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ABSTRACT 
 
Diarrhea continues to be a leading cause of death for children under-five. Amongst children 
treated for acute diarrhea, mortality risk remains elevated during and after acute medical 
management. Identification of those at highest risk would enable better targeting of 
interventions, but available prognostic tools lack validation. We used clinical and demographic 
data from the Global Enteric Multicenter Study (GEMS) to build predictive models for death (in-
treatment, after discharge, or either) in children aged ≤59 months presenting with moderate-to-
severe diarrhea (MSD), in Africa and Asia. We screened variables using random forests, and 
assessed predictive performance with random forest regression and logistic regression using 
repeated cross-validation. We used data from the Kilifi Health and Demographic Surveillance 
System (KHDSS) and Kilifi County Hospital (KCH) in Kenya to externally validate our GEMS-
derived clinical prognostic model (CPM). Of 8060 MSD cases, 43 (0.5%) children died in 
treatment and 122 (1.5% of remaining) died after discharge. MUAC at presentation, respiratory 
rate, age, temperature, number of days with diarrhea at presentation, number of people living in 
household, number of children <60 months old living in household, and how much the child had 
been offered to drink since diarrhea started were predictive of death both in treatment and after 
discharge. Using a parsimonious 2-variable prediction model, we achieve an AUC=0.84 (95% 
CI: 0.82, 0.86) in the derivation dataset, and an AUC=0.74 (95% CI 0.71, 0.77) in the external 
dataset. Our findings suggest it is possible to identify children most likely to die after presenting 
to care for acute diarrhea. This could represent a novel and cost-effective way to target resources 
for the prevention of childhood mortality. 
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INTRO 1 

Close to 500,000 children under 5 years of age die from diarrhea every year, mostly in 2 

low- and middle-income countries (LMICs). While children at higher risk of severe outcomes are 3 

more likely to be admitted to treatment[1], there is also growing recognition that the risk of death 4 

remains elevated even after treatment discharge[1-5]. In fact, some evidence suggests that young 5 

children may be at the greatest risk of death after being discharged from care[6, 7]. Clinicians 6 

may benefit from tools to help identify children at greater risk of death, in order to target them 7 

for additional care or follow-up interventions[5, 6].  8 

In this study, we aimed to develop clinical prognostic models (CPMs) to identify those  9 

most likely to die among community-dwelling children under 5 years presenting to care for acute 10 

diarrhea. CPMs are algorithms that aid clinicians in interpreting clinical findings and making 11 

clinical decisions[8]. Building on this body of literature, we used machine learning methods on 12 

data from two large multi-center studies to derive and validate prediction models for death, both 13 

during treatment and post-discharge from treatment, with the hopes of reliably identifying 14 

children that would most benefit from intervention. 15 

METHODS 16 

Study Population for Derivation Cohort 1 (GEMS) 17 

 We derived CPMs for death using data from cases from The Global Enteric Multicenter 18 

Study (GEMS), which has previously been described in-depth[7, 9]. GEMS was a prospective 19 

case-control study of acute moderate to severe diarrhea (MSD) in children 0-59 months of age in 20 

7 sites in Africa and Asia (Mali, The Gambia, Kenya, Mozambique, Bangladesh, India, and 21 

Pakistan). Data were collected in December 2007 – March 2011. MSD was defined as 3 or more 22 
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looser than normal stools in the previous 24 hours lasting 7 days or less, and had to be new-onset 23 

(after ≥7 days diarrhea-free) accompanied by one or more of the following: dysentery (blood in 24 

stool observed by the caretaker, clinician, or laboratory), dehydration (decreased skin turgor, 25 

sunken eyes more than normal, or IV rehydration prescribed or given), or hospital admission. 26 

MSD cases were enrolled at initial presentation to a sentinel health center or hospital serving the 27 

site’s censused population. Participants received care consistent with WHO guidelines, including 28 

antibiotic treatment for dysentery and suspected cholera, zinc therapy, and nutritional support for 29 

children with severe acute malnutrition. Using standardized questionnaires, demographics, 30 

epidemiological, and clinical information was collected at presentation from caregivers. In 31 

addition, clinic staff conducted physical exams, including anthropometry and stool sample 32 

collection which have undergone conventional and molecular testing to ascertain diarrhea 33 

etiology. After approximately 60 (up to 91) days after enrollment, fieldworkers visited the homes 34 

of participants to repeat anthropometry and collect standardized clinical and epidemiological 35 

information.  36 

 Participants’ caregivers provided informed consent, in writing or witnessed if caregivers 37 

were illiterate. The GEMS study protocol was approved by ethical review boards at each field 38 

site and the University of Maryland, Baltimore, USA. 39 

Study Population for Validation Cohort (Kilifi) 40 

 We externally validated our CPMs using data from the Kilifi Health and Demographic 41 

