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Abstract

The necessity for scholarly knowledge mining and management has grown significantly as academic literature and its linkages
to authors produce enormously. Information extraction, ontology matching, and accessing academic components with relations
have become more critical than ever. Therefore, with the advancement of scientific literature, scholarly knowledge graphs
have become critical to various applications where semantics can impart meanings to concepts. The objective of study is to
report a literature review regarding knowledge graph construction, refinement and utilization in scholarly domain. Based on
scholarly literature, the study presents a complete assessment of current state-of-the-art techniques. We presented an analytical
methodology to investigate the existing status of scholarly knowledge graphs (SKG) by structuring scholarly communication.
This review paper investigates the field of applying machine learning, rule-based learning, and natural language processing
tools and approaches to construct SKG. It further presents the review of knowledge graph utilization and refinement to provide
a view of current research efforts. In addition, we offer existing applications and challenges across the board in construction,
refinement and utilization collectively. This research will help to identify frontier trends of SKG which will motivate future

researchers to carry forward their work.

Keywords Scholarly communication - Knowledge graph construction - Knowledge graph embedding - Utilization

Introduction

With the expansion of academic literature in recent years,
retrieving accumulated knowledge from documentation has
become a significant problem. Document and keyword-based
information retrieval systems are no longer adequate to
explore the insights of the scholarly domain. Document-
centered scholarly communications contain loads of content
to mine, search and recommend. To achieve this criterion,
knowledge must be gained through the use of automated tools
to utilize the scholarly infrastructure. However, the knowl-
edge presented in scholarly infrastructure resides in the form
of text, tables, figures, algorithms, charts, etc., and automatic
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knowledge curation from these components is not easy due to
improper structure. Though scholarly knowledge is ambigu-
ous in nature, the requirement of standard digitalization,
organization, and collaborative knowledge representation is
an urgent need. In practice, the field of scholarly communica-
tion has been fueled by millions of heterogeneous structured
and unstructured data resources, which have a high capacity
to contain a network of relationships. It is essential to obtain
new insights and leverage the organizational structure from
the network of scientific knowledge.

To accomplish this task, semantic representation provides
potential benefits to design structured information systems
in the scholarly domain. Semantic representation refers to
meaningful concepts present in the field, and richer knowl-
edge can be derived from concepts and relationships. Thus, a
semantic model can lead to more prosperous information pro-
cessing by metadata acquisition, management, publication of
scholarly knowledge by applying supervised, unsupervised,
and natural language processing techniques. To navigate
and discover, semantic technologies involve taxonomy con-
struction, database storage, retrieval, and visualization of the
connected scholarly network. Aiming to fill this gap, stud-
ies on knowledge graphs build upon scholarly domain are
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Fig.1 Classification of
scholarly knowledge graphs
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developed, which expresses semantics network and digital
objects linking in fewer efforts. Knowledge graphs are useful
for determining semantic relatedness by taking into account
the hierarchical structure of the scholarly network as well
as all forms of semantic relationships between concepts.
Knowledge graphs not only measures semantic similarity
based on the information gained from large corpora, but also
calculates the semantic path distance present between two
concepts. Specifically, knowledge-based semantic similarity
approaches provide in-depth information about the concepts
derived from concept taxonomies. For example, when using
a retrieval system to find a certain article, the user’s queries
are composed of keywords with a limited query length. In
this scenario, analysis of bag-of-words and semantic struc-
ture is insufficient to provide an accurate response to a user
question. Knowledge graphs combine the capabilities of con-
cept classes and their instances with the help of ontology and
capture in-depth semantic relationships to find similar article.

Overall, the notion of knowledge graphs possesses a
close connection among semantic web, machine learning,
graph databases, and knowledge engineering. Knowledge
graphs are a suitable infrastructure to integrate, publish, store,
access, and evaluate scholarly semantic communication.
Recent advancements in the field of knowledge graph-based
representation research focuses on the knowledge acqui-
sition, knowledge graph creation, triple extraction, triple
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classification, knowledge graph completion. Thus, several
real-world applications have been brought into consideration
such as collaboration recommendation, scientific commu-
nity analysis, topic mining, clustering scientific fields, link
prediction and automatic creation of scientific document’s
components (title, abstract, survey tables, etc.), summariza-
tion, hypothesis generation, etc. While analyzing the most
important research works and identifying probable future
research topics, we focus on more than one aspect depict-
ing in Fig. 1:

Construction: Discovering and deriving more that what
stated explicitly by leveraging reasoning algorithms for
ontologies.

Refinement: Representing graph in dense, continuous and
low-dimensional vectors to perform machine learning tasks.

Utilization: Enabling the graph to be applicable for interac-
tive delivery of results for naive users and stakeholders.
This paper focuses on presenting a current overview of
knowledge graph creation in the scholarly area. In the lit-
erature, many comprehensive survey papers for knowledge
graph [1], domain-specific knowledge graphs such as smart
grids [2], industrial products [3], manufacturing and produc-
tion [4] biomedical domain [5] and knowledge graphs with
recommendation engines [6] exist, whereas no survey paper
focuses on concept of knowledge graphs in scholarly domain.
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This motivates us to investigate at the various aspects of the
knowledge graph in the scholarly domain and summarize the
research findings. To recognize, investigate, and interpret all
relevant signals connected to a specific research question, a
well-defined approach is employed, which is unbiased and
reasonable.To respond to the formulated questions, the data
retrieved from the final collection of publications chosen for
review was analyzed. The following are the primary contri-
butions of this paper:

e We conduct a review of the knowledge graphs con-
structed in scholarly domain from the three perspective.
The work in the article follows a methodology that pro-
vides in-depth detail of the literature focusing on various
scholarly knowledge graph construction, utilization and
refinement techniques.

e This survey focuses on the construction of KG that further
divided into Information extraction (IE), creation method
and Schema/ OpenlE tools based integration methods.

e For utilization, graph exploration, querying and
visualization-based studies are covered.

e For refinement, we further divided it into Translation
based, Multiplicative and deep learning-based embed-
ding methods that provide the view of triple extracted,
task performed, domain used and evaluation method
applied.

e We provide wide coverage of many applications such as
open knowledge graphs, ranking and recommendations,
question answering and academic mining as an emerging
applications. Challenges faced during the construction of
knowledge graphs are also elaborated.

The remainder of the paper is laid out as follows. Research
Questions along with literature search and selection criteria
is defined in “Research Methodology”. The background of
the large scholarly network domain, the concept of linking
knowledge with scholarly communication, and the scholarly
domain specific infrastructures are summarised in “Back-
ground concepts and open scholarly graphs”. “Knowledge
graph construction” describes the process of information
extraction focused on scholarly document-centric paradigms
and classification of knowledge graph construction tech-
niques. “Knowledge graph utilization in scholarly domain”
focuses on the utilization of constructed knowledge graphs
that allows the usage and visualization of information.
“Knowledge graph refinement” discusses various knowledge
graph refinement methods applied to resolve the major chal-
lenge of knowledge graph completion. “Scholarly knowledge
graph evaluation, ontologies, data models” discusses the
evaluation, ontology used and overview of data models.
“Scientific knowledge graph application/tasks” and “Future
directions/challenges” targets the applications in scholarly
knowledge graph domain and summarizes the future direc-

tions in this research area respectively. Finally “Conclusion”
concludes the paper.

Research methodology
Research questions

The emphasis in this study is fully on defining and answering
the formulated research questions, as well as exploring the
gathered works on scholarly Knowledge graphs from diverse
perspectives. Our paper covers three categories horizontally,
i.e., knowledge graph construction (KGC), knowledge graph
utilization (KGU) and knowledge graph refinement (KGR).
Moreover, how KGC, KGU and KGR are divided into cate-
gories is mentioned in Table 1 along with the motivation. Our
objective is to unravel the research on the topic from various
perspectives and conduct the review that is elaborated from
the viewpoints of research questions. There are following
research questions that can be answered.

Literature search and selection

An effective search strategy is formed, taking into account
a vital pre-requisite, to initiate the survey process through
digital libraries to obtain appropriate literature. An auto-
matic search was conducted in this study, taking into account
digital libraries such as the ACM Digital Library, Springer,
ScienceDirect and IEEE xplore. In addition, Google Scholar
also produced a robust base of primary literature relevant to
the keywords. Furthermore, for identifying relevant research
works, we identified the most prominent conferences such
as ISWC, TPDL, WWW, JCDL, CEUR, SAC, CIKM, KDD,
to highlight a few. For the first level basic search, we
investigated for different keywords for such as “TOPIC=(
Knowledge graph) AND (Scholarly OR scientific OR lit-
erature OR Academic); Time Span: 2015-2021; Language:
English”. 2772 items were found relevant through first round
searching and after removal of duplicates, selected articles
were narrowed down to 1630. Then a next level search was
conducted on title to meet the relevance criteria and 527
articles were filtered. We examined more than 140 research
articles refined on the basis of abstract and 70 on the basis of
full-text of the paper.

Background concepts and open scholarly
graphs

To draw the relevant ground for our study, a brief intro-
duction to knowledge graphs is provided by summarizing
the main steps of its working procedure. In this section, we
also introduced the background work from the perspective of
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Table 1 Research questions and motivation

Research questions (RQ)

Motivation

I. Research studies in schol-
arly knowledge graph con-
struction (KGC)

What type of entities and
relationships are extracted
during information extrac-
tion task?

What approaches have been
used for the scholarly knowl-
edge graphs construction?

What are the ontology and
OpenlE tools applied?

II1. Research studies in
knowledge graph utilization
(KGU)

What are the various studies
that are deployed and lever-
aged knowledge graphs as
application service?

II. Research studies in
scholarly knowledge graph
refinement (KGR)

What are the application sce-
narios have been covered in
KGR along with embedding
approaches used for data
completion task?

There is a need to review specific
set of entities and relations extracted
from literature along with specific
domain in order to identify current
status in various domains

A most vital step in construction
of knowledge graphs in scholarly
domain is knowledge extraction
completed with the help of extrac-
tion tools need to be explored.
Along with this, type of knowl-
edge discovery is also an important
aspect to cover. The ways of storing
and visualize the knowledge graphs
to provide various application ser-
vices is a promising field

It is significant to provide
an  overview of  ontology
designed/reused along with Off-the
shelf tools applied on scholarly
knowledge graphs to exhibit the
importance of semantic representa-
tion of scholarly communication

Various Knowledge graph utiliza-
tion studies along with link, key fea-
tures, objective, domain and map-
pings are important attributes to
discuss. This belongs to storing,
accessing and updating the required
knowledge in suitable output for-
mats

It is important to analyze the
approaches for knowledge graph
embedding type, triple type, dataset,
evaluation will be covered along
with application scenarios in
the context of recommendation
and data exploration in scholarly
domain

large-scale scholarly networks and its linking with semantic
resources to obtain scholarly knowledge. In addition, to pro-
vide the understandable representation of knowledge graph
in scholarly domain, scholarly knowledge graph and its con-
struction workflow is described along with the existing open
scholarly graphs.

