovery period of at least 4 

weeks, the animals were trained to perform the task inside the actual MRI scanner under 

head fixation. The imaging data acquisition started once they performed at more than 70% 

accuracy (choosing the option with the highest expected value) for at least another three 

consecutive sessions in the scanner.

Experimental task

Animals had to choose repeatedly between different stimuli that were novel in each testing 

session (fig.1a). We used a probabilistic reward-based learning task inspired from tasks 

originally designed to study reinforcement learning. Choice options were allocated pseudo 

randomly to the right and left side of the screen and monkeys responded with a right or left 

infra-red sensor placed in front of each of their hands. The rewards were delivered 

probabilistically and the probabilities associated with the three options fluctuated during the 

entire session, with the probability of two of the options changing towards the middle of a 

session (fig.1c). Thus, the probability range for option A was [90% to 10%], the probability 

range for option B was [70% to 30%] and the probability range for option C was [10% to 

90%]. Importantly, each day the task contained three choice stimuli, but only two of them 

were choosable on each trial (fig.1b). This manipulation alters the learning and decision task 

in two major ways. First, the subjects have to maintain in memory the value of the option 

that is not directly available. Second, it creates a horizon of choices that is not deterministic, 

as the animal cannot predict what option will be presented next. After making their decision, 

if an option selected led to a reward (as per the reward contingencies associated with each 

option), the unselected option disappeared and the chosen option remained on the screen and 

Fouragnan et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2021 February 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



a juice reward was delivered. If an option selected led to no-reward, no juice was delivered. 

The outcome phase lasted 1.5 seconds. Each reward was composed of two 0.6 ml drops of 

blackcurrant juice delivered by a spout placed near the animal’s mouth during scanning. 

Each animal performed up to 200 trials per session. Each animal performed five to seven 

sessions in the MRI scanner. No statistical methods were used to pre-determine sample sizes 

but our sample sizes are similar to those reported in previous publications51. The experiment 

was controlled by Presentation software (Neurobehavioral Systems Inc., Albany, CA).

Because very slow response trials may have been subject to interference in the choice 

selection process they were excluded from the fMRI analysis of choice selection (which was 

time-locked to the onset of stimulus presentation) or in the other behavioral analyses linked 

to these: trials with reaction times (RTs) more than 3 standard deviations from the log-

transformed RT median were not included in the fMRI analysis (0.3% of trials were 

excluded in this way).

Reinforcement-learning algorithms

We used four reinforcement-learning algorithms (Maintain model, Decay model, Maintain 

model with distortion and the Decay model with distortion) to estimate trial-by-trial 

expected values associated with each option using animals’ responses52. For all models, if 

stimulus A was selected on trial i, its value was updated via a prediction error, δ, as follows: 

vA(i + 1) = vA(i) + α.δ(i) where α is the learning rate and the prediction error was given by 

δ(i) = r(i) – vA(i). The values of the unselected stimulus (e.g. B) were not updated. The two 

first models differ in their assumptions of the stimulus that was not shown on that trial (e.g. 

C). In the Maintain model, the values of C were maintained at their current values such that 

vc(i + 1) = vc(i). In the Decay model, the values of C were updated as followed: vc(i + 1) = 

vc(i) + γ.(vc(1) – vc(i)). The third and fourth model assumed that subjective value can be 

distorted by risk preference. Please note, however, that while probability distortion might 

make a reward probability appear higher or lower than it might otherwise be, it cannot lead 

to re-ordering of option values, as it is a strictly monotonic function. For these 

models23,53,54, we fitted an additional free parameter η using the following equation:

wA vA =
vA

η

vA
η + 1 − vA η , with 0 < V < 1

To generate choices for both models, we first used a softmax procedure in which, on every 

trial, the probability of choosing stimulus A was given by: PA(i) = σ(β(vA(i) – vB(i))) or 

PA(i) = σ(β(wA(i) – wB(i))) for the distortion models where σ(z) = 1/(1 + e –z) is the logistic 

function, and β the degree of stochasticity in making the decision. The model choice 

probabilities were then fitted against the discrete behavioral choices to estimate the free 

parameters (α, β, γ, η).

