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Abstract
Formyl peptide receptors (FPRs) belong to the family of seven-transmembrane G protein-coupled receptors. Among them, 
FPR2 is a low affinity receptor for N-formyl peptides and is considered the most promiscuous member of FPRs. FPR2 is 
able to recognize a broad variety of endogenous or exogenous ligands, ranging from lipid to proteins and peptides, including 
non-formylated peptides. Due to this property FPR2 has the ability to modulate both pro- and anti-inflammatory response, 
depending on the nature of the bound agonist and on the different recognition sites of the receptor. Thus, FPR2 takes part 
not only in the proinflammatory response but also in the resolution of inflammation (RoI) processes. Recent data have 
indicated that the malfunction of RoI may be the background for some central nervous system (CNS) disorders. Therefore, 
much interest is focused on endogenous molecules called specialized pro-resolving mediators (SPMs), as well as on new 
synthetic FPR2 agonists, which kick-start the resolution of inflammation (RoI) and modulate its course. Here, we shed some 
light on the general characteristics of the FPR family in humans and in the experimental animals. Moreover, we present a 
guide to understanding the “double faced” action of FPR2 activation in the context of immune-related diseases of the CNS.
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P38MAPK  P38 mitogen-activated protein 
kinases

PAMP  Pathogen-associated molecular 
patterns

PPARγ  Peroxisome proliferator-activated 
receptor gamma

PI3K  Phosphoinositide 3-kinase
PKC  Protein kinase C
PLC  Phospholipase C
PrPc  Cellular prion protein
PRR  Pathogen recognition receptors
PUFA  Polyunsaturated fatty acid
RoI  Resolution of inflammation
ROS  Reactive oxygen species
RvD1  Resolvin D1
SAA  Serum amyloid A
SOCS  Cytokine signaling suppressors
SPMs  Specialized pro-resolving 

mediators
TLR4  Toll-like receptor 4
TNF-α  Tumor necrosis factor α

Introduction

Formyl peptide receptors (FPRs) belong to the largest and 
functionally diverse family of 7 transmembrane chemoat-
tractant G-protein-coupled receptors. FPRs are classified as 
Pathogen Recognition Receptors (PRRs) located on immune 
cells that play a key role in innate immunity due to their 
ability to recognize both, pathogen associated and damage-
associated molecular patterns (PAMPs and DAMPs). In fact, 
FPRs were first identified on myeloid cell membrane, but 
subsequently their expression was demonstrated on neu-
ronal, glial, endothelial and epithelial cells [1]. FPRs partici-
pate not only in host defense and regulation of inflammatory 
response but also in the migration, proliferation, superoxide 
production and in several physio-pathological processes due 
to their unique binding properties and interaction with struc-
turally diverse ligands [2]. Actually, FPRs can interact with 
a wide range of compounds belonging to different chemical 
structures, from various endogenous peptides and proteins 
to non-peptide host-derived lipids and eicosanoids, but also 
covers many small-molecule ligands [3, 4].

Among FPRs, the FPR2 receptors are an attractive thera-
peutic target for researchers due to the functionality related 
to biased agonism and the diversity of bound ligands. In this 
review, we shed some light on the general characteristics of 
FPRs in humans and in experimental animals. Moreover, we 
present some of the crucial FPR2 ligands which may open 
opportunities for research in the context of immune-related 
diseases of the central nervous system including Alzheimer’s 
disease, depression and ischemia.

Formyl peptide receptor family—an 
overview

The nomenclature of FPRs family is diverse, due to the fact 
that terminology of the same receptors was associated with 
the different manners of classification [5]. Therefore, to 
unify the terminology, the International Union of Basic and 
Clinical Pharmacology (IUPHAR) established a new lexicon 
based on the interaction of the receptor with the agonist. 
Based on these guidelines three members of FPRs family 
were identified in humans, namely FPR1, FPR2 and FPR3. 
On the other hand, despite the ordering of these nomen-
clature, the FPR2 and FPR3 receptors in the literature still 
often appear under other names, such as FPR1L and FPRL2 
(these names refer to the common homology with other fam-
ily members). Furthermore, the names ALX, FPR2/ALX, 
LXA4R are often used for the FPR2 receptor to refer to its 
interaction with the endogenous ligand A4 lipoxin (LXA4) 
[6, 7]. It is also worth to mention that in humans, at the 
beginning, the naming criterion for FPR1, FPR2 and FPR3 
was based on the binding of formylated bacterial product 
formyl-methioninyle-leucyl-phenylalanine (fMLF), because 
the formyl receptor was first discovered as a target for this 
PAMP [8].

In humans all genes of the formyl receptor are located 
on chromosome 19. Moreover, they are characterized by 
high homology, e.g., the hFPR1 and hFPR2 receptors 
share sequence identity of 69%, hFPR1 and hFPR3 of 56%, 
while hFPR2 and hFPR3 about 83% (Table 1). Despite this 
sequence similarity, hFPR2 is more ubiquitous and was 
created as a result of gene amplification. According to the 
sequence analysis, hFPR3 is evolutionarily “the young-
est” member of the FPR receptor family and seems to be 

Table 1  Formyl peptide 
receptors (FPRs) family names 
(IUPHAR-recommended and 
used previously)

IUPHAR-recommended 
FPR names

Other names (used previously) Homology with 
FPR1

Homology 
with FPR2

FPR1 FPR, NFPR, FMLPR, FMLP – –
FPR2 FPR2/ALX, FPRH1, FPRL1, ALXR, RFP, 

LXA4R, FMLPX, HM63, FPR2A
69% –

FPR3 FPRL2, FMLPY, FPRH2 56% 83%
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more related to hFPR2 than to hFPR1, suggesting that it 
arose from gene duplication [9, 10]. They are all expressed 
on monocytes; in addition, hFPR1 and hFPR2 are also 
expressed on neutrophils [11] and hFPR1 and hFPR3 on 
dendritic cells (DC) [12, 13]. Formyl receptors, espe-
cially hFPR2, also maintain a relatively strong expression 
on cells of the nervous system including astrocytes and 
microglia [14].