@ Springer

Knowledge graph basics

KGs have risen in prominence as a result of a rapid transition
from typical linked data and knowledge engineering toward
innovative knowledge-based applications. A basic step in
laying the foundation for our research is to establish a defi-
nition for Knowledge Graphs (KG) as well as key concepts
related to knowledge graphs. The term knowledge graphs
(KG) first populated in 2012 by Google and many formal
definitions have been proposed in the literature [7]. Knowl-
edge graphs are gaining traction in a variety of academic
and industrial sectors with expanded concepts, inspired by
Google’s shining example. A misleading assumption is that
the term knowledge graph is often used interchangeably with
knowledge base or ontology. A knowledge graph is gener-
ally defined as a data structure that describes concepts and
their interactions using a directed, edge labeled graph, often
organizing them in an ontological schema. On the web, a
number of knowledge graphs have been made available that
follow a variety of data representation standards. Along with
Google knowledge graph, Freebase, YAGO, NELL, Con-
ceptNet, Wikidata, DBpedia, Facebook’s entity graph, etc.
are frequently mentioned in the literature. However, all these
implementations differ in architecture, technology used and
functionality, making it difficult to reach a consensus and
define a knowledge graph.

Based on the basic conceptual analysis, in gensis the key
components of knowledge graph explained in below men-
tioned sections. Some common characteristics are: Ontology:
Structure of large-scale KG is largely depends on using
an ontology that defines a set of concepts with properties
and associations across a single or multiple domains. KG
provides a common structure allowing various applications
to share similar ontology to reuse consisting classes and
properties. Triple: To obtain compatible data in the form
of triple, the infrastructure of KG demands translation of
data into RDF that ensures the comprehensible representa-
tion of assertion. Storage: The creation of the KG involves
knowledge curation from structured and unstructured sources
containing heterogeneous formats such as CSV, JSON, and
XML. Querying: As data model heterogeneity is huge, graph
DBMS and adaptive querying via different query languages,
e.g., Cypher, SPARQL endpoints, SQL and API call is an
important step.

Overview of large-scale scholarly networks and its
linking with semantics

In the literature, scholarly communication [8] possessed
a long history in the fields of artificial intelligence and
information science. The idea of representing scholarly com-
munication in the form of networks is first implemented
decade ago as citation networks [9], academic collaboration
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Fig.2 Pictorial view of example of entities/relationships and triples in scholarly knowledge graph (SKG)

networks [10], advisor—advisee networks [11,12], biblio-
graphic coupling networks [13] and many more [14]. In
this context, many scholarly data-driven activities such as
academic data mining [15], scientific recommendation [16],
scholar profiling [17] and scientific impact evaluation [18]
have been thoroughly examined. Scholarly documents can
be retrieved by crawling and extracting using structural and
content-based features [19]. In order to make the data eas-
ily discoverable, Digital Object Identifier (DOI) is used to
facilitate accessing and traceability. Despite the fact that
valid information is easily accessed through the web and
open data, generating scholarly network is challenging due
to the varied nature of the scholarly data models. The study of
scholarly networks entails examining the structural dynamics
using data analysis methodologies. Various topological net-
work similarity-based methods such as random-walk [20]
and modularity-based topological approaches merely con-
sider the complete set of attributes. Due to the large quantity
and dimensionality of scholarly data, traditional graph-based
approaches that only deal with structural analysis cannot
perform effectively. The network embedding method [21]
has lately gained popularity as a method for learning low-
dimensional representations of nodes in large networks. Link
prediction, node classification, and community discovery are
justafew of the network-based applications that have demon-
strated its efficacy.

Modern information systems require discovery of struc-
tural as well as semantic patterns based knowledge rep-
resentation of the data model, resulting in a more robust
framework for data processing and querying. As a result,
several approaches of embedding scholarly semantic infor-
mation into networks have been developed for a variety of
applications. Semantics refers to the structure and meaning
of the text in scholarly documents that are hardly accessi-
ble and difficult to represent in human-readable format as
compared to the character and words. To utilize the hidden
semantics between the links in the network, integration of
linked open data [22], graph databases and semantic web has
been explored. It has been noticed that, challenges such as
heterogeneity and scalability have been handled efficiently
with the help of linked data sets of scholarly documents. The
use of natural language processing (NLP) technologies with
notions of URIs, querying the data using RDF and SPARQL,
and visualizing results to present them in a more intelligible
way are the fundamental cornerstones of semantic schol-
arly communication. A formal knowledge representation of
scholarly data includes creation of graphs supporting repre-
sentation that is semantically consistent and structured.

Scholarly knowledge graphs

In most fields, graphs provide a more understandable and
concise representation of knowledge. Scholarly Knowledge
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graph [23] is a semantic directed labeled graph composed
of set of entities lined together with relations where nodes
represent entities and edges represent relations. A link
from a paper to its author, for example, must connect an
instance of type < Publication > to an instance of type
< Author >. All the entities and relationships contains
label having semantics which are believed to come from
an ontology. Triple, a common way of representing rela-
tionships in a knowledge graph, is in the form of fact
representing as < Subject, Predicate, Object > where
Subject belongs to the domain, Predicate belongs to rela-
tion set and Object belongs to the range of the relation.
Two common instances of such triple in scholarly knowl-
edge graph are < Publication, cites, Publication > and
< Author, has_paper, Institution > as shown in Fig. 2.
Such homogeneous and heterogeneous relations respectively
can be incorporated in the knowledge graph and enable it to
link far-away entities in a meaningful and distinct way.

Lifecycle of knowledge graph incorporates various steps
and tasks to perform A typical set of components are
connected together to form Scholarly knowledge graph con-
struction workflow from data representation to integration
with applications as shown in Fig. 3:

e Semantically represented data model for scholarly com-
munication: Data acquisition, designing of data struc-
tures for databases and domain ontology to represent the

conceptualization of the domain are the preliminary step
for knowledge graph construction. Data acquisition of the
subject domain gains high importance due to the property
of selecting representation of knowledge in scalable way.
which contains entities (article, authors, venue) and rela-
tionships (cites, written_by) connecting those entities are
included. Several labels are also connected which shows
attributes and constraints associated with it. Designing
the domain ontology to define classes and properties for
unambiguous representation is an important task also.
Annotation is the step in pipeline to annotate the content
of scientific article with ontological concepts. However,
acquiring the data from multiple resources and design of
ontology from scratch are the challenging tasks as there
many constraints have to be applied according to the sub-
ject matter.

Information extraction, mapping extractions to an ontol-
ogy and knowledge graph creation: Information extrac-
tion (IE) from scientific texts is a critical step in creating
fine-grained scholarly knowledge graphs that charac-
terize and connect scholarly articles. The intricate step
of domain-specific and domain-independent informa-
tion extraction requires extraction of scholarly entities
and relationships. To follow an appropriate workflow,
extracted knowledge is required to be mapped that
reflects important rules and ontology patterns. Knowl-
edge graph lifecycle starts with the process of extracting
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Fig.3 Conceptual view of the process of data mining in scholarly knowledge graphs
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semantically correct annotated data and utilizing map-
pings to represent in a structured manner such as triple-
store.

Knowledge curation and quality assurance by domain
experts: The rapid growth of scholarly metadata has been
largely contributed by human which generates blatant
errors. Measurement of quality (correctness and com-
pleteness) is accomplished by sampling with human
moderators or crowdsourcing platforms. Knowledge
graph curation process ensures the improvement in
knowledge graph in terms of cleaning, organization,
assessment and enrichment. Proposing an open and dis-
joint framework facilitates these tasks to be returned
as a high-quality architecture over the heterogeneous
resources. In addition to this, accurate communication
of the properties and conditions to the mapping cre-
ator ensures flexible, reusable and significantly improved
knowledge graphs.

Management, deployment and application services:
Automated semantic and syntactic integration of hetero-
geneous sources in knowledge graphs leads to manag-
ing machine understandable form and grant application
developers to fabricate intelligent applications. Investi-
gating search engines, ranked entities, recommendation
services and question answering systems are remarkable
applications powered by knowledge graphs.

Common scholarly communication infrastructures

The scholarly communication community has derived numer-
ous knowledge representation related projects listed in
Table 2. Premium academic search engines exploits the
scholarly data into knowledge graph structures that interlink
the research entities through metadata. These infrastructures
not only focuses on scholarly literature but also aims to gen-
erate a standardized system to gain linking between various
artifacts such as authors, funders, projects, grants, venues, or
source codes at semantic level. Common scholarly commu-
nication open graphs serves a number of purposes:

()

(b)

The purpose of the scholarly infrastructure is to generate
high coverage, high quality and uniform representation
of the artifacts. For example, content of ResearchGraph
[24] was originally provided in XML format, but was later
made available to third-party applications using JSON-
LD and Schema.org.

The content of scholarly graph aims at integrating and
aggregating various metadata records and supports ana-
lytics, monitoring, usage statistics, trends, discovery,
recommendations and research impact assessment appli-
cations. For example, ORKG [25] enable features such
as comparing research contributions [26], related work
similarity [27] and automated extraction of information

()

(d)

(e

from literature [28]. Similarly, OAG [29] a heteroge-
neous entity graph is considered as benchmark for author
name disambiguation, citation networks and comparing
methodologies.

Goal of scholarly infrastructures is to investigate applica-
tions for enrichment in order to promote discoverability
of connections and investigation of artifacts, taking into
account big data sets and linked data technologies. For
example, ORKG incorporates scholarly literature inte-
grated with data repositories to provide applications such
as recommendations, reuse and visualization. In addition,
OpenAIRE [30] connects trusted data sources to aug-
ment metadata and delivers value-added services such
as mining, monitoring, and impact analysis. Infrastruc-
tures such as ORKG and OpenAIRE consider resources
as fundamental entities to create the graph by employing
the enrichment techniques. However, PID [31] instead of
adapting this paradigm considers unique universal Per-
sistent IDs itself from PID providers as the fundamental
entity and create connections such as ORCID ID for
researcher, Institution ID, and DOIs for metadata.

The system’s usability and performance must be eval-
uated as part of the process of obtaining open source
knowledge from various sources. To create high-quality
data crowd-sourced comments, questionnaires, surveys,
and comparative metrics are employed. Furthermore, the
participation of open access platforms, repositories, and
frameworks (services and software) such as DBLP, arXiv,
and EasyChair is growing.