Surveillance System (KHDSS) and Kilifi County Hospital (KCH) in Kenya[2]. Children 2-59 42 

months of age who presented with diarrhea to KCH and were resident within the KHDSS were 43 

enrolled between January 2007 and December 2015. Similar systematic demographic, 44 

epidemiological, and clinical information was collected at admission to KCH. Diarrhea was 45 
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defined as 3 or more looser than normal stools in the previous 24 hours. Inpatient treatment was 46 

provided as per WHO guidelines, including treatment for severe acute malnutrition. Their 47 

survival status after hospital discharge was followed through quarterly census in the KHDSS up 48 

to August 2017.  49 

 Participants’ caregivers provided written informed consent. The study was approved by 50 

the Kenya Medical Research Institute (KEMRI) National Ethical Review Committee. 51 

Outcomes 52 

 We examined three related outcomes: death at any time after enrollment at the health 53 

facility (after admission to the health center), death at the enrolment health center (after 54 

admission, before discharge), and post-discharge death (reported by caregiver (GEMS) or census 55 

(KHDSS) reported death after being discharged from medical care within 91 days post-56 

enrollment). Children who died at the enrolment health center or for whom post-discharge 57 

follow-up data were missing were excluded from the post-discharge death analysis.  58 

Predictive Variables 59 

 Over 130 potential GEMS predictors were considered, including descriptors of the child, 60 

household, and community (Supplemental Table S1). We did not consider aggregate scores as 61 

potential predictors (e.g. wealth index), as their clinical use would necessitate collecting multiple 62 

variables, each of which were already individually considered in the CPM.   63 

Statistical Analysis 64 

 We developed our CPMs using a multistep process. First, we screened variables using 65 

random forests to rank possible predictors by their predictive importance. Random forests are an 66 

ensemble learning method whereby multiple decision trees (1000 throughout this analysis) are 67 

built on bootstrapped samples of the data with only a random sample of potential predictors 68 
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considered at each split, thereby decorrelating the trees and reducing variability[10]. In this 69 

analysis, the number of variables considered at each split was equal to the square root of the total 70 

number of potential variables, rounded down. We defined predictive importance as the reduction 71 

in mean squared prediction error that would be achieved by including the variable in the 72 

predictive model on out-of-bag samples (i.e. observations not in the bootstrapped sample).  73 

 Second, we used repeated cross-validation to assess generalizable model discrimination. 74 

For each of 100 iterations, separate logistic regression and random forest regression models were 75 

fit to a random 80% sample of the full analytic dataset (training set) using a subset of the top-76 

ranked predictive variables. We examined the top 1-10, 15, 20, 30, 40, and 50 of predictors. Each 77 

of these models were then used to predict the outcome on the remaining 20% of the analytic data 78 

(testing set). We used the receiver operating characteristic (ROC) curves and the cross-validated 79 

C-statistic (area under the ROC curve (AUC)) to assess model discrimination. Discrimination is 80 

defined as how well a model can separate individuals who will or will not experience the 81 

outcome, in this case death.  82 

 Third, we assessed model calibration, or agreement between the predicted and observed 83 

risk of the outcome. We assessed calibration-in-the-large, or calibration intercept, by using 84 

logistic regression to estimate the mean while subtracting out the estimate (model the log-odds of 85 

the true status, offset by the CPM-predicted log-odds). We assessed the spread of the estimated 86 

probabilities using calibration slope. To do this, we fit a logistic regression model CPM-87 

predicted log-odds as the independent variable and log-odds of the true status as the dependent 88 

variable. We also graphically assessed “moderate calibration.” We calculated the predicted 89 

probability of death for each child in a given analysis using each iteration of each n-variable 90 

model fit. We then binned these predicted probabilities into deciles, and calculated the 91 
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proportion of each decile who truly experienced the outcome for each iteration of each n-variable 92 

model. We then calculated the mean predicted probability and mean observed proportion for 93 

each decile across iterations, and then plotted these averages for each n-variable model[11] (see 94 