Importantly formyl receptors also share overlapping 
functions. Originally, these receptors were thought to 
be only involved in neutrophil chemotaxis, but later dis-
coveries have begun to highlight other functions, includ-
ing: calcium efflux, clearance of infection, recruitment of 
immune cells, pro-resolving properties, but also a role as 
a background in the multiple diseases. The wide range 
of functions caused by the diversity of endogenous FPR 
ligands are not limited only to N-peptides [4]. FPR1 was 
for the very first time isolated from HL-60 cells that were 
differentiated into granulocytes [15] and prefer to bind 
short and flexible structures, such as fMLF for which they 
have a strong affinity [16]. The chimeric receptor approach 
showed that the affinity of FPR1 for fMLF was 400 times 
higher than that of FPR2 [17, 18].

Nevertheless, FPR2 is the only member of the formyl 
receptor family that interacts with all types of ligands, 
i.e., lipids, peptides, and proteins preferring mainly long, 
amphipathic peptides with a helix structure [16, 19]. To 
date, the evolutionarily youngest FPR3 is the least known 
member of the FPR family. Interestingly, only one pep-
tide ligand with a high affinity for FPR3 is known [10, 
11]. Furthermore, FPR3 receptor is highly phosphoryl-
ated, indicating that it rapidly internalizes after binding 
its ligands and thus may serve as a “decoy” receptor to 
restrict the binding of available ligands to other receptors 
[20]. Recently, some data have indicated a role of FPR3 

in promoting calcium mobilization or chemotaxis [10, 11] 
but it certainly requires further research.

Formyl peptide receptor family—animal species 
distribution

The formyl receptor family has also become the focus of 
animal research. The presence of FPRs was found in guinea 
pigs, primates, rabbits, horses, rats, and mice, among others 
[5]. Considering that formyl receptors are present in a wide 
range of species, their structure, functionality, nomenclature, 
and homology with the human FPR family are very diverse. 
Currently, the most widely known formyl receptors in ani-
mals are those found in mice. The murine formyl recep-
tor family includes 8 described formyl receptors: mFpr1, 
mFpr2, mFpr-rs1, mFpr-rs3, mFpr-rs4, mFpr-rs6, mFpr-rs7, 
and mFpr-rs8 located on chromosome 17A3.2 [4] (Fig. 1). 
Scientific research has mainly targeted two direct orthologs 
between mouse and human with mFpr1 and mFpr2 repre-
sented by hFPR1 and hFPR2, respectively [21]. Although 
the human FPR family has murine orthologs whose high 
level of expression is also similar to that of humans on 
phagocytic leukocytes, the binding affinity for individual 
ligands is different. Literature data show a 100-fold lower 
affinity of mFpr1 for fMLF and structural differences in the 
ligand binding domain. The mFpr1 receptor appears to be 
more similar to FPR2 in terms of its human ortholog [22, 
23]. The structural differences between hFPR1 and mFpr1 
do not cover all aspects of functionality. Mice with the 
mFpr1−/− phenotype revealed its strong association with host 
defense regulation. The targeted deletion of genes encoding 
mFpr1 but also mFpr2 seems to confirm these results. Ani-
mals with that deletion show reduced resistance to bacterial 
infections; however, the fertility and viability of the animals 
are not affected [24, 25]. The mFpr2 and mFpr-rs1 receptors 
show high homology to human FPR2 and FPR3. Moreover, 

mFpr-rs5

mFpr-rs7mFpr-rs6 mFpr-rs4mFpr-rs3

mFpr-rs8

hFPR1mFpr1 hFPR3

hFPR2/ALX

mFpr-rs2
mFpr-rs1

Fig. 1  Homology between the human (h) and mouse (m) FPR fam-
ily member genes. The “human group” contains three FPR proteins, 
the “mice group” includes eight FPR-related forms. hFPR1 and 
mFpr1 are in the same cluster, while mFpr-rs1, mFpr-rs2 (called also 

mFpr2) and mFpr-rs8 belong to the another cluster. They are closely 
related to hFPR2/ALX and hFPR3. Based on protein sequences, 
mFpr-rs3, mFpr-rs4, mFpr-rs6, mFpr-rs7 and mFpr-rs5 are closely 
related



1007Formyl peptide receptor 2, as an important target for ligands triggering the inflammatory…

1 3

the knockout study mice mFpr2−/− revealed the possibil-
ity of a functional crossover between hFPR3, hFPR2, and 
mFpr2, respectively [26, 27]. Studies based on these animals 
have also established that despite mFpr2 has a low affinity 
for fMLF, it binds with high affinity to several peptide ago-
nists that activate human FPR2/ALX, including the amy-
loidogenic proteins serum amyloid A [28–31] and amyloid 
β (1–42). Mouse Fpr2 is also a receptor for F2L (which is 
also a strong agonist of hFPR3). These findings indicate that 
mouse Fpr2 share pharmacological properties with human 
FPR2/ALX. It is very important in the context of the result 
of studies conducted in FPRs-deficient mice, indicating their 
translational potential.

The remaining members of the formyl receptor family 
do not seem to exhibit as many distinctive features. It may 
be related to the complex evolution of genes and sequence 
divergence between orthologs. Among the genes encoding 
mFpr, there is the pseudogene mFpr-rs5 (ψmFpr-rs3) which 
does not encode a functional receptor, but it does not possess 
the features characteristic of pseudogene [4, 21]. mFpr-rs1, 
mFpr-rs3, mFpr-rs4, mFpr-rs6, and mFpr-rs7 represent che-
mosensory vomeronasal GPCR receptors [32, 33]. The bio-
logical function of mFpr-rs1 is still unclear. Although mFpr-
rs1 overlaps many functions and structural features with 
hFPR2 its ability to activate the human and mice ligands is 
very low. The underlined data demonstrate the commonal-
ity of many structural and pharmacological features of both 
human and mice members of the FPR family.