All these endeavors are aimed at providing tools and ser-
vices to assist research communities adapt Open Science
publishing paradigms. For example, to make information
retrieval easier, a faceted search system [32] is deployed
to represent research contributions over ORKG.

A number of open scholarly infrastructures do not offer
services related to bibliographic data such as article
citation and required to collaborate with bibliographic
databases directly to support digital libraries. To encour-
age the community to create more realistic domain-
specific infrastructures, a ready-to-use comprehensive
benchmark data set as well as data injectors are needed. It
is observed that most of the open scholarly graph inves-
tigates either the implicit or explicit representation and
combining them in an unified knowledge graph remains a
challenge. Furthermore, open scholarly graphs can push
the boundaries of machine learning techniques and nat-
ural language processing approaches entirely, allowing
for scalability and resilience.
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Knowledge graph construction

Semantic richness and interlinked description of the con-
tent of scientific information has gained attraction over the
last few years. By transforming scholarly document-centric
workflows into knowledge graph information flows, the
structure represents information semantically and express
deep hidden interlinking among entities. The scholarly
document-centric paradigm, on the other hand, has been
critiqued for not allowing for automated knowledge process-
ing, categorization, and reasoning. As a result, Information
extraction (IE) of scientific entities and connections is
required for organizing scientific information into structured
knowledge bases. SKGs are scholarly knowledge graphs
that incorporate metadata about research publications such
as researchers, institutions, organizations, research subjects,
and affiliations. However, various information extraction
techniques are described in the literature to obtain fine-
grained scholarly knowledge graphs. In order to automati-
cally construct knowledge graphs, three categories such as
domain-specific and domain-independent and cross-domain
information extraction can be considered where input text
and output format is crucial.

Domain-specific IE refers to extraction with the intuition
that most scientific documents does not share common set
of concepts and target specifically semantic depth of certain
concept. This paradigm presents specific set of scientific con-
cepts that can not generalize across various domains well.

Domain-independent IE paradigm presents a generic set of
scientific concepts with no targeted information. The idea
behind this extraction type is to extract all possible informa-
tion structure present in the scientific document that is not
normalized and canonical.

Cross-domain IE motivate to create relationships
between entities across numerous domains with a high level
of coverage, unless the structures are similar but the roles are
different. Usage of external data sources such as DBpedia,
which extracts information from Wikipedia is integrated in
scholarly domain to create extended relationships and sup-
port cross-domain text classification tasks [39].

It is crucial to highlight that limited human supervision
regarding the need for hand-crafted rules or human-labeled
data set is required. However, manual intervention is still an
essential step as it helps create gold standard data set genera-
tion for evaluation purposes. Aiming to fill this gap between
knowledge exploitation ways in the defined domain, the gen-
eral construction of KG has been customized to fit in various
use-cases of the scholarly domain. The construction process
incorporates top-down, bottom-up and mixed way of building
knowledge graphs. The preset entity and relationship model
graph may considerably improve the building quality and
application efficiency of knowledge graphs in the scholarly

domain. The knowledge graph construction can be classified
into following categories based on the method used:

e First, studies that intended towards KG development uti-
lizing machine learning techniques to leverage contextual
data. Because the scholarly network has billions of nodes
and edges, feature engineering and vector-based repre-
sentation are becoming increasingly popular methods for
processing raw data. For instance, techniques like deep
neural networks and word2vec are employed to obtain
precise syntactic analysis.

e Second, NLP techniques are widely employed since
most strategies rely on the popular pre-trained language
model and its modifications to do the extraction task.
Technically, KG augmented by deep learning and NLP
techniques better examines topological relationships and
semantic meanings respectively, resulting in notable suc-
cess in comprehending difficulties in scholarly domain
and retrieving relevant solutions.

e Pattern-based acquisition methods are utilized to acquire
the salient phrases from research contributions and attain
phrasal granularity. The title of a scientific publications,
for example, follows grammatical rules and includes sci-
entific terminology at certain locations.

We focused and organized work here according to the order
of approach used from machine learning approaches to
NLP-based approaches and hybrid to rule-based approaches.
This section summarizes the significant efforts involved in
the direction of development/construction process scholarly
knowledge graphs. The structure is simply logical, with the
goal of maximizing the reasoning in our scenario.

Information extraction

Information extraction of scientific documents is different
from the traditional extraction methods as the understand-
ing of full document is required compared to sentence level
extraction. Concepts represent the implicit correlation and
binary relationship from the perspective of conceptual hierar-
chy. The concept level hierarchical relationship is represented
by entities and relationships, which are the extent and intent
level objects, respectively. Named entities are used to repre-
sent general domains and KGs are constructed through entity
and relation extraction often. However, subjects and objects
also used to identify concepts and their attributes in scientific
statements guided by the ontology.

Entity/Relation extraction: In [40], a unified multi-task
learning model SCIIE is developed for entities recognition,
relation extraction, and coreference clusters extraction. Six
types for annotating scientific entities (Task, Method, Met-
ric, Material, Other-ScientificTerm and Generic) and seven
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relation types (Compare, Part-of, Conjunction, Evaluate-for,
Feature-of, Used-for, HyponymOf) is defined. A BERT-
based model variant [41] is explored to identify relation
types in knowledge graphs in scholarly domain. Farber in
[42] developed a framework for extracting entities such as
scientific methods and data set along with classification
and aggregation. Similarly, several frameworks effectively
revolve around the extraction of scientific metadata from
scientific literature, SCIREX (Dataset, Metric, Task, Method)
[43], TDMSci (Tasks, Datasets and Evaluation Metrics) [44].
CORD-19 Named entities [45] are extracted and represent
article’s title, abstract and body in RDF triplet format. In
order to explore correlations with associated works rather
than only its metadata, online scientific profiling [46] have
been proposed to leverage the structure from scientific doc-
uments. CitationlE [47] is a domain-independent document
level relation extraction. Another domain-independent NER
method, CORD-NER [48] annotation based on pre-trained
and guided supervised NER methods is implemented and
tested on different data set. SCIBERT [49] performed exten-
sive experimentation on multi-domain corpus. Brack in [50]
utilized abstracts of scholarly documents of ten different
domains and annotated corpus is evaluated by human anno-
tators. A cross-domain IE, for example PLUMBER [28]
is presented comprising 33 reusable components and 264
different pipelines. The overall framework is trained over
DBpedia and ORKG. Named entity extraction approaches,
particularly those based on neural networks, require a large
quantity of training data to get effective results. Because they
neglect the context, the majority of IE systems are incapable
of capturing the whole expression of a sentence.

Concept level extraction: To understand the structure and
evolution of scientific fields, concepts are extracted from
articles and represent scientific field as a knowledge graph.
SciKGraph [51] proposed a framework to structure scien-
tific field from the documents of that field by considering
extracted concepts and keyphrases. Concepts are extracted
and linked from Web of Science and Artificial Intelligence
data using Babelnet graph-based approach and clustered on
the basis of modularity. Similarly, an unsupervised model
[52] is proposed to extract is-a and ispropertyof relations
among entities using Part-of-speech (PoS) tagger. A tax-
onomy is constructed by combining the local taxonomies
identified by the triples and further reduced to solve entity
merging problem. The approach is compared to Open IE tools
such as StanfordOpenlIE and Reverb. It is important to note
that, the evolution of the scientific field not only depends
on the structure but also the concepts in common by cal-
culating the similarity of the clusters. Same cluster represent
same subarea and concepts are included or excluded from the
subarea. Since most of the existing information extraction
systems consider triples for reasoning in KG construction
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without considering specific property in scientific statements
to compensate the limitation of flat representation of triples.
In this view, [53] represents three layered SKG that extends
BiLSTM model with MIMO sequence labeling approach
to extract traditional triples as well as condition tuple for
statement nodes. Proposed methods that extracts tuples out-
performed as compared to existing OpenlE systems such as
AllenNLP and Stanford OpenlE. In the context of structur-
ing extra information instead of flat triple representation, a
domain-independent Research Contribution Model (RCM) is
proposed [54] that includes the schema of six core concepts
by leveraging ontology.

Table 3 shows that the majority of work has been published
on entity and relation level extraction. Input/Field repre-
sents the type of information considered for the extraction. A
majority of studies have considered sentences from full-text
of scientific articles rather than only abstract or title. There are
only a few research on fact representation that have been pub-
lished. However, there are only a few research that focus on
extracting relationships between items from scholarly litera-
ture. In knowledge header, domain refers to the field of study
that is selected to perform evaluation, e.g., Domain-specific
(DS), Domain-independent (DI) and Cross-domain (CD).
Approach refers to the algorithms applied on data and many
authors have applied concepts of Conditional Random Field
(CREF) in tasks such as NER, sequence labeling and classifi-
cation. A set of NLP and Ml tasks are performed where NER,
RE, CR, SL, TE, EL, RL and CLS refers to named entity res-
olution, relation extraction, coreference resolution, sequence
labeling, triple extraction, entity linking, relation linking and
classification respectively. Source integration refers to the
vocabularies, language models, open scholarly infrastruc-
tures used to integrate and enrich the process of information
extraction. P, R and F represents precision, recall and F-score
respectively that have been calculated for majority of studies
for evaluation. As far as concept level extraction is concerned,
a handful studies are focused on extraction of phrases.

Construction method level creation

Over the past few years, relevant techniques have been exten-
sively used for the various applications such as scientific
community analysis, clustering scientific fields and link pre-
diction for research collaboration. Machine Learning and
Artificial Intelligence have become the preferred methods
for the processing and analysis of big data. Through semi-
automatically extraction approach, the models are capable to
collect and import entities captured from data sources.