Model fitting

To estimate the free parameters (α, β, γ, η), we used a maximum likelihood estimation and 

a constrained non-linear optimization procedure (as implemented in fmincon in MATLAB) 
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separately for each session. The associated likelihood function was given by: logL = 
∑BAlogPA + ∑BBlogPB

NA + NB
 where NA and NB denote, the number of trials in which stimulus A 

and B were chosen, and BA (BB) equals 1 if A (B) was chosen on that trial, and 0 otherwise. 

We fitted this function similarly for the other two stimulus combinations (AC and BC) and 

found the optimal parameters by minimizing the sum of the three negative log-likelihoods.

Statistical analyses

For most analyses, we ran multiple linear or logistic regressions using Matlab (glmfit, 

robustfit). For logistic functions, we used a logit link with categorical predictors. All 

regressors were normalized (as in all fMRI regression analyses) in order to ensure between-

model, between-session and between-modulator commensurability of the regression 

coefficients. For each session, we obtained one β regression weight for each regressor. These 

were then tested for statistical significance across all participants using either ANOVAs or t-

tests. When assumptions about statistical tests were violated (data normality was tested by 

visually inspecting the residuals from the regressions), we transformed the data using a 

square root transform. All data were shown as mean with standard error of mean (mean ± 

SEM). Probabilities of P < 0.05 were considered as significant.

Reinforcement learning simulation

To characterize the effect of delay and probability distortion over the maintain model 

assumptions, we generated for each trial t the probability of choosing the best option 

according to the models, given the animals’ history of choices and outcomes at trial t−1 and 

the individual best-fitting free parameters. We submitted all model-simulated choice 

probabilities to the same statistical analyses described below. In a first analysis (left panel in 

Fig S1c), we were interested in investigating whether the different models made distinct 

predictions as a function of the elapsed time since the unavailable option was last seen. To 

do so, we used both simulated and real choice data to compare switches to the unavailable 

option when the latter had been unavailable for 1, 2 or 3 consecutive trials. (Please note that 

the variance is significantly different in the three bins as the number of times that an option 

is the same for three consecutive trials is very limited (bin1: mean = 150; bin2: mean = 36, 

bin3: mean = 5). Secondly (right panel in Fig S1c), given the same model simulations, we 

investigated choice patterns before and after reversal. For this analysis, we looked at the 

choice frequency for each option before and after the 120th trial. Third (Fig S1d), the last 

feature of the data characterizing the task is the influence of valence (win/loss) on switch/

stay pattern. We thus compare the frequency of switch behavior after a win/loss.

Imaging Data Acquisition

Awake-animals were head-fixed in a sphinx position in an MRI-compatible chair. We 

collected fMRI using a 3T MRI scanner and a four-channel phased array receive coil in 

conjunction with a radial transmission coil (Windmiller Kolster Scientific Fresno, CA). 

FMRI data were acquired using a gradient-echo T2* echo planar imaging (EPI) sequence 

with 1.5 × 1.5 × 1.5 mm3 resolution, repetition time (TR) = 2.28 s, Echo Time (TE) = 30 ms, 

flip angle = 90, and reference images for artifact corrections were also collected. Proton-

density-weighted images using a gradient-refocused echo (GRE) sequence (TR = 10 ms, TE 
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= 2.52 ms, flip angle = 25) were acquired as reference for body motion artifact correction. 

T1-weighted MP-RAGE images (0.5 × 0.5 × 0.5 mm3 resolution, TR = 2,5 ms, TE = 4.01 

ms) were acquired in separate anesthetized scanning sessions.

fMRI data preprocessing

FMRI data were corrected for body motion artefacts by an offline-SENSE reconstruction 

method55 (Offline_SENSE GUI, Windmiller Kolster Scientific, Fresno, CA). The images 

were aligned to an EPI reference image slice-by-slice to account for body motion and then 

aligned to each animal’s structural volume to account for static field distortion56 (Align_EPI 

GUI and Align_Anatomy GUI, Windmiller Kolster Scientific, Fresno, CA). The aligned data 

were processed with high-pass temporal filtering (3-dB cutoff of 100s) and Gaussian spatial 

smoothing (full-width half maximum of 3mm). The data that were already registered to each 

subject’s structural space were then registered to the CARET macaque F99 template57 using 

affine transformation.

fMRI data analysis

We employed a univariate approach within the general linear model (GLM) framework to 

perform whole-brain statistical analyses of functional data as implemented in the FMRIB 