Conformational changes and biased 
agonism of FPRs

According to the literature, the FPR family is a group of 
G-protein-coupled receptors and belongs to one of the most 
diverse groups of receptors, namely: 7 transmembrane recep-
tors (7 TM) [34, 35]. In general, the FPR family receptors 
consists of a few conservative elements: the extracellular 
N-terminus, seven transmembrane domains (TM1–7) con-
nected via three intracellular and extracellular loops (IL1–3, 
EL1–3) and the intracellular C-terminus. Furthermore, in 
some receptors, there is an extra eighth helix in the poly-
peptide chain that is parallel to the inner surface of the cell 
membrane [36, 37]. The extracellular domains (EL1–3) are 
responsible for the detection of ligands and their access to 
the structural core, while intracellular domains (IL1–3) bind 
to a variety of cytoplasmatic systems, such as G proteins, 
arrestin or receptor kinases coupled with G proteins [38]. 
Transmembrane TM1–7 helixes participate in binding and 
signal transmission into the cell through conformational 
changes that are essential for receptor activity [39]. Two 
highly conserved motifs are directly involved in the confor-
mational changes: NPXXY in TM7, which is responsible 

for activating the receptor and E/DRY (combining TM3 and 
TM6), which acts as a specific "ion blocker" that maintains 
the stabilization of the receptor conformation [40, 41].

It is intriguing to observe that among formyl peptide 
receptors, FPR2 have properties to functional changes, 
which depend on this receptor conformation. Emerging data 
suggest that FPRs form higher order structures (e.g., FPR1/
FPR2 heterodimers, FPR2 homodimers, FPR1 homodimers), 
which leads to altering the downstream intracellular signal-
ing pathways by allowing colocalization of effector domains, 
enhancing intracellular activation, or creating new ligand 
specificity [42, 43]. Cooray et al. have indicated that FPR2 
homodimers and FPR2–FPR1 heterodimers occur consti-
tutively in leukocytes and alters the activation of signaling 
pathways in response to specific ligands [44]. Peptide ligands 
also play a role in dimerization: annexin A1 (ANXA1) and 
LXA4 promote FPR2 homodimerization, while peptide 
Ac2–26 stimulates FPR2–FPR1 heterodimerization. Inter-
estingly, FPRs also form oligomers with scavenger MARCO 
receptors (macrophage receptor with collagenous structure). 
Interactions between FPR and MARCO receptors have been 
demonstrated by bioluminescence and co-immunoprecipi-
tation studies and fulfill their functions in agonist-evoked 
changes in cyclic adenosine monophosphate (cAMP) levels 
and extracellular signal-regulated kinases (ERK1/2) phos-
phorylation, as well as signal transduction in glial cells via 
Aβ1–42 [45]. Importantly, the FPR2 conformational changes 
(ligand-dependent) determines its action [46].

On the other hand, protein and lipid ligands bind to differ-
ent FPR2 binding sites (Fig. 2). Lipoxins A4 (LXA4) bind 
at 7TM and 3rd extracellular loop, while peptide ligands, 
such as ANXA1 or serum amyloid A (SAA), bind at the 
NH2-terminal domain or 1st two extracellular loops [47, 48].

After binding of the ligand, FPR2 is activated and trig-
gers several agonist-dependent signal transduction path-
ways through the involvement of the Gαi1, Gαi2 and Gαi3 
G-receptor subunits [5]. In fact, the effects observed after 
FPR2 activation include the activation of phospholipase A2 
(PLA2), phospholipase C (PLC) isoforms, protein kinase C 
(PKC), phosphoinositide 3-kinase (PI3K), protein kinase B 
(Akt), mitogen-activated protein kinase (MAPK) pathway as 
well as p38MAPK, which modulate proliferation, differen-
tiation, apoptosis, cellular communication and other intracel-
lular functions. Furthermore, phosphorylation of cytosolic 
tyrosine kinases, phosphorylation and nuclear transloca-
tion of regulatory transcription factors, calcium release and 
oxidant production so far were demonstrated [49]. Among 
the post-translational modifications of FPR2, phosphoryla-
tion processes, which are determined by a balance between 
protein kinases and protein phosphatases, seem to be of 
great importance [1]. Therefore, despite the fact that pro-
tein phosphorylation is limited to specific phospho-sites, 
and it is not the only post-translational change (which also 
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include methylation, acetylation, sumoylation or ubiquitina-
tion) occurring after FPR activation by agonists, understand-
ing the mechanisms of their regulation may be crucial for 
the development of new pharmacotherapy of CNS diseases. 
Ligand-dependent stimulation of G-protein-coupled recep-
tors may also lead to transactivation process, which acti-
vates signaling from receptors tyrosine kinase (RTK) [50]. 
Among others, TrKA receptor activation results in phos-
pohorylation of various tyrosine residues (e.g., Y490, Y751 
or Y785). Phosphorylated tyrosine residues form docking 
sites for other proteins and trigger the activation of Ras/
MAPK, PI3K/Akt as well as PLC γ/PKC pathways [51]. 
Interestingly, several features of TrkA receptor transactiva-
tion are noteworthy and differ significantly from other trans-
activation events, first of all, because it is slower. However, 
given the role of the mentioned signaling cascades in the 
physiological and pathological processes in the brain and 
in the action of CNS-active drugs, the TrkA transactivation 
by FPRs agonists may provide an innovative strategy for 
the treatment schizophrenia, depression and other mental 
illnesses.