Neural network-enabled KG creation Various data-driven
machine learning algorithms have been widely used in schol-
arly knowledge graph’s knowledge acquisition, construction
and extracting critical information from vast data set. These
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Table 3 Information extraction from scientific documents

Knowledge

Extraction

References

Metrics

Source integration

Tasks

Domain Approach

Fact

Input/field

Level

)
Q
<
£
=
|53
Q
< by
ST S T T <9 o Lr.u.g 23
AN AN~ AN~ &£ £ 3 o
AL AT AT A A al Al oAl oA AT oA Al
E
=
o
v
g
m
=
=1
<
o) s
s %)
& 3 g 2g
< = ¥ = @
= = o = @ -
E B § § OB A 3
rx £ £534¢ k2§
oo 51 3 a g o 3 8
m m 2, 2 wn g m 2 9
55 xQ Qa5 3 c = &
I 1 A A v | MmO
&0
g
Z
<
Ay
4
-
O
e i 2 & ~
© V)M v 7Y =
4] S - | _}mu{
~ O O B O 3
g288 BuuB8_ 53y
— =) —
Z O Z Z nn Z % O Z Z »nn = U © «»n |
o) ] Ed en
o) 3 3 g
=]
= = =] £
153 <
E £ £ 3
- = 3 & 3
h=T-4 [~ S 2 o = 9 2
- 2 = = vé‘i%.g 2 2 &
Z S 5 4 2 2 35
2z 8§ =2 § g 2z 2 Z £ &
Z 9 2 = = S z 2 °F L 2 7
Z & = 5 = z Ao 7 2z =TI =P
g 2 2 52 o = =z 2 9 3 5 oz
S EEz& =4 5 Es EES
n P MU | =D a | P2 un |
—_ N UV = N W —_ = = = A —_ =
[a) A AAAAAAQA LA A
P
L L 2 O 2 L o 9
g2 & & = =) K= Tg- g
EEE 1B B B BB
=
)
=
2 @

Q
Euiauuguuauggggg
25 8 5 5 5 2 5 5 5 2 2 & 2 2 2
E 5 8 5 I 85 L 5T 55 8 2L &g Lo
2 = 2 =2 =2 = 8 = = = 2 & =» g & &
=) £ =) Q
T ETEEELERREELEL A E G A A

=} =

.8 g

E -

<1 2

E E
g < g s & a & &
>\'Z>\>\>\>\>\‘Z>\>\>\>\8888

EsEEEEE S EFFEE
=5 EEEEE < EEEE S 8 8 B8
[S3 =" S S R 3 R e <5 A A A R s N N O O N O R o)
S T a o ¥ 0K a3 o = «o %
< & S S S < S +F +F +F n A n o n NN

IO o o s P L L T A L

approaches are used to solve the extraction level problems
using word vectorization and feature extraction methods
without considering the contextual information. On the other
hand, these approaches have been used in generic automatic
pipelines as well to construct knowledge graphs. Therefore,
efforts of construction of knowledge graph using machine
learning and deep learning algorithms are discussed as shown
in Fig. 4a. For example, in the papers [55] and [S6]document
level extraction techniques are employed with graph learning
techniques to explore text entity/relationship and summa-
rization. A novel span-based mode [55]1, inspired by [40] is
developed for entity and relationship classification by adding
convolutional layers. This paper overcomes the disadvantage
of imbalanced number of relations to increase the accuracy.
Similarly, SCIERC is utilized to create summary knowledge
graphs [56] using GAT model for node representation model
extracted using DyGIE++. Quantitative analysis is performed
using hand-crafted annotations and it is observed that unre-
lated relations are generated due to coreference resolution
errors. These cascading issues are caused by the token-based
approach’s fixed and sequential representation.

A fully automatic pipeline for knowledge graph creation
for COVID-19 scientific literature incorporates applications
such as literature discovery (research collaboration, arti-
cle recommendation) and drug repurposing. A scientific
knowledge graph [57] in former application category is con-
structed by considering structured and unstructured data from
COVID-19 literature. Graph-of-docs and graph similarity
measures are employed to generate features for link pre-
diction task. A drug—drug interaction (DDI) prediction task
is performed in [58] using KGE and a Conv-LSTM net-
work is trained and analyzed. Fusion of various scientific
sources is described including scientific literature and huge
set of DDI triplet is constructed as RDF KG using semi-
supervised technique. Another work ERLKG [59] utilized
the COVID-19 literature by fine-tuning SciBERT for entity
and relation extraction. The automatic pipeline of knowledge
graph construction incorporates representation of entities and
relationship into latent low dimensional space and fed into
GCN-AE for link prediction task. In SoftwareKG [60], a
bi-LSTM-based approach is used to generate a knowledge
graph by identifying software mentions in scientific articles.
Entity linking for disambiguation is performed using transfer
learning methods.

Furthermore, bottom-up approaches are used to construct
the knowledge graph using machine learning techniques in
which, text mining and analytic is important step to imple-
ment. MatKG [61] framework is constructed using Naive
Bayes Classifier to disambiguate authors. Similarly, statisti-
cal method is applied on geoscience literature to construct
knowledge graph [62] in order to represent key facts in
structured manner. Content words are segmented and rep-
resented using geology dictionary. Although majority of
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Fig. 4 Algorithmic view of a neural network-enabled KG creation, b natural language processing-enabled KG creation, ¢ rule learning-based

knowledge graph creation

the approaches are based on supervised and unsupervised
learning methods, it is worth noting that each submission
seems to have its own methodology (techniques and phases)
and seeks to achieve separate key goals in the knowledge
graph construction process. In the literature, various algo-
rithms of machine learning and deep learning approaches
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are combined with linguistic approaches for the information
extraction as well as similarity measure tasks. This makes
comparing approaches complicated, and a normalization of
the learning process even more challenging.

Natural language processing-enabled KG creation Se-
mantic enrichment entails the incorporation of metadata from
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scientific publications from many perspectives, as compared
to the method that focuses exclusively on keywords or feature
extraction. Scientific publications require automatic pro-
cessing from human-readable format to machine-readable
format. To understand the ability of model’s mechanism,
extensively labeled data and pre-trained model is required.
Though machine learning approaches outperformed human
baselines in many specific cases but not properly integrates
with prior knowledge of fine-tuned pre-trained data for inter-
preting the model’s behavior. Knowledge graph construction
incorporates standard NLP tasks such as semantic role label-
ing, part-of-speech tagging, and chunking to get the best
system along with pre-trained model as shown in Fig. 4b.
A pipeline for literature-based biomedical knowledge graph
[63] is proposed to extract biomedical entities and integrate
it with prediction methods on Parkinson’s disease. Entities
and relationships are extracted using SemRep NLP program
and evaluated manually to observe misleading entities.

In[64,65] KGenis presented to develop knowledge graphs
from abstract of scientific documents by extracting triples
using Semantic Role Labeling (SRL) and PoS tagger. How-
ever, KGen employed tools to design automatic methodology
still human intervention is the requirement of the technique
to manually update and review intermediate results. Limita-
tions such as lack of SPARQL endpoint and inclusion of side
information are improved in by mapping UMLS and gener-
ating secondary set of triplets respectively. In [66], metadata
is trained and passed to two layered bi-directional LSTM to
accomplish entity extraction task. Similarly, a scalable, semi-
supervised and domain-independent method [67] is proposed
for extracting concepts from scientific literature using word
embedding and pre-trained BERT model. To avoid misinfor-
mation in resources and to generate reliable knowledge graph
for drug repurposing, COVID-KG [68] is constructed using
hierarchical spherical embedding and text embedding in the
direction considering cross-media (text and figures) extrac-
tion. Proposed KG is evaluated retrospectively by domain
experts for coarse-grained and fine-grained entity, relation
and event extraction.

Rule learning-based knowledge graph creation To express
links and dependencies between entities in datasets and to
capture the underlying patterns in data, rules are commonly
utilized. Rules plays crucial role in automated reasoning
and finding inferences. A mainstream technique in rule-
based reasoning is to formalize the problem and to obtain
the inferences as per predefined rules. Second, rules can
be predicted by applying statistical reasoning approach
directly to filter, select and organize candidate tuples as
shown in Fig. 4c. There are some efforts where the advan-
tages of both techniques are combined and presented the
final form of reasoning to achieve the goal of completing
multiple tasks. A literature knowledge graph [69] is pro-

posed where abstract is represented as the decomposition
into four sub-domains (Background, Objectives, Solutions,
Findings). To avoid the labor extensive task of manual ontol-
ogy element identification, an automatic ontology element
identification is proposed using text classification based on
semantics. The input sentence is translated into embedding
vectors and output vector is utilized for classification. Pat-
terns of abstract structure are identified and high precision
is obtained for identification and classification of abstract
in four sub-domains. On the surface, knowledge discov-
ery via reasoning over the embedding appears to convey
knowledge in a coherent framework. It covers significant
areas of the literature and also improves the quality of learnt
rules. A heterogeneous SCM-KG scholarly communication
metadata-knowledge graph [70] is presented in which SWRC
and FOAF ontologies are reused to create core vocabulary.
In this paper, distributed schemas (DBLP and MAG) are
integrated and parallelization in rule-based data mappings
is implemented. The use of semantic similarity measures in
conjunction with RDF interlinking to assess the relatedness
of concepts in two resources is demonstrated. Assessment
of proposed pipeline is evaluated on the parameters of com-
pleteness, accuracy and execution times of query processing
per second in the linking step.

Table 4 presents the studies that incorporated neu-
ral network-based, NLP-based and rule-based approaches.
There are research that define the domain semi-automatically
in order to retrieve a subset of manually defined types. Stud-
ies, on the other hand, have used approaches to find new
types from unlabeled data. It is easy to derive entity and rela-
tions from the corpus using these semi-automatic approaches.
However, these methods provide extractions with a mod-
est level of precision and noise. Furthermore, fusion level
development using entirely off-the-shelf OpenlE techniques
as well as ontologies that are built or reused is covered.

Knowledge fusion level creation

Semantic web technologies, which describe domain knowl-
edge using diverse concepts such as ontologies, Open
Information extraction (OpenlE) tools and query process-
ing languages, enable the display of domain information in
machine-readable ways. The goal of knowledge integration
is to create ontology and taxonomy to represent hierarchi-
cal structure. Knowledge fusion helps in generating metadata
from various data sources as well. Use of common ontologies
and general metadata from schema.org is required to ensure
the quality of the knowledge graph. In addition, Knowledge
graph have been facilitated with open extraction tools such
as OpenlE to feature the knowledge resources.

Schema based: As we are transitioning from big data to
semantic data, KGs play an important role as critical compo-
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nent of semantic web. Since knowledge graphs have emerged
as an technology with broad application areas, it seeks inte-
gration with standard third-party resources such as ontology
and vocabularies. In this context, author presented property
graph [71] where RDF generation, annotation and knowledge
graph in agriculture domain is populated by adding domain
knowledge. Properties of a set of ontologies is reused to con-
vert scientific articles into RDF format. KG-COVID-19 [72]
a fusion-based KG, incorporates the design principles such
as reproducibility, interoperability and provenance to pro-
vide flexibility and quality by leveraging modern ontology
best practices. Framework is divided into fetching data, con-
verting into KGX format and merging steps by preserving
properties. It supports ontology-enabled data sources for drug
repurposing and Biolink model to categorize nodes and edges
qualifying for ingestion from multiple sources. Further, the
model is embedded, trained and tested for machine learning
applications and visualized using t-SNE plot. A RDF graph-
based on ocean science named OceanGraph [73] is proposed
that reuse vocabularies and ontologies over the domain of
biodiversity. OpenBiodiv [74] is the biodiversity knowledge
graph based on FAIR-Linked data that utilized scholarly
publishing and biodiversity-specific ontologies for concep-
tual modeling. These current approaches utilizing existing
ontologies and vocabularies to annotate the context at long
text level that are semantically far from each other.