Software Library58,59: Y = Xβ + ε = β 1 X 1 + β 2 X 2 +… + β N X N + ε where Y is a T×1 

(T time samples) column vector containing the times series data for a given voxel, and X is a 

T × N (N regressors) design matrix with columns representing each of the psychological 

regressors convolved with a hemodynamic response function specific for monkey 

brains60,61. β is a N × 1 column vector of regression coefficients and ε a T × 1 column 

vector of residual error terms. Using this framework we initially performed a first-level fixed 

effects analysis to process each individual experimental run which were then combined in a 

second-level mixed-effects analysis (FLAME 1 + 2) treating session as a random effects. For 

all analysis, we performed a cluster inference using a cluster-defining threshold of |Z| > 3.1 

with a FWE-corrected threshold of P = 0.001. Time series statistical analysis was carried out 

using FMRIB’s improved linear model with local autocorrelation correction. Applying this 

framework, we performed the GLMs highlighted below.

GLM1 – correct vs. incorrect future selection of the currently unavailable option

Our first fMRI analysis was designed to reveal the brain regions representing the value of the 

currently unavailable option to guide accurate future decision making. Specifically, locked to 

the decision time, we included a first boxcar regressor parametrically modulated by reaction 

times (RTs) to account for difficulty effects, as well as 2 boxcar regressors with a duration of 

100 ms that were then convolved with the hemodynamic response function: 1) an modulated 

regressor indexing the occurrence of a decision (Dec; all event amplitudes set to one and the 

duration set to the RT for that trial), 2-3) two parametric regressors whose event amplitudes 

were modulated by the expected value of the unavailable option for i) future correct 

selection (unavcorr) and ii) future incorrect selection (unavincorr). Additionally, we included 

two fully parametric regressors whose event amplitudes were modulated by the expected 

value of the chosen (Ch) and unchosen (Unch) options that were available on the current 

trial. Locked to feedback time we included a binary regressor representing positive and 

negative feedback (+1/-1) and a categorical regressor representing right and left responses 
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(+1/-1), such as: Y = β 1 Dec + β 2 unavcor + β 3 unavincor + β 4 Ch + β 5 Unch + β 6 Fbk + 

β 7 Side + ε. Finally, to further reduce variance and noise in the BOLD signal, we add two 

unconvolved regressors locked at time of feedback and with a duration of a TR (2.28sec) for 

left and right responses (to capture variance in the BOLD signal caused by any field 

distortion coincident with responding), six nuisance regressors one for each of the motion 

parameters (three rotations and three translations), and extra single-trial nuisance covariates 

for abrupt changes in the BOLD signal.

GLM2 – Subjective choice comparison (Chosen option value vs. Unchosen option value)

Our second fMRI analysis was designed to reveal the brain regions representing the decision 

variable guiding choices between the options actually available on the current trial (Chosen 

option value-Unchosen option value). Locked to decision time, we included a first boxcar 

regressors parametrically modulated by RTs (to account for difficulty effects), as well as 3 

boxcar regressors with a duration of 100 ms that were then convolved with the 

hemodynamic response function: 1) an modulated regressor indexing the occurrence of a 

decision (Dec; all event amplitudes set to one and the duration set to the RT for that trial), 

2-4) three fully parametric regressors whose event amplitudes were modulated by the 

expected value of the chosen option (Ch), unchosen option (Unch) and unavailable option 

(Unav) and the same covariates of non-interest as described in GLM1: Y = β 1 Dec + β 2 Ch 
+ β 3 Unch + β 4 Unav + β 6 Fbk + β 7 Side + ε. In the third GLM (GLM3: counterfactual 

model), the Unchosen and Unavailable options were replaced by the Better and the Worse 

alternatives, in the fourth GLM (GLM4: difficulty model), the Chosen and Unchosen options 

were replaced by the High Value option and the Low Value option presented and finally, in 

the fifth GLM (GLM5: object identity model), the Chosen, Unchosen and Unavailable 

options were replaced by the values of Option 1, 2 and 3 (see figure 1, supplementary fig.3).