At the same time, it should be strongly emphasized that 
the FPR2 downstream signaling pathway activation, depends 
not only on the chemical structure of the ligand but also 
on the cell type involved [14, 52], which is important in 
understanding how FPR2 activation elicits different cel-
lular responses leading to inflammation and its resolution. 
For example, SAA binding increases the expression of the 

NF-кB, whereas LXA4 suppresses NF-кB activity [46]. 
Therefore, FPR2 enables the switch of both pro-inflamma-
tory action to pro-resolving because of the diversity of intra-
cellular signaling cascades from GPCR activation.

In 2019, Raabe et al. discussed the biased perspectives 
on FPRs. According to those authors, the “classic” view 
about ligand/receptor interactions accounts only for agonists 
(which leads to activation) and antagonists (inhibit the acti-
vation) [53, 54]. FPR2–ligand interactions lead to totally dif-
ferent cellular responses, a finding, which completely ques-
tions this classical concept of receptor–ligand interaction. 
This phenomenon—biased agonism—explains how different 
FPR2 agonists do not lead to the same effects and why FPR2 
agonists play essential roles in the control of active inflam-
mation resolution and host defense. What is more, FPR2 is 
unusual, because it can switch from a pro-inflammatory to 
anti-inflammatory response while at the same time maintain-
ing the former at a low but possibly life-saving level [55].

Inflammatory response and FPR2 ligands

The inflammatory response is one of the main process in 
the organism. Among the processes of inflammatory ori-
gin, acute inflammation is a protective, self-limiting process 
that disappears after the removal of the insult in the absence 
of major damage to the body. Several phases of inflamma-
tion, including initiation, propagation, and resolution, have 

Fig. 2  Ligand-biased signaling via FPR2 leads to dual effects: pro-
inflammatory on the one hand and pro-resolving on the other. A vari-
ety of endogenous ligands exert pro-inflammatory (SAA Serum Amy-
loid A, PrPc Prion Protein, ANXA1 Annexin A1) and pro-resolving 
(LXA4 Lipoxin A4, RvD1 Resolvin D1, SPMs Specialized Pro-resolv-
ing Mediators) effects. SAA, PrPc, amyloid-β elicit proinflammatory 

signals and stimulate the release of pro-inflammatory cytokines (e.g., 
TNF-α, IL-1β, IL-6). This FPR2 signaling is counteracted by pro-
resolving agonists that suppress the expression of pro-inflammatory 
cytokines and increase the release of anti-inflammatory factors (e.g., 
IL-10). (Image generated by Biorender)
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been demonstrated. Recently it has been suggested that 
these phases do not develop sequentially but rather overlap 
[56]. The physiological outcome of the acute inflammatory 
response is the restoration of tissue homeostasis and func-
tionality, culminating in tissue repair, and is followed by 
the resolution phase [57, 58]. However, when the mecha-
nisms controlling this complex reaction, triggered by sev-
eral factors including proteins, lipids and stimulatory signals 
derived from injured cells or by inflammatory mediators 
(e.g., chemokines, cytokines) fail, an uncontrolled inflamma-
tory reaction can be detrimental, which indeed is a driving 
pathogenetic mechanism for a wide range of immune-related 
diseases.

There is a lot of evidence that in the course of the pro-
longed inflammatory response and neurodegeneration, non-
formyl peptide FPRs agonists are involved. This group of 
ligands activates FPRs independently from the presence of 
an N-formyl group, showing a particular preference for the 
interaction and activation of FPR2.

Undoubtedly, the serum acute-phase protein (SAA) is of 
particular importance among them because of an unfavora-
ble role in chronic inflammation and amyloidosis. The pro-
inflammatory effects of SAA caused by stimulation of FPR2 
in phagocytes, epithelial cells and T lymphocytes, lead to the 
production of inflammatory mediators [43, 59–61]. Interest-
ingly, some data postulated that native SAA may exhibit 
cytokine-like properties but whether this effect is related 
to FPR2 activation still remains unclear and is a subject of 
scientific debate [62, 63].

Among the amyloidogenic agonists of FPR2 the cel-
lular prion protein fragment  (PrPc), a glycoprotein highly 
expressed in the brain is highlighted. The role of  PrPC in 
amyloid β (Aβ) oligomer‐induced synaptic impairment is of 
great interest [64]. In fact, impairment of LTP by Aβ oligom-
ers isolated from the brains of AD patients was attenuated by 
pretreatment with an anti‐PrPC antibody [65, 66]. Moreover, 
some data pointed out the role of  PrPC in synaptotoxicity 
mediated by soluble Aβ. On the other hand, in some stud-
ies the effects of  PrPC in the LTP alterations and memory 
deficits in mouse models of AD were not seen [67, 68].  PrPC 
fragment, through its interaction with FPR2 in glial cells, 
induces calcium mobilization, enhances chemotaxis (e.g., 
via MCP-1) and leads to potentiation of the inflammatory 
response. Among the cytokines released from glia cells in 
response to  PrPC, there are: TNF-α, IL‐1β, IFN‐γ, or IL‐6, 
which reportedly accelerate AD progression in both AD 
patients and in the animal model of AD [69, 70].

In addition to SAA and  PrPc, two other amyloidogenic 
peptides have also been described: 42-amino acid form of 
Aβ amyloid peptide (Aβ42) and humanin, which exert an 
agonistic effect on FPR2. Despite the fact that both pep-
tides, by activating FPR2, induce migration and increase the 
phagocytic activity of monocytes in the brain, they have a 

different role in the course of Alzheimer’s disease. Aβ42 is 
involved in the fibrillary tangle formation and deposition in 
the brain of AD patients [71, 72]. Moreover, via interaction 
of microglial cells with FPR2 Aβ42 increase the inflamma-
tory cytokines production, including TNF-α, interleukins 
(IL‐1β, IL‐6), interferon‐γ, and chemokines, such as CCL2, 
CXCL8, CXCL10 and CCL3 [73, 74].