Academia/Industry DynAmics (AIDA) Knowledge Graph
[75] is introduced and generated by integration of MAG,
Dimensions, English DBpedia, CSO and GRID. AIDA
knowledge graph describes 21M papers and patents accord-
ing to the research topics drawn from CSO. In this paper,
the relationship between industry and academia is analyzed
due to unremitting engagements by exploiting the corpora
of research articles and patents. A knowledge-driven frame-
work KORONA [76], is presented to unveil the scholarly
communities for the prediction of scholarly networks. To
generate KG, development stage uses mapping rules between
the Korona ontology that utilizes the homophily prediction
principle and the incoming data sources. These applications
are limited to the expert’s domain, and because the expert
knowledge base is heavily reliant on experts’ experiences, it
is difficult to transform it across domains.

Off-the-Shelf tools based: In general, NLP tasks such
as document summarization, fact verification and retrieval
requires to take huge data and pruning need to be perform
over different document contexts. Various studies handle
these tasks with the help of OpenlE tools where each
KG is generated. In this context, a literature knowledge
graph for clinical research methodology dataset OIE4KGC
[77] is generated using the concept of open informa-
tion extraction. In this paper, spacy’s Noun chunker is
used to retrain noun phrases and filtered triple such as<
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study, determine, cardiovascularriskfactors >,
Finally, concept and document vertices are linked having
“mentions” and edges link a pair of concepts denote rela-
tions extracted using OIE. Furthermore, in [78] implements
the Stanford Core NLP PoS tagger, which extracts predicate
between the entities recognized by the Extractor Framework
and the CSO Classifier via the PoS Tagger.

In order to generate the knowledge graph, issues such
as multiple entities refer to same concept, redundant rela-
tionships and generic entities are addressed. A scientific
knowledge graph [79] is presented that analyses research
publications in the field of semantic web using a set of
NLP and Deep Learning approaches. Entities and relations
are extracted from literature using extractor tool [40] and
discarded generic relations. CSO classifier is used to auto-
matically classify research articles conforming to Computer
Science Ontology [80]. Further, the output is processed with
OpenlE to retrieve all set of triples. To remove multiple
entity issue during graph generation phase entity merging
task exploits Levenshtein similarity technique considering
that relation merging task exploited Word2Vec word embed-
dings and cluster algorithms. Two main challenges such as
disambiguation of entities and specificity of relations are
addressed in this paper. In [81], artificial intelligence knowl-
edge graph (AI-KG) is presented that includes 820K research
entities, 14M RDF triples from 333K research publications
in the field of Al. AI-KG used DyGIE++, Stanford CoreNLP
and the CSO Classifier that extracts entities and relationships.
It uses BERT embeddings based framework to analyze scien-
tific text and then CSO classifier and OpenlE are applied for
parsing. It filters the resulting entities and removed entities
that were not present in the CSO topics list. It integrated to
map all three subsets of triples using Word2Vec (Titles and
abstract) and semantic technologies such as silhouette-width
measure in order to quantify and qualify as valid triple. In
this approach a MLP classifier is also used to move the triple
from invalid set to valid set of triples in order to refine the
set of consistent triplets. Another work in this direction CKG
[82] is presented by extracting rich information by consider-
ing semantic (SciBERT) as well as topological information
(TransE). Normalization and linking techniques are applied
to eliminate noisy author and citation concepts by threshold-
ing confidence score. CKG is used as article recommendation
as well as information retrieval to search author leaders, insti-
tutional leaders and collaborations.

Ontologies are essential aspects of academic knowledge
networks that conceptualize scientific semantic communica-
tion. The description of various concepts and objects, as well
as their relationships, is used in the formation and under-
standing of ontology. The majority of work has considered
several domain-specific ontologies and supplemented the
data sources by providing patterns with unique instances,
as seen in Table 5. The usage of ontology assumes expert
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input, which leads to bias behavior in favor of precision and
increases the cost. Open domain IE, on the other hand, has
been used to treat any noun phrase as a candidate entity and
any verb phrase as a relation candidate. In general, tagging
and parsing are used to extract features, and then classifiers
are used to produce a score. The fundamental benefit of using
openlE paradigms is that they can be simply applied to big
corpora with no need for training data. Off-the-shelf tech-
niques can be used to extract data from new scholarly data
sources in this scenario wi. However, it is unable to distin-
guish different surface forms for the same object or relation,
resulting in poor aggregation performance.

Discussion

Despite the promise and benefits of harnessing knowledge
graphs for scholarly communication, we are still in the early
stages of development, with many unanswered problems.
(a) How can we incorporate more specialized scientists in
the curation process? (b) Do the semantic curation strate-
gies scale across vast topic areas and semantic representation
be achieved? (¢) How varied structured data models can
contribute to give meaningful path for knowledge graph?
Typically two types of directions have been used in the litera-
ture to populate the knowledge graph either by human experts
or by applying linguistics techniques and machine learning
approaches. With a few exceptions, these studies rely on the
manual effort of annotation which requires experts to extract
background knowledge. In addition, an article leads to high
number of entities when full-text is considered for annota-
tion. The domain-specific extraction process requires domain
experts and annotators, which makes the extraction process
costlier and limited. However, domain-independent KGs are
generic within-sentence extraction. The first way to populate
knowledge graph generates high-quality and validated out-
comes with improved precision-recall analysis. However, it
suffers from limited scalability issue as well as manual effort
consuming. In comparison, the latter produces nosier out-
comes but can handle huge corpora of scientific documents.
To keep the human out of the construction of knowledge
graphs, an automatic pipeline integrating IE and KG cre-
ation is the most vital step for the structured or unstructured
metadata.

A wide range of studies using natural language process-
ing techniques can be found that applied over a collection of
scientific articles. For speeding up the extraction process in
scientific publications, a collection of natural language pro-
cessing algorithms supporting OpenlE and ontologies is used
to generate an end-to-end automatic pipeline for the genera-
tion of knowledge graphs. It is worth mentioning that most
of the studies in this section analyzed natural language using
basic extraction, mapping, tagging, and parsing technologies.
Second, several domain-specific ontologies have been widely

employed to cover all of the data in various sections of the
study.

A rule-based approach gathers key scholarly information
in the form of patterns, leveraging regular expressions in
title, abstract, research problems, application areas, and cita-
tion information. However, the knowledge graph’s reasoning
capacity is reduced by its insufficient integration of subjective
information from the literature. Citation data, for example,
is useful for quantifying bibliometric and trend analysis but
offers less information about the content of the paper. As a
result, the mapping rules should be tailored to the distinct
types and formats of data sources and trained accordingly.
Furthermore, manually curated rule generation and mappings
result in gold standard data, however this curation can be
skewed toward certain well-known issues and limited to the
expert domain. Hybrid reasoning, which incorporates the use
of ontologies, knowledge completion methods, and schema
construction, is critical and improves performance of KG
creation.

In addition, very few studies are using extractor frame-
work such as OpenlE, DyGIE++ and RnnOIE to automat-
ically extract the entities. As a result of using extractor
framework, a huge number of entities and relationships refer-
ring to the same concept is detected. However, the extracted
information is too generic and require further normalization
to remove overlapping and redundancy of extracted infor-
mation. Moreover, evaluation and standardization becomes
difficult during application on larger scale due to domain-
independence and misclassification. Besides, consideration
of coreference resolution is also being ignored till date dur-
ing information extraction and its applications. Resolving
syntax complexities and elimination of ambiguated text are
also the part of the NLP extraction pipelines. [40] have
extracted coreference links using shared span representa-
tion and avoided cascading errors. We discovered that entity
coreference issues have a significant influence on predicted
graphs, and that our models need to make it simpler to capture
these flaws in interactions. Fusion of visual semantics and
textual semantics have gradually emerged as new direction
in knowledge graphs also. In the literature [68] that creates
multi-modal KG using derived knowledge from graphics and
diagrams in addition to plain text except. For example, gen-
eration of multi-modal KG provides better query experience
in applications by extending concept set. In addition, studies
lack coverage for important entity types (e.g., affiliations)
and domains (e.g., physics).

Knowledge graph utilization in scholarly
domain

The utilization of knowledge graph refers to the commu-
nication with stakeholders as well as usage of the already

@ Springer
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build KG as input in scholarly domain. Need for interac-
tive front-ends and querying endpoints is still essential to
view insightful results. It includes flexible access methods,
import/export result formats, visualizations such as dash-
boards and leaderboards for the user-friendly interactions.
The utmost relevance of this phase is to analyze the usage
of knowledge graphs as input and tools, system interfaces as
output on the top of the database supported by the knowledge
graphs. In this section, some efforts in this directions have
been discussed that generates natural language descriptions
and visualization of results.

To generate natural language descriptions from KG,
GraphWriter, a graph encoding—decoding model is per-
formed by building on Graph attention network [86]. A
novel Abstract GENeration DAtaset (AGENDA) is created
from Semantic Scholar corpus [66] to generate an abstract
automatically. During encoding step, publication title and
knowledge graph are encoded by computing hidden rep-
resentations using GAT for each node. During decoding
step, vocabulary and copy mechanism from knowledge graph
is utilized to generate sentences. It is shown that pro-
posed approach utilizes the power of knowledge graphs
along with title of publication and generates largest gain.
Graformer [83], which used encoder-decoder architecture on
the AGENDA data set to interpret shortest path and learn
about graph structure to depict related global and local pat-
tern information, is another contribution in this direction.
These researches have been included in this section because
generating a natural language description from KG makes the
stored information more accessible to a wider group of end
users in terms of question responding and interpretability. In
order to support knowledge provenance, Whyis [84] a biol-
ogy KG is constructed using nanopublications and deployed
as assertion graph to represent drug—protein—disease inter-
actions demo is presented by analyzing the probability of
inlinks and outlinks of the node.

A crowdsourcing enabled initiative to convert document
oriented information flow to knowledge-based is pre- sented
to generate research domain overview to write survey articles.
Aurora [90] is proposed that exploits semantic represen-
tation of OpenResearch.org. CL-scholar [88] that utilized
meta path to represent semantic relations and OCR-++ frame-
work is used for textual and network information extraction
task. Further, ranking based on popularity is employed and
deployed. Similarly, a cause—effect knowledge graph [89]
is constructed and represented by a web application for
better exploration and querying. It utilized biological expres-
sion language (BEL) scripts and developed using biological
knowledge miner (BiKMi) for drug repurposing.