Neural model comparison

To assess goodness of fit at the neural level and avoid double dipping in favor of the 

hypothesis that we wanted to support (GLM3)27, we first defined from GLM2, several ROIs 

within a network including all the brain areas that survived cluster level P < 0.001 (cluster-

based correction) for the value comparison (chosen-unchosen) contrast. Within this network, 

we derived the log-evidence from GLM2, GLM3, GLM4 and GLM5. Log evidence was then 

fed into a Bayesian model selection random effects analysis (using the spm_BMS routine), 

which computed the exceedance probability of each GLM for each ROI. This analysis 

indicates which GLM best explained the neural data. We report the results for ACC, lPFC, 

and vmPFC/mOFC.

ROI analyses

We conducted analyses on ROIs defined as two-voxel radius spherical masks placed over the 

hippocampus (Right: x = 16.5, y = -7.5, z = -12; left: x = -14, y = -9, z = -12.5 CARET 

macaque F99 coordinates), ACC (x = 1, y = 20.5, z = 10.5), lPFC (x = 14.5, y = 17.5, z = 

9.5), vmPFC/mOFC (x = -5, y = 14, z = 2). We used procedures now standardly employed in 

most human and animal neuroimaging studies51,62,63 in which the mean and standard error 

(denoted in all figures by lines and shadings respectively) of all the within-subject b weights 
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were calculated across sessions for plotting the effect size time courses (each animal had a 

similar number of sessions).

Leave one out for ROI spatial peak selection and time-series group peak signal

We used two leave-one-out procedures to avoid circularity in our analyses. The first aimed at 

= identifying ROI peak voxels for the analyses of main effects for areas identified in all 

fMRI analyses. For each group level analyses, our procedure involved leaving one session 

out at a time. From the results of the remaining 24 sessions, we extracted local maxima of 

the relevant clusters and centered the ROIs for the left out session on the local maxima. We 

repeated this for all sessions. Therefore, the ROI selection was statistically independent from 

the data of the session that was subsequently analyzed in the ROI. We also used a leave-one-

out procedure on the group peak signal to avoid potential temporal selection biases. For 

every session, we calculated the time course of the group mean beta weights of the relevant 

regressor based on the remaining 24 sessions. We then identified the (positive or negative) 

group peak of the regressor of interest within the analysis window of 1 to 6 seconds from 

decision onset. Then, we took the beta weight of the remaining subject at the time of the 

group peak. We repeated this for all subjects. Therefore, the resulting 25 “peak” beta 

weights were selected independently from the time course of the subject analyzed. We 

assessed significance using t-tests on the resulting beta weights.

Transcranial Focused Ultrasound Stimulation (TUS)

A single element ultrasound transducer (H115-MR, diameter 64 mm, Sonic Concept, 

Bothell, WA, USA) with a 51.74 mm focal depth was used with a coupling cone filled with 

degassed water and sealed with a latex membrane (Durex). The ultrasound wave frequency 

was set to the 250 kHz resonance frequency and 30 ms bursts of ultrasound were generated 

every 100 ms with a digital function generator (Handyscope HS5, TiePie engineering, 

Sneek, The Netherlands). Overall, the stimulation lasted for 40 s. A 75-Watt amplifier 

(75A250A, Amplifier Research, Souderton, PA) was used to deliver the required power to 

the transducer. A TiePie probe connected to an oscilloscope was used to monitor the voltage 

delivered. The recorded peak-to-peak voltage was constant throughout the stimulation 

session. Voltage values per session ranged from 128 to 136V and corresponded to a peak 

negative pressure of 1.152 to 1.292MP respectively measured in water with an in house 

heterodyne interferometer (see64 for more details about the simulation protocol). Based on a 

mean 66% transmission through the skull65, the estimated peak negative pressures applied 

ranged from 0.76 to 0.85 MPa at the target in the brain.

The transducer was positioned with the help of a Brainsight neuronavigating system (Rogue 

Research, Montreal, CA) so that the focal spot would be centered on the targeted brain 

region, namely the rACC (F99 coordinates x = 1, y = 20.5, z = 10.5) (identified according to 

coordinates of the maximum peak used in GLM2). The ultrasound transducer / coupling 

cone montage was directly positioned to previously shaved skin on which conductive gel 

(SignaGel Electrode; Parker Laboratories Inc.) had been applied. The coupling cone filled 

with water and gel was used to ensure ultrasonic coupling between the transducer and the 

animal’s head.
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A sham TUS condition (SHAM) was also implemented as a non-stimulation control. Sham 

sessions were interleaved with TUS sonication days and completely mirrored a typical 

stimulation session (setting, stimulation procedure, neuro-navigation, targeting of ACC, 

transducer preparation and timing of its application to the shaved skin on the head of the 

animal) except that sonication was not triggered.