In contrast, the already mentioned humanin has the oppo-
site, i.e., neuroprotective activity [75]. In fact, humanin, by 
inhibiting Aβ interaction with FPR2 in phagocytes, prob-
ably reduces aggregation and generation of fibrillary forma-
tions. Perhaps also the ability of humanin to interact with 
other FPRs, e.g., FPR3 [75, 76] play a crucial role in these 
phenomena.

The “dual-faced” FPR2 agonists include annexin A1 
(ANXA1) and its bioactive N-terminus domains (Ac2–26 
and Ac9–25). ANXA1 is a glucocorticoid-regulated phos-
pholipid-binding protein of 37 kDa, expressed in a variety 
of cell types. It seems that the dual properties manifested by 
ANXA1 are mediated by peptides derived from its N-ter-
minus domain (Ac2–26 and Ac9–25), which are presum-
ably generated at sites of inflammation. Interestingly, at high 
concentration the ANXA1 peptides fully activate FPR1, just 
as the conventional agonists and induce pro-inflammatory 
response. On the other hand, at low concentrations they only 
demonstrate a partial activity at FPR1, leading to the inhibi-
tion of adhesion and transmigration of leukocytes, reduc-
ing the intensity and duration of the inflammatory response 
while intensifying proliferation and invasion of epithelial 
cells [77]. Moreover, it is suggested that both (Ac2–26 and 
Ac9–25) peptides use FPR2 for their anti-inflammatory 
actions [78], but there are also data postulating that other 
receptors, including FPR3, are involved in these pro-resolv-
ing effects [79].

Moreover, the role of ANXA1 in the behavioral distur-
bances, such as anxiety is widely discussed. In fact, the 
absence of ANXA1 protein even more than the absence of 
its main receptor (namely FPR2/3) is indispensable to the 
suppressive action of glucocorticoids on the HPA axis, as 
well as to the hippocampal homeostasis by preventing neu-
ronal damage in the course of depression [80]. On the other 
hand, in FPR2/3-deficient mice data showed a behavioral 
disinhibition and reduced anxiety [81], manifested by the 
increased climbing exploratory activity in an open-field test, 
as well as superior performance on a novel object recogni-
tion test, just to mention a few. These effects were accom-
panied by an increase in blood plasma corticosterone, which 
does not exclude the possibility of a compensatory effect 
and/or changes in ANXA1 level. This issue undoubtedly 
requires further detailed studies. Nonetheless, the crucial 
role of FPR2 receptors in mediating the behavioral deficits 
at the cognitive–emotional interface are clearly confirmed by 
the Boc-2 administration to wild-type mice, which followed 
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the deficits observed in the above-mentioned FPR2/3-defi-
cient mice [81].

Recently, data have demonstrated that in the brain, 
ANXA1 is engaged in the regulation of the blood–brain bar-
rier (BBB) integrity of patients with multiple sclerosis [82]. 
Furthermore, ANXA1 may be involved in the occurrence 
and progression of acute severe traumatic brain injury [83]. 
Moreover, Wang et al. found that the expression of ANXA1 
decreased after cerebral hemorrhage, and the increase in the 
expression of ANXA1 could alleviate neuronal necrosis, and 
reduce brain edema after cerebral hemorrhage [84]. Interest-
ingly, Luo et al. found that ANXA1 could also exert neuro-
protective effects on brain damage by polarizing microglia 
cells into M2 phenotypes [85].

ANXA1 was reported to also be associated with the early 
stage of AD in patients and in animal models. By inhibiting 
the secretion of inflammatory mediators stimulated by Aβ, 
ANXA1 could stimulate microglial phagocytosis of Aβ and 
reduce the level of Aβ [86]. In fact, some data show that 
ANXA1 expression is reduced in AD patients, which may 
be related to an increased degree of neurodegeneration. The 
decreased expression of ANXA1 in patients with mild cog-
nitive impairment and AD might contribute to the increased 
neuroinflammation and cognitive deficits [87].

FPR2 agonists in the course of the resolution 
of inflammation

The correct flow of the resolution of inflammation (RoI), 
which is an active process, requires proper endogenous acti-
vation that induces a switch from the release of proinflam-
matory molecules to the secretion of pro-resolving media-
tors. In this event, the so-called specialized pro-resolving 
lipid mediators (SPMs) play a prominent role, because they 
modulate leukocyte infiltration and activities, as well as 
anti-inflammatory cytokine release to terminate inflamma-
tion [88]. These molecules, including lipoxin A4 (LXA4), 
derived from arachidonic acid (AA), and the D-series 
resolvins (RvD1) derived from docosahexaenoic acid (DHA) 
are key paracrine and autocrine biochemical signaling mol-
ecules in the CNS. They are reported to be involved not 
only in the RoI by triggering the processes that reduce the 
expression of pro-inflammatory response, but also, in the 
case of RoI deficits, in the progression of neurodegenerative 
and neuropsychiatric diseases [89, 90]. In fact, SPMs acti-
vate cascades that induce remodeling within sites damaged 
by inflammatory processes. Most of the effects of RoI are 
mediated through FPR2, which is able to promote several 
processes crucial for resolution of inflammation, including 
neutrophil extravasation blockade, promotion non-phlogis-
tic monocyte recruitment, suppression of proinflammatory 
mediators while potentiating anti-inflammatory cytokines 

release and macrophage phagocytosis and efferocytosis, 
altering macrophages phenotype and instructing cells to 
favor repair [91, 92]. Interestingly, the anti-inflammatory 
effects rely mostly on suppressive action, while pro-resolv-
ing effects are mediated by the activation of specific inherent 
processes; however, the RoI is the final result of both [91, 
93]. Recently, it has been found that SPMs elicit “mild to 
moderate effects”, which, led to the balance between proin-
flammatory and anti-inflammatory reactions [91]. It should 
be mentioned, that in the brain the course of inflammatory 
response is slightly different due to the collective interaction 
of various brain cells (microglia, astrocytes, oligodendro-
cytes, and NG2 glia) and, in some cases, peripheral immune 
cells. Therefore, a great deal of importance is given to SPMs 
which can act on both glia and neurons [93] and they include 
lipoxins and resolvins.