Further, [90] uses existing SciKGraph framework to con-
struct knowledge graph and proposed a visualization tool
to get researchers connected with the evolution of scientific
concepts. An application of AIDA KG, ResearchFlow [91]
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which forecasts and quantifies the influence of research top-
ics on industry. It analyzed that 89.8% topics first evolved in
academia and then preceded by industrial research publica-
tions and patents. In addition, AIDA dashboard [92] is also
developed to represent statistical analysis such as citation
analysis, conference similarity and trendy topics by leverag-
ing AIDA knowledge graph. In addition, TDMS-IE [93] is
developed for an automatic identification of tasks, datasets,
evaluation metrics (TDM) triples to extract resultant best
numeric score from scientific papers of NLP domain. Most
importantly, key difference is that entire paper instead of only
abstract is analyzed for the construction of the leaderboard
containing TDM. Leaderboard is the form of meta analysis
summary that provides appropriate literature for comparisons
of proposed methods as well as selection of baselines to
compare against. Document and table score representation
is defined followed by paper tagging from the taxonomy and
two datasets are created to test the proposed system. For fur-
ther improved semantic visualization task, Kibana dashboard
is created to show global view of process—disease relations
through heatmap in [68]. The basic structure of a large knowl-
edge graph can be easily shown with a limited perspective,
but portraying cross-linked sources and exploratory tasks is
cumbersome. SemSpect [94] is a client server application
that explores answers from RDF graphs and depicts group of
objects using predetermined classification techniques.

In order to visualize and explore the information from
CORD-19 data set, [45,89], [95] integrated with data trans-
formation, entity linking and analytic tools. [45] integrated
platforms such as Corese and MGExplorer. A Covid Linked
Data Visualizer is developed to view node edge, clustering
based and egocentric visualizations. Several Jupyter and R
notebooks are designed in the form of dataframes to repre-
sent query results related to co-occurrences of the diseases
in the articles. A Knowledge graph toolkit (KGTK) [95] is
proposed to harness the capabilities of knowledge graphs
to manipulate, retrieve and analysis in real-world scenarios.
It supports importing/ exporting, filtering, embedding and
graph statistics data science operations.

Few papers focus majorly on operation for retrieving and
manipulations, on the other hand rest focus on storage and
visualization as shown in Table 6. Graph processing capacity
and computational powers of graph databases is utilized with
the help of graph structure. GraphDB is highly efficient in
storing and accessing graph database and allows exploring
RDF classes to access instances. On the other hand, a number
of studies used Neo4j for data storage, querying and visual-
ization considerably as compared to the native triple storage
platforms. As Neo4j query language named Cypher is easy
to use as compared to GRAPHQL and various plugins are
also available to extend its functionality.
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Knowledge graph refinement

A series of studies argued that many state-of-the-art meth-
ods do not consider the semantic distance among the entities
and relations. Knowledge graph embedding [96] is the rep-
resentation of the entities and relations among entities in
a continuous vector space. This representation then further
models the interaction among entities to solve knowledge
completion task. The knowledge graph embedding mod-
els a triple of the form < Head, relation, Tail > as
input, computes matching score and predict the validity of
each triplet. The embedding vectors contain rich informa-
tion about entities and relationships and learned embeddings
can be used in tasks such as entity classification and link
prediction/ knowledge graph completion [97]. Link pre-
diction aims to predict missing relations, while classifying
entities aims to define classes of different entities. In gen-
eral, knowledge graph embedding model can be categorizes
such as translation-distance-based model, neural network-
based model and multiplicative model. Following terms are
required to understand the approaches: Score Function: The
score function takes a triple’s embedding vectors (h, r, t)
and produces a value that indicates whether the triple is a
fact or not. A triple’s score should be greater if it is more
plausible. Negative sampling: For a triple (h, r, t), a nega-
tive sample is formed by replacing either h or t with a random
entity (A" or t') from set of entities. Loss function: Initially,
positive and negative triple scores are created at random,
and the loss function is optimized so that positive triples get
higher scores than negative triples. In this section we focus
on various types of embedding methods and the applications
scenarios of embedding vectors in scholarly domain-specific
knowledge graphs.

Translation-based models

Translation-based approach is one of the most common KG
embedding model where each entity is modeled as point in
vector space and each relation is modeled as an translation
operation. This approach maps the head entity and relation to
be close to the embedding of the tail entity by minimizing the
score of the triple. Subsequently, various models have been
proposed that improves the capability of the basic translation
models.

An improvement in existing translation model, Trans4E
[98] is designed to remove the issue of relationship cardi-
nality such as (hasTopic) where, head entity (k) is very high
in number as compared to the tail entity (#). Such condi-
tions costs computationally high and unable to distinguish
well among embedding vector which is handled by applying
transformations. Similarly, in [99] authors have applied vari-
ous translational methods and TransD outperformed in the
constructed heterogeneous bibliographic network. TransD
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creates mapping matrices based on entities and relations,
in order to capture the heterogeneity of both entities and
relationships at the same time. In this paper, authors found
TransD to be better model instead of others due to its benefit
of using two vectors to represent each entity and relation-
ships.

Another co-authorship link prediction task on scholarly
Knowledge graphs [100] is proposed with soft margin loss
function. Exploration of many to many co-authorship rela-
tions is the objective of providing predicted links. This study
shows the robustness of the model using TransE-SM loss
function to deal with undesirable effects of false negative
samples. Instead of using margin ranking loss, the optimiza-
tion utilizes slack variable &; , to alleviate the negative effect
of the generated negative samples and (y> — yj) is the mar-
gin. The score function is defined as f, (4, r) where S~ and
ST are negative and positive sample sets.

min Z E,:tz

EZ" (h,r,t)eSt
fr(h,t) <y, (h,r,t)yeST
LW )y =y =&, (W.r.i)es .

It is observed that the embedding vectors are semanti-
cally far from original mappings and generate ambiguous
entity pairs in translation-based models. To make vectors
semantically close TransP [101], a novel translation with
penalty-based embedding model is taken into consideration.
A novel Relation Embedding method based on local con-
text is proposed to enhance the entity typing performance
followed by keyword extraction method to highlight crit-
ical concepts in selective bibliographies. Scoring function
fu(h,t) is the distance between & + v and ¢ whereas loss
function £ where y is the margin encouraging the difference
between true triples and false ones.

folh,t) = 1+ v — 113+ 2 llh — el + 22l — 113
L= > > Iy+htn—f0, 0O

(h,v,t)eG (W' V' t")eG’

In order to analyze text embedding along with graph
embedding techniques, an entity retrieval prototype [102] is
presented which utilizes both textual information and struc-
ture information. A novel co-author inference evaluation is
carried out to show the effectiveness of the TransE knowl-
edge graph embedding models for entity retrieval. However,
TransE have not shown significant improvement alone due
to sparsity issue of the entity such as Paper. Similarly, [103]
proposed generic literature-based knowledge graph approach
to predict drugs that extracted triple using SemRep tool
and further filtering is applied using knowledge represen-
tation learning methods. It is important to note that during
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filtering unnecessary relations were removed and normal-
ized on the basis of degree and score assigned. However,
TransE outperformed over all KRL applied. To overcome
the problem of opaque predictions, discovery patterns were
explored intuitively over five new drugs to obtain potential
specific explanations such as (drug INHIBITS gene CAUSES
COVID-19), (drug INTERACTS_WITH gene PREDIS-
POSES COVID-19) etc. Scholarly communication domain is
conceptualized to create a knowledge graph for metaresearch
recommendations (SG4MR) [104] as link prediction task.
Created knowledge graph is tested on translational as well as
Description-Embodied Knowledge Representation Learning
models. The aim is to capture textual information well by
applying textual and structural embedding but TransE outper-
formed over the description-based representations. Another
work in this direction is proposed as Cov-KGE [105] that uti-
lized low vector space on large corpora Pubmed using RotatE.
Further, enrichment analysis of gene set is performed to vali-
date the predictions on various data sets. In order to minimize
distance between negative and positive links loss function is
utilized:

L=—logo(y —d.(h,0) =Y plhi,r,1).

i=1

Animprovement in [63] is employed by integrating the exist-
ing medical knowledge graph with KG completion methods
such as TransE and TransH to consider all interactions.
TransH outperformed TransE due to its reasonable behavior
in different relational hyperplanes and TransE’s shortcom-
ings in handling cardinality. In another paper [59], TransD
is the best performing entity representation learning method
for link prediction task. To capture the diversity of chemical-
protein or chemical-disease type entities, the project matrices
are determined by both entities and relations. Hierarchical
relationships, which are particularly prevalent in knowledge
graphs with irreflexive links, are the driving force behind
the methodologies. However, although the translation-based
technique is the most used method for embedding, other
methods are also used to simulate reflexive interactions.

Multiplicative models

Multiplicative embedding model enable vectors to interact
via dot products of entities. DistMult. HolE and Canonical
decomposition models are applied on scholarly domain in
literature. HolE models entity and relationship using circular
correlation operator and captures asymmetric as well as anti-
symmetric relations. A large scale knowledge graph, AceKG
[106] is presented which attempts network representation
learning based on five field of studies for scholar classifica-
tion and clustering. Various additive (translation-based) and
multiplicative embedding methods are applied to find miss-

ing links. However, holographic embedding HolE achieves
most significant performance on anti-symmetric relations
such as field_is_part_of and paper_is_written_by.
Furthermore, an application of embedding vector in schol-
arly domain is explored in [107] in which semantic structure
is focused using canonical decomposition that uses complex
embedding to handle asymmetry. A general framework to
apply semantic queries such as analogy query and analogy
browsing to solve exploration task is designed. In addition,
various knowledge graph embedding models are employed
on SKG [108] that gathers information relevant to the topic
of social good. In order to create SKG, domain and topic
conceptualization as well as data collection steps are per-
formed. In this paper, anti-symmetric relations are handled
using ComplEx with 93.66% hit rate and recommendations
are computed based for the entities such as author, publica-
tion and Venue.

Another novel work [111] for knowledge completion is
implemented on AIDA knowledge graph that incorporates
a variant of DistMult. Two triple loss techniques weighted
triple loss and rule loss are proposed and evaluated on Dist-
Mult embedding that outperformed various state-of-the-art
embedding techniques. Though, DistMult is not suitable for
asymmetric and anti-symmetric relations, it uses entry-wise
product of head and tail entities. The score of triple f (4, 7, t)
and optimization framework is modeled as follows where
wy ¢ 18 the weighted triple loss and n;[zr , is the trainable
variable. o

+2 +2
Whyrt =My = f 0D S whprg +0

. _2 2
min Z My g+ 22myf 2L
(h’r~tvw/1.r,t)e(fw)u-/\/-

where A1, Ay are hyper-parameters that affect the degree to
which trained variables are minimized whereas A3 is the mul-
tiplier of regularization term £ over embedding of entities
and relations. Similarly, for rule weighted loss R is modeled
as:

min Z
0

(h,rvtvwh.r.t)ETwUN

2
)”lnh,r,t

1
2
+ M"Zr,t + ML+ A ZR[
i=1

where, R = max (wgq * - - * Wy — f(gns1),0).