To test for the specificity of TUS on the ACC, we collected 20 SHAM-lOFC and 20 TUS-

lOFC (4 animals × 5 sessions) using the same experimental design as the TUS-ACC 

protocol. Two out of the four animals tested were also used in the TUS-ACC protocol. TUS 

and control days were interleaved in one of two pseudorandom orders that were 

counterbalanced across animals in each experiment. For example (T,T, R, S,S, R, T,T,T, R) 

where T, C, and R stand for TUS, sham, and rest days respectively – note a rest day always 

intervened at the point of transition between TUS and sham days. No statistical methods 

were used to pre-determine sample sizes but our sample sizes are similar to those reported in 

previous publications66. Data collection and analysis were not performed blind to the 

conditions of the experiments.

Finally, given that the TUS procedure lasts for 40s and has a relatively sustained impact on 

neural activity, it will be possible in future experiments to examine the impact of ACC 

stimulation while recording activity from the ACC and interconnected areas either with 

fMRI or some other technique. However, if experiments of this type are to be attempted it 

will be possible to conduct them only after initially carrying experiments of the sort that we 

report here; it is necessary to establish the precise location of a neural signal before it can be 

targeted with the spatially focal TUS technique.

Entropy analyses

For the analyses presented in Fig. 5 (behavioral analysis of TUS data), we used a running 

window analysis with entropy defined as: E(i) = ∑i = 1
trialsp xi, j ⋅ log p xi, j , in which xi,j is the 

probability that a given option j is associated with a positive feedback on trial i. We then 

used the slope of entropy (difference between the beginning and the end of a window of 20 

trials) as a measure of environmental predictability. A positive change in entropy reflects 

that the environment is less and less predictable and should trigger exploration whereas a 

negative change in entropy should engage exploitative behavior. As a proxy for exploration/

exploitation, we used the cumulative sum of stay behavior, which is simply a vector, keeping 

track of the number of times a choice has been chosen. Note that a consecutive stay for an 

option A that has been chosen on trial t could also include trials for which on the next trial (t

+1) A would not be available but chosen on the subsequent trial (t+2).

vmPFC partial regression analysis

To test the strength of the link between the unavailable option’s impact on the current 

decision and its neural impact in vmPFC/mOFC, we computed the accuracy residuals (Y*, 

from regressing accuracy against the values of the two available options omitting the 

unavailable one) and the unavailable residuals (X* from regressing the unavailable option 

value against the values of the two observable options) and then regressed Y* against X*67 

for each session separately (see average effect on Fig.6c).
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Macaque rs-fMRI Data Acquisition, Preprocessing, and Analysis

Resting state fMRI (rs-fMRI) and anatomical MRI scans were collected for two healthy 

animals (rs-fMRI from the two animals were acquired under no stimulation; rsfMRI from 

one animal was acquired post ACC-TUS) under inhalational isoflurane anesthesia using a 

protocol which was previously proven successful68,69 in preserving whole-brain functional 

connectivity as measured with BOLD signal. In the case of the TUS conditions, we used the 

same procedure as the one employed by17,18. No statistical methods were used to pre-

determine sample sizes but our sample sizes are similar to those reported in previous 

publications66.
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Reporting Summary

Further information on research design is available in the Life Science Reporting 

Summary linked to this article.

Fouragnan et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2021 February 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Schematic view of the task, behavioural results and hypothesized neural schemes.
(a) On each trial, animals could choose between two symbols presented on the screen and 

had to keep in mind a third option, unavailable to them. The position of each symbol on the 

left/right part of the screen and the combination of available/unavailable options was fully 

and pseudo-randomized respectively. (b) Each trial began with a random delay followed by 

the presentation of two abstract symbols for a period ending when the animals made a 

choice. During this time, monkeys pressed one of two touch-sensors to indicate, which of 

the two symbols (right or left) they believed was more likely to lead to a reward. Finally, the 

decision outcome was revealed for 1.5 sec. The selected symbol was kept on the screen (or 

not) to inform the monkeys of a reward delivery (or no reward). (c) The plots show the 

probability of receiving a reward for choosing either options 1 (pink), 2 (blue), or 3 (red) on 

each trial in the 200-trial sessions. (d) The top graphs show the proportion of correct choices 