Lipoxins

Lipoxins have emerged as prominent chemical mediators 
whose synthesis is switched on during an inflammatory 
response, which allows the RoI. In classical lipoxin biosyn-
thesis in leukocytes and epithelial cells, arachidonic acid 
undergoes double, transcellular oxidation catalyzed by lipox-
ygenases (LOX), resulting in the formation of two deriva-
tives of lipoxin A (LXA4) and lipoxin B (LXB4) [93]. On 
the other hand, in the second pathway of lipoxin synthesis, 
aspirin-dependent lipoxin epimers: AT-LXA4 and AT-LXB4 
are formed under the influence of acetylated cyclooxygenase 
(ASA-COX2). Lipoxin A4 (LXA4) and its AT-LXA4 epimer 
act primarily through the FPR2 receptor [94]. In addition, 
LXA4 can activate other receptors, such as an orphan G-pro-
tein-coupled receptor (GPR32), aryl hydrocarbon receptor, 
estrogen receptor and high affinity cysteinyl leukotriene 
receptor [95–97].

Binding of LXA4 to FPR2 receptor results in the activa-
tion of many intracellular signaling pathways. Simultane-
ously, the conformational changes following the attachment 
of LXA4 prevents binding of other ligands, e.g., amyloid β or 
SAA to the FPR2 [19]. Among signaling cascades, the cell-
dependent activation of the PI3K/AKT pathway by LXA4 is 
of key interest [98]. LXA4-mediated modulation of the neu-
trophil recruitment to the site of inflammation by increas-
ing cytosolic calcium levels is important in the resolution 
of inflammation [99]. Moreover, LXA4 anti-inflammatory 
effect is also associated with the inhibition of the NF-κB 
(nuclear factor-κB), which in turn, leads to a reduction in 
the transcription of pro-inflammatory cytokines. Simulta-
neously, LXA4 increases the level of mRNA for cytokine 
signaling suppressors (SOCS). On the other hand, LXA4, 
by inhibiting the activation of transcription factors including 
NFκB and AP-1 (Activator protein 1) [100], up-regulates the 
levels of nuclear factor erythroid 2-related factor 2 (Nrf2) 
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and peroxisome proliferator-activated receptor gamma 
(PPARγ), which are the factors which suppress the expres-
sion of pro-inflammatory genes [98] (Fig. 3). Resolving the 
inflammation and restoring LXA4 signaling has been shown 
to reduce the severity of Alzheimer’s disease such as neu-
ropathology including the decrease in amyloid plaques, tau 
phospohorylation and inflammation as well as leading to the 
improvement in the cognitive performance in the 3xTg-AD 
mouse model [101]. Moreover, the combined administra-
tion of LXA4 and resolving E1 terminated inflammation in 
a murine model of AD [102]. The mechanism of LXA4 and 
AT-LXA4 has not been defined unequivocally, nevertheless 
it is postulated that both agonists reduce the secretion of pro-
inflammatory mediators, such as TNFα, while LXA4 has 
also been shown to promote the release of anti-inflammatory 
factors and to exhibit the ability to reduce Aβ and phospho-
rylated tau levels [89].

Resolvins

Resolvins are the second important class of FPR2 agonists 
that play an important role in the positive regulation of 
inflammatory processes. They are a group of compounds, 
derivatives of docosahexaenoic acid (DHA)—resolvin D and 

eicosapentaenoic acid (EPA)—resolvin E. The formation of 
resolvins is the result of the process taking place at the final 
stage of acute inflammation as a result of the interaction of 
cells, i.e., neutrophils, macrophages, platelets or endothelial 
cells (transcellular biosynthesis). The synthesis of D-series 
resolvins from docosahexaenoic acid (DHA) is catalyzed by 
lipoxygenase (15-LOX) or acetylated aspirin cyclooxyge-
nase-2 (COX-2). The initially formed 17R-hydroperoxydo-
cosahexaenoic acid (17R-HDHA) is transformed by epoxi-
dation and with the participation of 5-LOX into D resolvins 
1 to 4, which differ in the stereochemical asymmetry of the 
carbon chain. In parallel, the transformation of DHA under 
the influence of ASA-COX-2 leads to the formation of AT-
RvD1 to 4 [103]. The synthesis of E-series resolvins occurs 
by conversion of eicosapentaenoic acid (EPA) catalyzed by 
ASA-COX-2 and 5-LOX leads to resolvin E1 (RvE1) and 
resolvin E2 (RvE2) formation.

RvD1 interacts with the GPCR-32 receptor as a potent 
agonist to signal for pro-resolving responses but can also 
directly activate FPR2 with a high affinity [77]. Numerous 
studies have shown that resolvins inhibit the migration of 
inflammatory cells, stimulate macrophages to phagocytosis 
of apoptotic neutrophils, inhibit NF-κB activation and secre-
tion of proinflammatory cytokines, thereby contributing to 
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the suppression of inflammatory processes [104]. Moreover, 
RvD1 can promote cell survival by calcium release, Erk1/2 
and PI3K/Akt signaling activation or blocking the TNF-α 
signaling as well as caspase-3 activity. Furthermore, RvD1 
could promote bcl-xL expression, Interaction with FPR2 
negatively regulates downstream IRAK1/TRAF6/NF-κB or 
MAPKs signaling pathways [80, 105]. All of the above data 
indicate that RvD1 may modulate microglial pro-inflam-
matory polarization and may play an important role in the 
resolution of inflammation (Fig. 4).