GitHub).  95 

Sensitivity Analyses 96 

 We undertook a variety of sensitivity and subgroup analyses in the GEMS data to 97 

validate our predictive models. First, we explored age-strata specific CPMs for children 0-98 

11months, 12-23months, and 24-59 months. Second, we explored site-specific CPMs. Finally, 99 

we fit a model to one continent and validated it on the other as a quasi-external validation. All 100 

analysis was conducted in R 4.0.2 using the packages “ranger,” “cvAUC,” and “pROC.” 101 

External Validation and Comparison to Known Risk Factors 102 

 We fit our final CPM in GEMS data, and then applied it to the Kilifi data to evaluate its 103 

performance in a new population. As a sensitivity analysis, we fit our CPM to GEMS data only 104 

from Kenya, and evaluated its performance in Kilifi data. As an additional evaluation, we 105 

assessed how our CPM would have performed as a screening test to identify children at highest 106 

risk of dying after presenting to care. We evaluated this by using the final CPM to calculate the 107 

predicted probability of death for children in GEMS. We then explored test performance 108 

(sensitivity, specificity, etc.) of different predicted probability cutoffs. Previous studies have 109 

identified age and MUAC as key risk factors for death following diarrhea[12]. Given the 110 

variables identified as top predictors (see Results), we also compared the performance of our 111 

CPM as a screening tool to specific patient subpopulations known to be at elevated mortality 112 

risk, namely children 0-6 months of age, and children with MUAC<12.5. 113 

RESULTS 114 
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 115 

Death in children following acute diarrhea in GEMS 116 

 There were 9439 children with MSD enrolled in GEMS. Of these, 840 children were 117 

excluded for having missing follow-up data, and 79 were excluded for having follow-up data 118 

outside of the 91 day study follow-up period, leaving an analytic sample of 8520. An additional 119 

460 observations were dropped for missing predictor data, leaving 8060. Of these, 165 (2.0%) of 120 

children died by 91 days after enrollment, including 43 (0.5%) during treatment, and 122 (1.5% 121 

of remaining) after discharge (Supplemental Figure S1).  122 

Derivation of a CPM to identify children likely to die following acute diarrhea using GEMS data 123 

In GEMS data, the top predictors of death after enrollment are listed in Table 1 and were: 124 

mid-upper arm circumference (MUAC), respiratory rate, temperature, age (months), number of 125 

people living in the household, number of days of diarrhea at presentation, how much the child 126 

has been offered to drink since diarrhea began, number of children <60 months old living in the 127 

household, abnormal hair (e.g. sparse, loose, straight, etc.), and number of rooms used for 128 

sleeping, with an AUC of 0.83 (95% CI: 0.81, 0.86) for a 10-variable model. The logistic 129 

regression models consistently performed better than the random forest regressions (see 130 

Supplemental Figure S2), so we present only the logistic regression models moving forward.  131 

The maximum AUC attained with the model predicting any death after enrollment was 132 

0.88 (95% CI: 0.87, 0.90) with a model of 30 variables, while an AUC of 0.84 (95% CI: 0.82, 133 

0.86), 0.86 (95% CI: 0.84, 0.88) and 0.86 (95% CI: 0.84, 0.88) was obtained with a CPM of 2, 5, 134 

and 10 variables, respectively (Supplemental Figure S2). At a sensitivity of 0.80, we achieved a 135 

specificity of 0.75 with 10 predictors, and at a sensitivity of 0.90, a specificity of 0.62 (Figure 1). 136 

For the CPM predicting any death after enrollment, the calibration-in-the-large, or intercept, was 137 
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consistently close to 0 for models with 1 to 10 predictor variables, indicating the predicted 138 

probability of death was close to the average observed probability of death. The calibration slope 139 

was consistently close to 1, indicating the spread of predicated probabilities of death was similar 140 

to the spread of observed probabilities for models including 1 to 10 predictor variables (Table 2, 141 

Figure 2).  The CPM to predict any death (AUC=0.86, 95% CI: 0.84, 0.88) had very similar 142 

discriminative ability compared to the model only predicting death in treatment (AUC=0.85, 143 

95% CI: 0.82, 0.88) and death post-discharge (AUC=0.86, 95% CI: 0.84, 0.88). Top predictors 144 

were similar across all three models. Odds ratios for the 10-variable model predicting any death 145 

are shown in Supplemental Table S2. 146 

External validation of a CPM to identify children likely to die following acute diarrhea 147 