(selecting the option with the highest reward probability) plotted as a function of difficulty 

(distance between the better high value [HV] and the worse low value [LV] presented 

options: left panel) and context value (sum of both HV’s and LV’s expected values: right 
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panel). Decision accuracy improved with higher value difference between available options 

and higher total value. The bottom graphs show log-transformed mean RTs for each session 

plotted as a function of difficulty and context. LogRTs decreased for easier decisions and 

higher trial value. Red lines are linear fits to the data and the grey lines are the 95% 

confidence interval, n=25 sessions. (e) Because each of the three options’ values were 

uncorrelated with one another it was possible to look for neural activity according to three 

main coding schemes. If activity in a brain area covaries only with the value of the 

unavailable option then this suggests the area is concerned with representing the value of an 

option held in memory on the current trial and which should not interfere with decisions 

taken on the current trial. (f) If instead activity covaries with the ranked value of both the 

unchosen available option and the option held in memory then it reflects the value of any 

currently counterfactual choice that might be taken in the future. It is important, however, to 

distinguish such a pattern from a third possibility (g) in which neural activity is only 

reflecting the currently available options without representing the counterfactual or 

unavailable option. Thus, the activity would be negatively related to the HV available option 

value and positively related to the LV option value. This third pattern indicates that the brain 

area’s activity reflects the difficulty or uncertainty of the current decision because the 

difficulty of selecting an option becomes harder as the LV option increases and as the HV 

option decreases but it is unaffected by the value of the choice that cannot currently be taken 

(see discussion by Kolling and colleagues15). Note that we also analysed a fourth pattern 

representing the value of each option separately on supplementary figure 3.
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Figure 2. Future switches are explained by the expected value associated with counterfactual 
options.
(a) Estimated expected values associated with the unavailable option on the current trial 

predict whether animals switch to it when it reappears on the screen on subsequent trials (y-

axis: probability of switching to the currently unavailable option. x-axis: reward probability 

associated with the unavailable option estimated from the Maintain model). Each bin 

contains 20% of averaged data across trials (individual sessions in grey dots; average across 

sessions in red dot). (b) A logistic regression confirms that accuracy is explained by the 

currently unavailable option’s value (higher accuracy for trials in which it is the best of the 

three options vs. when it is not), in addition to the value of the future chosen and unchosen 

options (each session’s beta coefficient is represented as a grey dot and the mean beta 

coefficients is represented as a coloured dot). (c) A similar analysis to the one shown in 

panel (a) is performed but on the basis of a new coding scheme where the counterfactual 

options (current unchosen option and current unavailable option) are ranked according to 

their associated reward probabilities as the better and the worse counterfactual choices. (d) 
A logistic regression confirms that the value of the better counterfactual option significantly 

influenced the frequency with which monkeys subsequently switched to it but this was not 

the case for the worse counterfactual option. One sample t-tests were used across session on 

the resulting beta coefficients, n=25, for all analyses.
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Figure 3. Unavailable option value signal in hippocampus favors accurate future planning.
(a) A whole-brain analysis tested for voxels where activity correlated with the trial-by-trial 

estimates of the unavailable option binned according to successful future selection. The 

fMRI analysis was time-locked to the decision phase on trial t and binned according to 

accurate vs. inaccurate selection of the unavailable option on trial t+1 (in light pink: cluster-

corrected, Z > 3.1, P < 0.001; in red: uncorrected, n=25 sessions) (b) ROI analyses (multiple 

regression analysis on the BOLD signal of the ROI) of the right (top panels) and left 

(bottom panels) hippocampus illustrate the time course of the aforementioned contrast. 