To predict the DDI [58], authors implemented embedding
techniques and baseline machine learning models are trained
from which Conv-LSTM classifier outperformed on the
application of ComplEx embedding model. Multiplicative
models generate embeddings using product functions that
capture pairwise relational patterns in all head and tail
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entities. Furthermore, these models manage complicated
embeddings, and the product function increases the com-
puting cost of the model as well.

Deep learning models

Deep learning models such as convolutional neural net-
works are used to organize parameters into distinct layers
and integrate them with the input data in order to recognize
significant patterns to embed entities and relationships. An
improvement is employed by integrating the existing med-
ical knowledge graph with KG completion methods [109].
On the basis of ConvE, the ConvTransE model preserves
the properties of translation, such as TransE between entities
and relationships. Translational (TransE), semantic matching
(Distmult and ComplEx) and neural network model (ConvE
and ConvTransE) are applied to predict new treatment rela-
tions in biomedical entities and out of which ConvTransE
outperformed. Similarly, ConvCN [110] is a citation recom-
mendation method, uses an extension of ConvKB embedding
algorithm to encode citation behavior in the citation network.
ConvKB is extended in order to handle citation relations
specifically. Two new relation vectors are introduced to rep-
resent the relationship between head and tail entities instead
of single relation vector. Each entity < vy, vy > and rela-
tion vector < v,j, vy > are concatenated row-wise and the
absolute difference between v; and v; is calculated.

flhr t) =|vy —va| x W+b

L= > log(1 + exp(gn.r.p) - f(h, 1, 1))
(h,r,t)e{KGUKG'}

In addition, before the fully-connected layer, an interme-
diary computation step is included to connect the dimen-
sionally reduced representation with the fully-connected
layer in order to determine the final score. Deep learning-
based approaches utilized the unexplored features in various
domain-specific scholarly data by reducing frequency varia-
tions. These models uses more than one convolution layers
on input data resulting into feature map. Basic models con-
catenate the head and tail embedding, whereas others capture
more interactions by performing additional convolution oper-
ations instead of convolutions on entities and relations.

Discussion

Embedding-based knowledge graph completion is the
method that relays on the representation learning of triples to
capture semantics. In the literature, three types of embedding
methods such as translational embedding method and mul-
tiplicative and deep learning-based models are used. It has
been observed that, translation-based models are the widely
used in this domain. Many studies have applied TransE,
TransH, TransR, TransD and proposed embedding method

@ Springer

to present the performance of embedding methods a shown
in Fig. 4. Besides, three types of evaluation methods have
been used widely to as metric such as MRR, Precision, Hits.
One of the applications of Knowledge Graph Embedding
models has been reported to give link predictions, which may
also be viewed as a foundation for recommendation services.
Embedding methods are applied to score triples to complete
the knowledge graph by predicting the certain property. How-
ever, this service suffers from the challenge of sparsity in data
due to insufficient interactions. Therefore, the link prediction
task helps to improve the recommender system’s accuracy
and diversity. This section deals with the link prediction
problem where latent triple is given for some entities and rela-
tion and missing links need to be predicted. The identified
links are proposed as collaboration recommendations ana-
lyzed the scientific profiles of the selected researchers from
the domain-specific communities. Table 7 presents embed-
ding methods that extract triples where paper and author are
the head entity primarily whereas venue, author, field are
the tail entity used to generate triple types. However, all the
translation-based models depict entities solely on the basis
of structural data, ignoring the richness of multi-source data
contained in the entity’s name, description, category, rela-
tionship type and prior knowledge. Second, Neural network
models have not gained much popularity in spite of gain-
ing recognizable performance. CNN-based models such as
ConvE embedded 2D convolution leads to long training time
due to numerous parameters. Thus, more work should be
performed in the direction of interpretability of predicted
knowledge where small number of parameters are considered
and non-expensive to use. In knowledge graph containing
scholarly metadata, building recommendations of relevant
collaborations is one of the important task. Most of the exist-
ing approaches for author collaboration focus on semantic
similarities using bibliographic metadata such as publica-
tion counts and citation network analysis. However, these
approaches abandon relevant metadata information such as
author organization and venues attended, affecting the qual-
ity of the recommendations. In addition, the performances
of existing models drop when they are applied as an embed-
ding learner for entity typing in the task of scholar profiling.
Studies should target to construct scholar profiles covering
scholar’s research records and the popular domains that are
highly relevant to them. Finally, one direction to pursue is
developing unique approaches for understanding the interac-
tion mechanism between multi-embedding vectors and their
effective extension to subsequent embedding vectors.
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Scholarly knowledge graph evaluation,
ontologies, data models

Evaluation: During the construction of SKG, erroneous facts
about entities and/or relationships may be collected. This
technique is prone to errors, especially when using informa-
tion collected from data sources of heterogeneous sources
with variety of properties. During the process of evalua-
tion, the reliability of the data source as well as the entire
construction process of KG must be taken into account. In
this survey, knowledge graph contains both ways of evalu-
ation, one for quality of information extracted and quality

of construction of knowledge graph. Information extrac-
tion evaluation includes quality about the concepts and their
associations extracted along with the form of fact or triple.
KG evaluation involves with the strategy to check the accu-
racy of the type of knowledge graph constructed. Although,
there is no common standard evaluation protocol and set of
benchmarks for the evaluation. It is difficult to construct a
comparison standard that compares the evaluation methods
based on their addressed criteria. However, three components
of assessments are taken into account when assessing the
overall quality of the knowledge graph.

@ Springer
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e Gold standard-based evaluation This method involves
with the comparison of designed KG with existing, man-
ually annotated knowledge graph of the same domain.
Matching domain-specific and autonomously generated
KGs provides great significance in knowledge graph cre-
ation. With respect to evaluation methods, precision and
recall are quite frequently used in information extraction
as well as knowledge graph construction with machine
learning methods. Other metrics, e.g., accuracy, area
under curve (AUC), Hits@k and MRR, etc. are observed
as better choice for evaluation during refinement. Further-
more, because a gold standard defines an ideal situation
of collected concepts and constructed KG for a given
domain, it is used to determine if the mapped informa-
tion adequately covers the domain or whether it contains
irrelevant domain-related elements. Applying gold stan-
dard, on the other hand, produces extremely accurate and
reusable findings, but it is expensive to construct.

e Manual evaluation via domain experts and annota-
tors is the quality metric that usually predict accuracy
with the agreement of the human annotators. This type
of evaluation carries samples of results and allowed to
apply for the detailed analysis of the approaches. In [59],
two subset from data set are created to provide ratings by
physicians to analyze relatedness of entities and to final-
ize embedding method. To evaluate the correctness (Is the
information correct?) of the classification assigned to the
concepts in NG-PL [52], subset of 1000 entities are anno-
tated by six human annotators. Similarly, to evaluate the
coverage (percentage of queries which can be answered
by the knowledge graph) of the knowledge graph pro-
posed approach is compared with baseline approach.
Researchers should examine different data quality char-
acteristics, such as relevance, completeness, modularity,
conductivity, and so on, while developing the assessment
techniques.

e Application-based evaluation via competency ques-
tions which analyses the competency questions asked
and likely to be answered by knowledge graph. Some
studies, for example, conducted a casual and subjective
evaluation with the help of survey questions and research
questions [70,74,76] of the KG structure without using
precise evaluation measures.

Ontologies Recent developments of intelligent knowl-
edge base have heightened the need for semantic modeling to
coordinate interactions of information systems. To improve
the information unification, formation of ontological model
and its integration is important for automating the process of
implementing formal semantics. Ontology allows refinement
of structure of knowledge and reduces conceptual ambi-
guity. The development and learning of ontology utilizes
the description about many concepts and objects as well as
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relationships between them. In scholarly knowledge graphs,
ontologies are the core elements that conceptualizes scien-
tific semantic communication. All information is surrounded
by entity types and relationships such as authors/researchers,
articles, venue, domains, organizations, research problems,
tasks, datasets, metrices and other artifacts.This objective
is achieved by developing various ontologies to describe
scholar’s artifacts. There are various conceptual models that
are classified into groups from representation of specific
research areas to describing structure of the scholarly doc-
uments, rhetorical elements and bibliographies [80,112].
This category focuses on machine-readable representation
of knowledge in scientific publications which expresses high
semantic specifications.

SemSur (Semantic Survey Ontology) is a new ontology
for modeling components of research contributions in the
domain of Semantic Web. It is a comprehensive ontology
for capturing the content of computer science articles and
represent it in a semantic and machine interpretable format.
It includes research problems, implementations used, and
experiment setup and makes them more comparable. Aurora
[38] utilized this ontology and explores the research findings
in the articles based on an explicit semantic representation of
the knowledge. Similarly, Computer Science Ontology [80]
is an ontology for describing higher-level Computer Science
study fields, as well as the sub-topics and words that go with
them. This classifier powered numerous hybrid knowledge
graphs [78,79,81] and explored by applications of KG also
such as ResearchFlow [91]. A Friend Of A Friend (FOAF)
ontology is used in [71,73] to materialize implicit knowl-
edge about the social relationships of authors and scientists.
It is widely used ontology to explore properties related to
social activities by integrating the related sources. In addi-
tion, Academia Industry Dynamics OWL schema is used that
describes multifaceted information flow across academia and
industry by integrating author’s affiliation and industrial sec-
tors.