 Given the discriminative performance observed in Table 1 and Figure S2, we elected to 148 

proceed with a single CPM for death after enrollment, with MUAC and respiratory rate as 149 

predictors. The CPM had good performance on internal cross-validation in GEMS (AUC=0.85, 150 

95% CI: 0.82, 0.88), with a decrease in discriminative ability at external validation in Kilifi data 151 

(AUC=0.74, 95% CI: 0.71, 0.77). On average, the CPM underestimated the probability of death 152 

(calibration intercept=0.82, 95% CI:0.68, 0.97), and predictions tended to be too extreme 153 

(calibration slope=0.61, 95% CI: 0.52, 0.70) (Table 2, Figure 2). Model performance was similar 154 

when the CPM was derived only in GEMS data from Kenya and validated on data from Kilifi 155 

(see Supplemental Figure S3 and Table S3). 156 

Discriminative performance of the CPM to identify children likely to die following acute 157 

diarrhea was generally consistent across age and location subpopulations 158 

The results of the sensitivity analyses are presented in Supplemental Table S4. Top 159 

predictor variables were highly consistent across models and included patient demographics, 160 
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patient symptoms, and indicators of household wealth. While the CPM fit to patients age 24-59 161 

months had a slightly higher AUC compared to the overall model (AUC=0.91, 95% CI: 0.87, 162 

0.95 for 2-variables for ages 24-59months vs AUC=0.84, 95% CI: 0.82, 0.86), this is the patient 163 

population with the lowest overall risk of death (Supplemental Table S5). The CPMs fit solely to 164 

each of the GEMS sites in Africa all had similar performance to the overall model, whereas there 165 

were too few outcomes in the GEMS sites in Asia to fit country-specific models (see 166 

Supplemental Tables S4 and S6). In our quasi-external validation, the model was fit to GEMS 167 

data from all the sites in Africa, the AUC was almost identical to the overall model, and 168 

performed excellently in GEMS data from the Asian sites (AUC=0.93, 95% CI 0.90, 0.96) (see 169 

Supplemental Table S4). 170 

A screening tool based on our CPM could improve upon risk-factor based screening to identify 171 

children likely to die following acute diarrhea 172 

 Using the 2-variable CPM derived in GEMS described above, we explored how 173 

accurately our CPM identified children who went on to die during our study period. Using a 174 

CPM-derived predicted probability of ≥0.10 as a positive screen for risk of death, we observed a 175 

sensitivity (Se) of 0.28 and a negative predictive value (NPV) of 0.98 in GEMS. In contrast, 176 

using an observed MUAC of <12.5 as a positive screen for death resulted in a Se of 0.66 and a 177 

NPV of 0.99. However, almost 6 times as many children screened positive for risk of death using 178 

the MUAC-based approach compared to our CPM-based approach (17.5% vs 3.1% of patients 179 

screen positive). Increasing the predicted probability threshold of our CPM screen led to 180 

decreasing sensitivity and fewer children screening positive (see Supplemental Table S7). 181 

DISCUSSION 182 
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We used a combination of machine learning and conventional regression methods to 183 

derive and externally validate clinical prognostic models for death following acute diarrhea. Our 184 

CPM to predict death in community-dwelling children at the time they present for care for acute 185 

MSD had good discriminative ability in the derivation dataset (GEMS AUC=0.84, 95% CI: 0.82, 186 

0.86) as well as at external validation (Kilifi AUC=0.74, 95% CI: 0.71, 0.77). There have 187 

previously been limited efforts to identify which children are more likely to die after presenting 188 

to care for acute diarrhea. While a number of studies have explored risk factors of post-discharge 189 

mortality after seeking care for diarrhea in LMICs [1, 2, 13], prediction tools have been lacking. 190 

Our CPM for mortality suggests the potential for parsimonious clinical prognostic model(s) to 191 

guide appropriate triage and follow-up for young children with acute diarrhea. 192 