BOLD fluctuations reflect the value of the unavailable option on the current trial when it is 

accurately versus inaccurately selected on the next trial (left panels illustrate the contrast 

show in (a)). A leave-one-out procedure (for spatial and temporal peak selections) to assess 

statistical significance revealed that a similar activity change occurs when contrasting the 

value of the unavailable option for accurate versus inaccurate future rejections of the 

unavailable option (right panels). SEM are presented in the red shaded area across sessions, 

n=25. (c) In the left hippocampus, the beta weights for the contrast used in (a) and illustrated 

in (b, left panel) were predictive of how much the unavailable option’s reward probability 

influenced animals’ future choice accuracy (top panel) but this was not true for current 

choice accuracy (bottom panel). Scatter plot at the time of the peak effect, n=25 sessions, 

Pearson R is reported (Results are normalised).
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Figure 4. The anterior cingulate ranks expected reward probabilities of counterfactual options.
(a) Whole-brain analysis shows a significant negative relationship between BOLD activity 

and the difference between the expected value associated with the currently chosen and 

unchosen options in a distributed brain network, including ACC, bilateral lPFC, and vmPFC/

mOFC (cluster corrected, |Z| > 3.1, P < 0.001, n=25 sessions) (b) ROI analysis of the ACC 

illustrates the relationship between BOLD and the fully parametric representation of the 

currently chosen, unchosen, and unavailable options (left panel) and shows that a distinct 

model in which the counterfactual options are ranked according to their associated reward 

probabilities explains the data better. Note that we avoid double dipping in favour of the 

hypothesis that we want to support (hypothesis 2) since the ROI has been defined on the 

basis of hypothesis 1. All shaded areas represent SEM across sessions, n=25. For hypothesis 

2, the grey shading represent the Better (dark grey) and Worse (light grey) alternatives. See 

supplementary figure 3 for a full Bayesian Model Selection across all hypotheses. (c) The 

parametric representation of the better and worse counterfactual values in ACC was further 

explained by whether a future switch in behavior will occur as opposed to the continued 

maintenance of behavior (“stay”) (leave-one-out procedures for peak selection on time series 

analyses: top panel). This was not true in the lPFC (bottom panel). Each session is 
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represented as a grey dot (bar represents the average beta coefficient across sessions, n=25, 

one sample t-tests are performed).
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Figure 5. Transcranial Focused Ultrasound Stimulation (TUS) of ACC had a profound and 
selective effect on resting state connectivity.
(a) Whole-brain functional connectivity between the ACC and the rest of the brain. Left and 

right top panels show activity coupling between ACC (far-right ROI, black circle) and the 

rest of the brain in the no stimulation sham condition in two exemplar animals. After ACC 

TUS in exemplar animal 1, there are strong changes in connectivity (right bottom panel), 

reflected in changes in a connectivity analysis seeded from ACC with 13 other regions (ROI 

represented in black circle, for the full details, see supplementary fig.4; table 1) (within 

subject: two sample t-tests: Cohen’s d=-0.84; t12=-3.03; P=0.01, Cohen’s d=-1.01; 

t12=-3.65; P=0.003, n=13 ROIs, between-subject control: non-significant, n=6 ROIs). (b) 
However, while ACC TUS affected ACC connectivity, the effect was selective; ACC TUS 

did not affect connectivity seeded from lPFC (n.s: non-significant). (c) Running average 

choice frequency for the three options in the control/sham ACC (left) and the TUS ACC 

condition (middle) across sessions (the shaded areas represent SEM across session, n= 18 
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sessions for each group). Predetermined reward schedules used in the sham and in the TUS 

ACC task for three options, similar to the task used in the fMRI experiment (right). (d) The 

rate of choosing option 1 was significantly reduced on trials that followed those on which it 

had previously been a counterfactual option – on trials on which it was unavailable in TUS 

session compared to SHAM sessions, n = 18 sessions for each group. (e) Decision accuracy 

is plotted as a function of the difficulty of the decision – the difference between the objective 

values of the HV and LV options. Values of HV and LV are objective values (reward 

probability over the last 10 trials). Each bin contains data binned according to percentile, 

with each point corresponding to the [0-20%], [20-40%], [40-60%], [60-80%], [80%-100%] 

of the value difference amplitudes. Accuracy is the rate at which the participant picked the 

objectively better option. Supplementary fig.5d illustrates accuracy as a function of 

subjective value differences. Performance differences between TUS and sham conditions do 

not increase with difficulty (small HV-LV differences on the left); if anything the opposite is 

true. (f) The influence of the better counterfactual option value on future switching behavior 