In line, in PC12 cell cultures the beneficial impact of 
RvD1 on the IL-4 induced expression of alternative micro-
glia stimulation markers was observed. This anti-inflamma-
tory and pro-resolving effects of RvD1 was related to the 
activation of STAT6 and PPAR-γ signaling pathways [106]. 
In addition, it was found that an increase in the production 
of D1 resolvin may be one of the mechanisms protecting 
the cells against ischemic injury, resulting in the protective 
effect on CA1 neurons of the hippocampus and cognitive 
functions. This action of RvD1 is probably also related to its 
modulatory impact on the PPAR-γ pathway [85].

Some data postulate a possible therapeutic potential of 
RvD1 in Parkinson’s disease. It is based on the observa-
tion from the PC12 cultures, where RvD1 dose-dependently 
inhibited MPP + induced upregulation of cell apoptosis and 
cellular damage evoked by TNF-α and IL-6 production via 
suppression and ERK and p-38 pathways [107]. In addition, 
in an in vivo model of Parkinson’s disease in rats induced 
by 30-day LPS administration, the combined treatment with 
RvD1 and RvD2 prevented the development of behavioral 

deficits and the activation of the TLR4/NF-κB pathway 
[108].

Nevertheless, much more data points to the antidepres-
sant potential of RvD1 in many experimental models. For 
instance, it was described, that in animal models of depres-
sion, some resolvins counteracted the depressive-like behav-
ior. In fact, intraventricular administration of RvD1 or RvD2 
attenuated the LPS-induced depression-like behaviors in the 
tail suspension test (TST) and forced swim test (FST) in 
murine chronic unpredictable stress (CUS) model, which 
may indicate an antidepressant effect of RvD1 and RvD2 
[109]. Also, in studies using the murine model of depres-
sion, RvD1 has been shown to have an antidepressant effect, 
strongly dependent on the activation of FPR2 and in con-
sequence, on MAP/ERK, PI3K/Akt but also AMPA sign-
aling [110]. Importantly, in the mouse model of fibromy-
algia-associated depression, intravenous RvD1 and RvD2 
administration increased dopamine and glutamine cortical 
levels and limited the deficiencies of serotonin, suggesting 
the positive effect on neurotransmitter imbalance in depres-
sion [111]. Simultaneously some clinical studies suggest 
that RvD1 may be an attractive marker in manic, depres-
sive and euthymic states of bipolar disorders. In fact, the 
levels of RvD1 were enhanced in manic and depressive 
states in comparison with the appropriate control groups 
[112]. Since RvD1 level correlated with an increase in the 
c-reactive protein, it is possible that RvD1 concentration 
should also be indicative of the presence of a subclinical 
inflammation, especially in the course of acute episodes to 
compensate for the inflammatory response. The usefulness 
of RvD1 as an indicator of the anti-inflammatory process 
has been confirmed by a positive correlation between RvD1 
and neutrophil count. Thus, the assessment of RvD1 may 
be a new potential marker in studies of psychiatric disorders 
associated with inflammatory processes.

Various reports postulate that also RvD1 of the AT-RvD1 
series, which was formed as a result of the action of ASA-
COX2, exerts anti-inflammatory and pro-resolving effects 
and is many times more stable that LXA4 and RvD1. In 
fact, the data from in vitro and in vivo studies show that the 
peripheral administration of AT-RvD1 prevented astroglio-
sis and improved short- and long-term potentiation (LTP) 
enhancement of the hippocampus in mice [113]. Further-
more, improvement in the sensorimotor function and mem-
ory after traumatic brain injury (TBI) in mice leads to the 
conclusion that the reduction of long-term inflammation 
limits the decline in neurological function [114]. Simultane-
ously, beneficial responses were observed after intravenous 
administration of AT-RvD1 expressed as increased levels of 
cortical dopamine and glutamate and reduced depletion of 
serotonin in a mouse model of depression associated with 
fibromyalgia, which suggests that AT-RvD1 activity normal-
izes neurotransmitters levels in depression [111].
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Synthetic FPR2 agonists

Lipoxins and resolvins exert strong endogenous anti-
inflammatory effects but their chemical and metabolic 
liability [115] greatly hamper their development as 
potential pro-resolving drugs. In fact, LXA4 is subject to 
metabolism by prostaglandin dehydrogenase at  C15 and 
ω-oxidation at  C20. Therefore, there has been and still, 
there is a great interest to develop lipoxin analogs less sus-
ceptible to metabolic deactivation with a longer biological 
half-life [116, 117].

The first generation of lipoxin analogs was designed to 
enhance biostability at  C15 and the ω-end. For example, 
compound 1 (Fig. 5) was able to inhibit the transmigration 
of human neutrophils at a dose range comparable to LXA4 
[22]. However, the therapeutic potential of these analogs was 
limited due to rapid in vivo clearance after oral or intrave-
nous administration.

The second generation of lipoxin mimetics featured a 
benzene ring to replace the triene system of LXA4 (the so-
called benzo-LXA4), exemplified by compound 2 (Fig. 5), 
which demonstrated potent potential therapeutic in several 
models of peripheral inflammation [44, 45].

The high lipophilicity of the second generation of lipoxin 
mimetics led to the development of the less lipophilic third 
generation in which the benzene ring was replaced with het-
eroaromatic rings (imidazole, oxazole). These compounds, 
exemplified by compound 3 (Fig. 5), showed in vitro anti-
inflammatory activity being able to attenuate LPS-induced 
NF-κB activity with a potency similar to LXA4 [46, 47] 
and reduced the inflammatory process in vivo in a model of 
zymosan-induced peritonitis. None of the lipoxin mimet-
ics has been tested in animal models of neurodegenerative 
diseases and, thus, there are data about their ability to cross 
the blood–brain barrier and to accumulate into the brain.