In our model derivation, we found a similar set of top predictors for the categories of: any 193 

death after enrollment, death during treatment, and death after discharge, as well as for different 194 

age subgroups and GEMS study sites. Mid upper arm circumference (MUAC) was the top 195 

predictor for all CPMs. Low MUAC has previously been recognized as a good predictor of 196 

mortality[14, 15]. While MUAC is somewhat affected by acute dehydration, it is much less 197 

impacted than other markers of malnutrition (e.g. weight-for-length z-score)[16, 17].  In 198 

addition, MUAC is currently only recommended as an indicator of SAM in children 6 months of 199 

age and above, there is growing evidence in support of its use in children <6 months[18-20]. The 200 

use of MUAC as a key predictor in risk of death is also supported by a recent prospective cohort 201 

study (CHAIN) of children 2-23 months of age who presented to care for acute illness in 6 202 

LMICs. The authors found that nutritional status was directly associated with death 30 days from 203 

admission, capturing a range of underlying risks[5], and that MUAC was a top predictor of 204 

death[21]. 205 
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We found similar discriminative ability for predicting death at different time points (in 206 

treatment, post-discharge), in different age subsets, and at different GEMS study sites. As 207 

predictors in our derivation dataset were collected only at enrollment, we were unable to 208 

examine if updated values at discharge could improve our post-discharge mortality prediction. 209 

However, others have found no differences in cross-validated discriminative ability even with 210 

updated predictors at discharge[5].  211 

Our CPM is promising as a screening tool to identify children likely to die after 212 

presentation, and therefore who may benefit from more intensive care and follow-up. While 213 

young age and poor nutritional status are known risk factors of poor diarrhea outcomes, our CPM 214 

performed better than simple age and MUAC based cutoff screening criteria. The highest 215 

screening sensitivity was achieved by using MUAC<12.5 as a screening cutoff for all children 216 

age 0-59mo (Se=0.66), meaning this screening protocol correctly captured two-thirds of children 217 

who died in the study period. Such screening at presentation would allow for early intervention 218 

and intensive follow-up to potentially avoid these deaths. However, using these criteria, 17.5% 219 

of presenting children would have screened positive. This may be an unrealistically large portion 220 

of children for whom to provide intensive treatment and follow-up care. In contrast, if our CPM-221 

calculated predicted probability of death was used as a screening tool in GEMS, we would have 222 

correctly identified 28% of children who went on to die within the study period, while only 223 

having 3.1% of those presenting to care screen positive. Future research should explore the 224 

effectiveness, viability, and ethics of using such predictive screening tools to allocate limited 225 

resource-intensive acute and follow-up care. 226 

Utilization of a CPM at time of clinical presentation could offer a timely and efficient 227 

way to identify children most likely to benefit from targeted, resource-intensive interventions 228 
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such as additional staffing during treatment, extended treatment at care facility, and at-home 229 

follow-up care post-discharge. However, this assumes the children predicted to die would avoid 230 

death with adequate intervention. A recent systematic review of interventions for post-acute 231 

diarrhea sequelae suggests that the majority of existing intervention strategies are not effective at 232 

reducing mortality[22]. While nutritional status was a top predictor of mortality in our study, it is 233 

important to note that all cases of severe acute malnutrition were treated according to WHO 234 

guidelines. This suggests that treating malnutrition at presentation is insufficient to avert the 235 

mortality seen in our study. Similarly, all cases of dysentery were treated with antibiotics 236 

according to WHO guidelines, but previous research has shown that Shigella spp was common 237 

among children without dysentery (and therefore did not meet antibiotic recommendations) who 238 

died in GEMS[23]. Additional research is needed in this area to develop effective interventions 239 

that reduce longer-term mortality risk following acute diarrhea in young children. 240 

 Our study has a number of strengths and limitations. We derived CPMs for death from a 241 

multi-site, prospective study that included longitudinal follow-up with extensive etiologic 242 

testing. We used random forests for variable selection, which do not require assumptions to be 243 

made about the underlying variables. They also tend to outperform[24] conventional model 244 

building techniques. Our modeling strategy required complete predictor data, and we dropped 245 

approximately 5% of eligible observations in GEMS due to missing predictor data. Fortunately, 246 

the distribution of top predictive variables was generally very similar between dropped and 247 

retained observations (Supplemental Table S8). We were also able to externally validate our 248 

CPM in a similar setting with a similar distribution of patient characteristics (Supplemental 249 