(in blue, as per fig.2f) was significantly reduced after TUS ACC (in green), n=18 sessions 

for each group. (g) While entropy (summed entropy of reward probability for all options) is 

strongly and negatively predictive of a change in exploratory behavior in the sham condition 

(indexed by the cumulative number of “stay” choices: choices of the same option on one 

trial after another), this relationship is disrupted in the TUS ACC condition. Each point in 

the figure illustrates a running average analysis, where each bin contains the derivative of 

entropy over five trials (thus 30 points). The small panel on the right depicts the difference in 

regression coefficients – linear fit – between the TUS ACC and the sham conditions 

(Animals 1 [S1] and 2 [S2] are individually represented as red diamond and yellow square, 

respectively in all plots, n=9 sessions per animal).
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Figure 6. Contextual modulation of value-guided choice.
(a) Average choice behavior when choosing between the Left and Right options plotted as a 

function of the value of the unavailable option (low: green; high: yellow). Decisions were 

less accurate when they were made in the context of a low value unavailable option. Curves 

plot logistic functions fit to the choice data, n=25 sessions. (b) ROI analysis of the vmPFC/

mOFC (left panel: ROI sphere) illustrates the relationship between the BOLD value-

comparison signal and the expected value associated with the unavailable option (binned in 

Low/Mid/High) (right panel). The greater the value of the unavailable option, the more 

negative the value difference; a more negative pattern is normally associated with decisions 

that are easier to take (see panel d). Data for individual animals are indicated by red dots 

(±SEM in grey, n=4 animals). (c) A partial regression plot shows the uncontaminated effect 

of the unavailable option’s value on accuracy (y-axis: accuracy residuals; x-axis: residuals of 

the unavailable option’s value). Each bin contains 20% of averaged data across sessions 

(±SEM). One sample t-test on betas of regression analysis, n=25 sessions. (d) ROI time 

course analysis of the vmPFC/mOFC illustrates the relationship between BOLD and the 

fully parametric representation of the currently chosen and unavailable options. The shaded 

areas represent SEM across session, n=25 sessions. (e) While there was not a main effect of 

the unavailable option value, vmPFC/mOFC variation in activity related to the currently 

unavailable option’s value explains between-session variation in the currently unavailable 

option’s influence on decision making. Scatter plot at the time of the peak effect of 
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unavailable option value in the vmPFC/mOFC (leave-one-out peak selection, n=25 sessions, 

Pearson R is reported).
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Figure 7. Schematic view of brain regions hypothesized to encode counterfactual choice.
Schematic view of some of the brain regions hypothesized to be involved in encoding 

counterfactual choice (in yellow and dashed lines, including the anterior cingulate cortex - 

ACC, lateral prefrontal cortex - lPFC, and the hippocampus - Hippo), and choice updating 

and selection (in red and continuous lines, including the lateral and the medial orbitofrontal 

cortex – lOFC and mOFC/vmPFC, respectively). A blue line represents the hypothesized 

effect exerted by the hippocampus, via mOFC/vmPFC, on the current choice.
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Table 1
ROIs for rs-fMRI connectivity analyses.

The XYZ coordinates of the ROIs used in the rs-fMRI connectivity analysis are listed. For the ACC seed 

analyses, we excluded the ROI “A” (ACC itself) and thus used B, C, D, E, F, G, H, I, J, K, L, M, N. For the 

lPFC seed analyses, we excluded the two ROIs too close to the seed to avoid circular analyses (namely “L” 

and “M”). In addition, we excluded the ACC and neighbouring and thus used F, G, H, I, J, and N since TUS 

over ACC seems to have an influence on the connectivity of lPFC.

ROI A (ACC) B C D E F (MCC) G (PCC)

X -2.6 -1.8 -1.5 -1.8 -1.3 -0.9 -1.5

Y 20.4 13.8 6.5 -2.0 -8.9 -15.7 -21.0

Z 10.3 12.8 14.2 15.6 14.3 15.2 11.9

ROI H (PCC) I (PCC) J (PCC) K (lPFC) L (dlPFC) M (dlPFC) N (lPFC)

X -1.3 -1.1 -2.0 -6.7 -9.5 -14.8 -8.0

Y -25.7 -30.7 -24.7 20.4 14.8 14.7 19.4

Z 8.0 8.6 2.5 15.9 18.9 15.8 11.0
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