Besides lipoxin mimetics, several small-molecule FPR2 
agonists with promising therapeutic potential have been 
developed from both pharmaceutical companies and aca-
demia. The FPR2 agonist BML-111 (Fig. 5) is able to reduce 
inflammation and neutrophil infiltration and to potentiate the 
release of anti-inflammatory factors (e.g., IL-4, IL-10) in 
various inflammatory-based disorders [106, 116, 118–120]. 
A recent study demonstrated the efficacy of BML-111 in the 
cerebral ischemia–reperfusion injury in rats (Fig. 2) [94]. In 
the ischemic brain treatment LXA(4)ME suppressed neutro-
phils infiltration and lipid peroxidation levels; inhibited the 
activation of microglia and astrocytes, reduced the expres-
sion of pro-inflammatory cytokines (e.g., TNF-α and IL-1β), 
while up-regulated the expression of anti-inflammatory 
cytokines (e.g., IL-10 and TGF-β1). Interestingly, the acti-
vation of NF-κB was also inhibited by LXA(4)ME, which 
suggested that LXA(4)ME afforded a strong neuroprotective 
effect against cerebral ischemia–reperfusion injury, and that 

these effects might be associated with its anti-inflammatory 
property [121].

Among the small-molecule FPR2 agonists, the quina-
zolinone derivative Quin-C1 (Fig. 5) is a potent agonist as 
it induces FPR2-mediated intracellular  Ca2+ mobilization 
in the nanomolar range. Quin-C1 showed anti-inflammatory 
properties in a mouse model of bleomycin-induced lung 
injury being able to decrease the expression of IL-1β and 
TNF-α [122]. Another small-molecule FPR2 agonist, which 
is also an FPR1 agonist, is the chloropyrazolone derivative 
“Compound 43” (Fig. 5). This compound is able to mobilize 
intracellular  Ca2+ and inhibit PMN migration stimulated by 
IL-8 and fMLF [123]. In a recent study, the intracellular 
signalling pathways activated by Compound 43 and by the 
pyridazin-3(2H)-one FPR2 agonist known as “compound 
17b” have been comparatively studied evidencing biased-
agonist properties for the two compounds. In CHO cell over-
expressing FPR2 and in primary cardiomyocites “compound 
17b” showed a marked biased effect as it induced ERK1/2 
and Akt1/2/3 phosphorylation along with 30-fold bias away 
from intracellular  Ca2+ mobilization relative to “compound 
43”. In addition, “compound 17b” reduced necrosis in iso-
lated cardiomyocytes and inhibited the release of pro-inflam-
matory IL-1β after stimulation with TGF-β [124].

The pyrrolidinone FPR2 agonist BMS-986235 (Fig. 5), 
recently disclosed by Bristol-Meyer Squibb, shows high 
potency and selectivity for FPR2 and is able to inhibit neu-
trophil chemotaxis and stimulate macrophage phagocytosis 
in cellular assays. BMS-986235 is also able to improve car-
diac function in a mouse model of heart failure [125].

We have contributed to the field of FPR2 agonists by 
developing a series of ureidopropanamide-based agonists 
[126, 127] that has its origin from the gastrin-releasing pep-
tide receptor antagonist PD-175266 and the neuromedin B 
receptor antagonist PD-168368, both potent FPR1/FPR2 
agonists. A medicinal chemistry campaign led to the identi-
fication of the selective FPR2 agonist MR39 (Fig. 5) [126] 
that shows favorable pharmacokinetic properties. In fact, 
MR39 is stable to oxidative metabolism in rat liver micro-
somes  (t1/2 = 48 min) and shows good passive permeability 
through an hCMEC/D3 cells monolayer, an in vitro model of 
the blood–brain barrier. MR39 demonstrated protective and 
anti-inflammatory properties as it lowered IL-1β and TNF-α 
levels in LPS-stimulated primary rat microglia cell cultures 
[126]. Moreover, MR39 and related analogs exerted neuro-
protective effects in LPS-stimulated rat primary microglial 
cells at dose ranges comparable to LXA4 but lasting longer 
(unpublished data). MR39 provided promising results also 
in relation to the shift to the alternative microglia activa-
tion and the synthesis of anti-inflammatory cytokines. Thus, 
MR39 and its analogs are prospective tools to study the ther-
apeutic potential of FPR2 agonists in the pharmacotherapy 
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of CNS diseases [127]. It worth noting that the wide chemi-
cal diversity of FPR2 agonists might imply biased FPR2 
signaling. Therefore, a detailed pharmacological analysis 

of existing FPR2 agonists will provide valuable pieces of 
information in the search of FPR2 agonists effective in the 
resolution of inflammation.

Fig. 5  Structures of the lipoxin 
mimetics and small-molecule 
Formyl peptide receptor 2 
(FPR2) agonists
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Conclusions

The FPR2 is a versatile transmembrane protein belonging 
to the class of G-protein-coupled receptor family. FPR2 
recognize various ligands with significantly different struc-
tures, such as non-formyl peptides, endogenous peptides, 
structurally unrelated lipids as well as synthetic small pro-
resolving molecules. Therefore, FPR2s is highly “promis-
cuous” in terms of ligand recognition, which means that it 
can be activated by agonists with pro-inflammatory as well 
as pro-resolving properties. This creates a unique opportu-
nity for switching from pro- to anti-inflammatory profile of 
FPR2 activation. This is of utmost importance for the treat-
ment of various chronic CNS inflammatory-related diseases, 
since traditional anti-inflammatory therapies only reduce 
the mounting of the inflammatory response but also impair 
some relevant mechanisms that trigger the resolution phase. 
Therefore, a novel and innovative approach to modulating 
the inflammatory response is needed. Opportunities are 
given by SPMs, which in addition to their well-recognized 
role as modulators of inflammation promote RoI by regu-
lating several molecular and cellular pathways. Hence, the 
search for ligands characterized by an adequate pharmaco-
logical profile and bioavailability, which may become widely 
used to promote endogenous RoI through FPR2 activation, 
appears advisable and may be a promising strategy for reso-
lution pharmacology in the future.
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