Figure S4), with promising results. However, the patient population was likely less healthy at 250 

presentation in our external validation dataset than our derivation datasets, as evidence by the 251 
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higher mortality rate (Supplemental Table S6). While the CPM had good discriminative ability at 252 

external validation, the model calibration needs improvement and should be prospectively 253 

validated before its ready for clinical application. 254 

In conclusion, we used data from a large multi-country study to derive and an external 255 

dataset to validate clinical prognostic models for death. Our findings suggest it is possible to 256 

identify children most likely to die after presenting to care for acute diarrhea. This could 257 

represent a novel and cost-effective way to target resources for the prevention of childhood 258 

mortality. 259 

 260 
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TABLES 
Table 1: DEATH: Variable importance ordering and cross-validated average overall AUC, AUC by timing of death, and 95% confidence intervals 
for a 5 (bold) and 10 (italicized) variable logistic regression model for predicting death 60/90 days after acute diarrhea presentation (enrollment) in 
children 0-59mo in 7 LMICs derived from GEMS data. 
 Death at any time Death in treatment Death after discharge 
Variable/ 
Patient 
Subset 

n=165/8060 43/8060 122/8017 

1 MUAC MUAC MUAC 
2 Respiratory rate Respiratory rate Respiratory rate 
3 Temperature Age (months) Temperature 
4 Age (months) Temperature Age (months) 
5 Num. people living in 

household  
Num. people living in 
household 

Num. people living in 
household  

6 Num. days of diarrhea at 
presentation 

Num. days of diarrhea at 
presentation 

Num. days of diarrhea at 
presentation 

7 Since diarrhea starts, 
how much offering child 
to drink 

Num. children 
<60months live in 
household 

Since diarrhea starts, 
how much offering child 
to drink 

8 Num. children 
<60months live in 
household 

Dad_live Num. children 
<60months live in 
household 

9 Abnormal hair (e.g. 
sparse, loose, straight) 

Num. rooms used for 
sleeping 

Num. rooms used for 
sleeping 

10 Num. rooms used for 
sleeping 

Since diarrhea starts, 
how much offering child 
to drink 

Abnormal hair (e.g. 
sparse, loose, straight) 

AUCs 0.86 (0.84, 0.88) 0.87 (0.84, 0.89) 0.85 (0.83, 0.87) 
 0.86 (0.84, 0.88) 0.85 (0.82, 0.88) 0.86 (0.84, 0.88) 
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Table 2: Calibration intercept and slope 
Number 
of 
predictor 
variables 

GEMS 0-59mo 
Intercept (95% CI) 

Slope (95% 
CI) 

GEMS-derived 
model applied to 
KILIFI data 
Intercept (95% CI) 

Slope (95% CI) 

1 3.6 x 10-2 (-3.4 x 10-1, 3.8 x 10-1) 1.0 (0.75, 1.3)   
2 3.5 x 10-2 (-3.4 x 10-1, 3.8 x 10-1) 1.0 (0.76, 1.3) 0.82 (0.68, 0.97) 0.61 (0.52, 0.70) 
3 2.7 x 10-2 (-3.5 x 10-1, 3.7 x 10-1) 1.0 (0.77, 1.3)   
4 2.4 x 10-2 (-3.6 x 10-1, 3.7 x 10-1) 1.0 (0.79, 1.3)   
5 2.1 x 10-2 (-3.6 x 10-1, 3.7 x 10-1) 1.0 (0.78, 1.3)   
6 1.7 x 10-2 (-3.7 x 10-1, 3.6 x 10-1) 0.99 (0.75, 1.2)   
7 2.7 x 10-3 (-3.8 x 10-1, 3.5 x 10-1) 0.95 (0.73, 1.2)   
8 1.1 x 10-2 (-3.8 x 10-1, 3.6 x 10-1) 0.95 (0.73, 1.2)   
9 1.8 x 10-2 (-3.7 x 10-1, 3.7 x 10-1) 0.94 (0.72, 1.2)   
10 2.5 x 10-2 (-3.6 x 10-1, 3.8 x 10-1) 0.93 (0.71, 1.2)   
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FIGURES 
Figure 1: ROC curves: Average ROC curves from the cross-validated logistic regression models predicting growth faltering and death with 2, 5, and 
10 predictors. The faded dashed lines represent examples of specificities (1- false positive rate) that could be achieved with a sensitivity (true positive 
rate) of 0.80 for prediction of each outcome. 
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Figure 2: 2-Variable CPM for death after presentation: Calibration curve and discriminative ability of 2-variable (MUAC, respiratory rate) model 
predicting death after presentation to care for acute diarrhea in LMICs. 
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