To fill the gap between domain-specific and semantic
publishing ontology, Semantic Publishing and Referencing
Ontology (SPAR) is widely used in various projects and
publication such as [74]. In the literature, Software Ontol-
ogy (SO) is used in [60] that extracts software mentions by
employing neural network-based classifier in the scientific
documents. Ontological representations permit knowledge
to be semantically modeled in the concept of knowledge
graphs. It is observed that quality evaluations of ontology
is required to meet the criteria of construction of knowledge
graph. Scholarly Data Models One of the features of Knowl-
edge graphs is their emphasis on metadata, such as titles,
abstracts, authors, and organization contained in research
articles. Several notable projects are extracting knowledge
about the prescribed metadata such as Microsoft Academic
Graph, Aminer, ORKG and more. All of these efforts are
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aimed at providing tools and services for semantic analy-
sis of scholarly themes, author networks, and bibliometric
impact assessments, among other things.

e DBLP is based on AMiner’s citation network data set
enriched with topics from the CSO Ontology using the
CSO Classifier on paper abstracts.

e SciERC: Abstracts of 500 scientific articles from 12 dis-
tinct artificial intelligence conferences and workshops are
available on SciERC. Abstract annotation is done by hand
on five different places for each of the seven relationships.

e MAG: A heterogeneous and attributed knowledge graph
containing the metadata of more than 242M scientific
publications, including citations, authors, institutions,
journals, conferences, and fields of study. It is a dynamic
graph with evolving structure as new entities and rela-
tionships are added to the graph.

e MEDLINE: A bibliographic database covering various
healthcare domains containing 12 million citations from
1960s.

e CORD-19: The COVID-19 Open Research Dataset
(CORD-19) contains information about 63,000 research
articles, related to COVID-19, SARS-CoV-2 and other
similar corona viruses and from the Allen Institute for
Al The articles have been collected from various sci-
entific corpus such as bioRxiv, medRxiv, and PubMed
Central

e PUBMED: A combination of PubMed and non-PubMed
data sources from medicine, health care systems, clinical
sciences and PubMed Central. Various scholarly knowl-
edge graphs have built their own datasets by crawling data
from various digital libraries, including Web Of Science,
GRID, PharmaGKB, Dimensions among others.

Scientific knowledge graph
application/tasks

e Open IE and KG: In NLP, traditionally information
extraction techniques incline to use a predefined set of tar-
get schema that contains an agreed set of specific concept
and relation types for building knowledge graphs. Unlike
conventional IE technique, Open Information Extraction
(OIE) is a way to generate machine readable though
domain-independent representation of information in the
form of triples and proposition. OIE models relay on
unsupervised information extraction techniques and pre-
trained on heterogeneous datasets. It focuses on smaller
but denser corpora rather than bigger and sparse corpora.
Open information extraction techniques make use of a set
of patterns to extract triples consisting of two arguments,
a subject, an object and a predicate (relation) linking the
arguments, which can then be used to construct a knowl-

edge graph. It works towards the improvement of recall
for better coverage in order to discover new attributes.
Recommendation and ranking service: In the litera-
ture, knowledge graphs are integrated as an information
source to improve recommendations and inherently pro-
vides more interpretability in knowledge representation.
Recommendation can be interpreted as a knowledge
graph completion problem where various translational
and semantic matching-based embedding methods out-
performed. Scholarly knowledge graph provides services
such as intelligent contextual recommendation and rank-
ing [113,114] by discovering information from the scien-
tific articles. To provide recommendations for scholarly
networks using knowledge graphs explores not only
explicit but also implicit relationships. Second, multiple
resources may also be consider to construct multidi-
mensional recommendations effectively. For example,
WoS [115] presented a knowledge graph-based system
to extract and rank scholar’s profile as well as represents
relationships among scholars. A new explicit ranking
scheme [113] is proposed that models relatedness of
query entity and document entity using the exact match
and soft match signals. In this paper, an academic knowl-
edge graph is constructed using semantic scholar’s query
log and explored soft match using knowledge graph is
effective while word-based ranking models capture the
semantic meaning unsuccessfully. A paper recommenda-
tion in [82] analyzed topic similarity, citation similarity
to show links between paper nodes using semantic, KGE
and relational GCN approaches. A very important work
by [116] for method recommendation is performed by
applying semi-supervised approaches to explore multiple
relations. In order to reduce efforts for human annota-
tion task, term co-occurrence and dependency paths are
explored and scientific recommendations are produced.
To best of our knowledge, certain filtering issues such as
sparsity, diversity and cold-start have not been taken into
account.

Explainable scholarly knowledge graphs: Graph-based
knowledge representation involves with querying and
reasoning mechanisms for transparent and (human and
machine) interpretable explanations [103]. To understand
inferences of information, ascertaining significance of
an entity is critical using linked data and ontologies. In
this view, a central challenge of consistent knowledge
matching is evolved in case of manual and automated
construction of scholarly knowledge graphs. Mining
(classifying and clustering) of scholarly entities and rela-
tionships, question answering with trust and scientific
fact-checking explanations [117] are worth mentioning
problems to claim the scope of Explainable Al (XAI)
with scholarly knowledge graphs. Through tracing over
KG, the XAI system assists stakeholders in conceptu-

@ Springer



Complex & Intelligent Systems

ally understanding the workings of associated systems in
order to achieve explainable outcomes and interpretabil-
ity. For example, domain knowledge infusion model
helps to explain author’s impact by tracing the author’s
research history and derived impact’s explanations can
serve as a platform for recommendation.

Scientific Question Answering: Transformations from
normal text-based search engines to a question—answer
service with semantic awareness is a very crucial task.
Understanding of relationships between input query and
supporting content is very important phase in this knowl-
edge extensive task. [88] Proposed a computational
linguistics knowledge graph (CLKG) that is used to crawl
metadata (article, author, venue, field) for entity-specific
query retrieval framework. In addition, JarvisQA [118]
is a BERT-based question—answer system that retrieves
answers from variety of tables via Table2Text converter.
[119] explores the power of scigraph for questioning
answering. [68] developed a question—answer framework
to retrieve answers from background corpora that inte-
grates knowledge graph matching and semantic matching
using BioBert language model.

Academic mining and author disambiguation: Research
Group Knowledge Graph [120], Veto [121], automatic
evidence mining [122], finding rising stars, automatic
paper draft generation are few applications possessing
academic mining as well as background of knowledge
graphs. Second, author is an important entity in SKG
and disambiguation [61] of this particular entity is one of
the intensive research interest. Lack of a unique normal-
ized identity of an author entity makes the problem more
challenging for certain services such as expert finding
and collaborator search. For example, two authors may
have similar name, affiliation and title. In such case, iden-
tification of described entity in large-scale system can be
complex in order to process a name-based query.

Future directions/challenges

e Heterogeneity and Linking of research objects: Extrac-
tion of structured knowledge is a challenge across the
board and one of the reason for this is data ingestion from
multiple resources which makes the knowledge noisy
and inconsistent. Integration of information from hetero-
geneous sources can cause labor-intensive human anno-
tations to train knowledge extraction systems. This can
be reduced by adopting fully unsupervised approaches
as compared to traditional supervised machine learn-
ing approaches. Maintaining heterogeneity along with
embedding in order to map links into low dimensional
order is a great challenge. For example, integrating
through social networks may cause inconsistent set of
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triplets due to significant unstructured information. The
experts in the field of knowledge graphs have merely
illustrated the potential applications and deep insights
in the field of network analysis, community detection,
retrieving neighbors and advanced clustering. The level
of data integration is immature and fragmented due
to redundancy till now. Second, a unique and persis-
tent identifier is required to identify the relevant digital
objects that possess human-readable label feature. In the
practice, identifiers helps in distilling specific informa-
tion and provides machine-actionable metadata to the
research communities using information systems.
Generation of FAIR Literature surveys: To view the qual-
ity aspect of the work, FAIR guiding principle (Findable,
Accessible, Interoperable, Reusable) [123] is the impor-
tant scientific merit for Scientific knowledge graphs. The
scientific information provided in the literature, on the
other hand, does not fulfill the FAIR Data Principles.
Because of the publishing style, components of litera-
ture surveys, such as survey tables published in scientific
publications, do not conform to the FAIR criteria. It is
critical to follow the FAIR principles and contribute sig-
nificantly to baseline review reuse and their enclosed
information. Generating FAIR literature surveys [27],
FAIR-compliant research contribution model [54], trans-
forming data set into knowledge graph by following FAIR
data principles [74,124]is important to achieve for better
quality.

Ontology matching: The design of ontology to con-
ceptualize and model scholarly knowledge to enable
its exchange across different SKGs is important. Many
scholarly ontologies are restricted over certain domain-
specific entity sets. Another issue is that researchers
seeking relevant information have to deal with multiple
data sources as well as unstructured search. Ontologies
underlying the knowledge graphs possess this issue of
information foraging and required to reduce the cost
associated with database scenario and textual search.
Matching semantic set of properties and determining the
similarity of resources is one of the important subtask.
Knowledge extraction from diversely structured textual
data: Many studies pays attention to the extraction from
structured or semi-structured data sources. Studies based
on knowledge extraction from unstructured data sources
such as images, tables and pseudocode of an algorithm
is limited to date. In order to obtain an overall machine-
actionable scholarly knowledge graph, aligned resources
are required that help achieve a cutting-edge standard
[125] to model scholarly disciplines. For example, table
metadata extraction [126] possess diverse challenges due
to lack of standardization. In order to extract and charac-
terize them in a machine-readable representation layout
and cell-content metadata are required to design flexibly.
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In [127] model is prepared for customized chart visual-
izations from tables to provide more detailed overview
of context. To provide simplification and standardization,
nanopublications [128], i.e., a fine-grained, machine-
interpretable, semantic and interlinked representation for
article information (sections, text, figures, tables, for-
mula, footnote and review comments), provenance and
assertions is presented as an RDF graph. To model multi-
ple knowledge graphs considering multiple components
such as text, images and source code, [129] from deep
learning papers is constructed and led to an aggregated
knowledge graph. Similarly, Dia2Graph performed dia-
gram extraction, classification and graph generation from
deep learning diagrams.

e Quality assessment and evaluation: Mediating the qual-
ity of algorithmic outputs produced by knowledge graph
construction module is a challenging task. It is improb-
able that involved algorithms will be evaluated based on
human designed gold standard and human annotators in
prospecting years. A major challenge is to be sure about
the goodness of algorithm in terms of verification and
validation.

e Completion of the knowledge graph: Metadata used
in construction of knowledge graphs suffers from data
incompleteness to different degrees such as affiliation
ambiguity. Similarly, identify and incomplete references,
author disambiguation and citation count mismatch tends
to vary on different metadata.

Conclusion

In recent time, knowledge graphs have been emerged as the
illustration of many real-time applications and implemented
practically to classify entities and relationships. In this con-
text, knowledge graph in scholarly domain is the specific
area in which semantic representation of literature-based
discovery is presented. In this paper, we presented a broad
and accessible introduction with relevant directions about
scholarly knowledge graphs and discussed common infras-
tructures of graphs in scholarly domain. Various potential
implementations using machine learning approaches, natural
Language processing approaches, rule-based reasoning and
hybrid approaches are described. Issues in integration of data
sources, ontology matching, extracting KG from diversely
structured documents, cross-domain scholarly KG are identi-
fied as the future work through the survey. A detailed analysis
of applications is also explained from different perspectives
like scientific question answering, recommendation service,
Open Information Extraction along with their potential chal-
lenges. Overall, we are able to conclude that knowledge
graph is an important advancement and have power to pro-
vide semantically structured information to huge scholarly

domain. However, efforts of applying such concepts into spe-
cific domains have been made in recent years, several aspects
remain to be explored.
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