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Maternal obesity alters fetal neuroinflammation in
a murine model of preterm birth

Katherine M. Leonard, DO; Stacey S. Schmiedecke, MD; Rebecca L. Talley, BS; Jennifer R. Damicis, BS;
Robert B. Walton, MD; Irina Burd, MD, PhD; Peter G. Napolitano, MD; Nicholas Ieronimakis, PhD
BACKGROUND: Preterm birth from intrauterine infection is a leading cause of neonatal neurologic morbidity. Likewise, maternal obesity is
associated with intra-amniotic infection and inflammation. Whether maternal obesity is a risk factor for fetal brain injury that occurs with prema-
ture birth remains unknown. This study hypothesized that maternal obesity intensifies fetal neuroinflammation in the setting of premature delivery.
OBJECTIVE: This study aimed to examine the influence of maternal obesity on perinatal neuroinflammatory responses that arise with preterm
birth using a murine model.
STUDY DESIGN: Dams with obesity were generated via a high-fat diet that was maintained throughout pregnancy. In parallel, dams without
obesity (normal) received a control diet. All dams were paired with males on normal diet. Pregnant dams were randomized to receive an intrauter-
ine administration of bacterial endotoxin (lipopolysaccharide) or the vehicle (phosphate-buffered saline) on embryo day 15.5 of what is typically a
19- to 21-day gestation. Fetal brains were harvested 6 hours after intrauterine administrations, and the expressions of key inflammatory
cytokines (Il1b, Il6, and Tnf) and panels of metabolic, immune, and inflammatory genes were analyzed.
RESULTS: With the phosphate-buffered saline, there was no difference in gene expression related to maternal obesity. There were substantial
differences in Il6 and immune/inflammatory expression profiles in fetal brains from dams with obesity vs normal dams that received lipopolysac-
charide. Few differences were observed among the metabolic genes examined under these conditions. The gene expression pattern associated
with maternal obesity correlated with pathways related to white matter injury.
CONCLUSION: The expression of neuroinflammatory markers instigated by bacterial endotoxin via intrauterine lipopolysaccharide was
greater in embryo brains obtained from dams with obesity. Expression profiles suggest that in combination with intrauterine inflammation, mater-
nal obesity may increase the risk of fetal white matter injury. Further investigation is warranted to understand the relationship between maternal
health and neurologic outcomes associated with prematurity.

Key words: fetal brain, intrauterine infection, interleukin, maternal obesity, neuroinflammation, neurodevelopment, pregnancy, premature
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Introduction
Preterm birth poses significant risks to
fetal brain development. One of the
strongest risk factors for preterm birth
and developmental disability is intra-
amniotic inflammation, commonly
mediated by bacteria.1−4 Inflammatory
responses to infection are believed to be
responsible for neurodevelopmental
impairment, with greater incidence and
severity at earlier gestational ages of
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Why was this study conducted?
This study was conducted to determine whether there is a relationship between
obesity and neuroinflammation in a lipopolysaccharide murine model of pre-
term labor.

Key findings
The key findings included an association between markers of inflammation,
including interleukin 6 and up-regulated inflammatory gene expression.

What does this add to what is known?
Obesity is associated with inflammation in many disease states; however, its
association with neuroinflammation in cases of preterm labor is not well eluci-
dated. This study adds to the literature the fact that obesity is also associated
with neuroinflammation in an animal model of preterm labor.

Original Research ajog.org
increase the risk of neurodevelopmental
consequences observed with premature
birth.13−16

Although obesity and preterm birth
are linked, it remains unclear whether
immunologic responses to intra-amni-
otic infection change with maternal
obesity. In humans, the effect of obesity
is difficult to discern from the charac-
teristics associated with neuroinflam-
matory injury, which include
gestational age at delivery, etiology of
infection, genetics, and fetal sex.17 To
control for such variables, we examined
the influence of maternal obesity in a
murine model of intrauterine inflam-
mation and preterm birth.18−21 In this
model, the key inflammatory cytokines
Il1b, Il6, and Tnf were elevated, reflect-
ing observations in human amniotic
fluid with premature birth.22 We
hypothesized that maternal obesity
compounds fetal immune responses
that can negatively affect neurodevelop-
ment. The primary objective of this
study was to examine whether neuroin-
flammation stimulated by bacterial lipo-
polysaccharide (LPS), intensifies in the
progeny of dams with obesity.

Materials and methods
Animal experiments and procedures
were performed under the guidance and
approval of the Institutional Animal
Care and Use Committee. Female
C57BL/6J without (normal) and with
diet inducted obesity were acquired
from Envigo. Mice in the cohort of obe-
sity were provided a 60% high-fat diet
2 AJOG Global Reports August 2024
ad lib consistently beginning at 3 weeks
of age, the time of weaning (Teklad
TD.06414). Mice were received obese
and maintained on the same high-fat
diet until euthanasia. In parallel, normal
female mice received a comparable con-
trol diet consisting of 10% fat (Teklad
TD.08806). All dams were mated with
male C57BL/6J also from Envigo, given
a normal diet to eliminate paternal obe-
sity as a potential confounder. Follow-
ing the preterm murine modality
established by Elovitz et al,21 all preg-
nant dams were randomized to receive
an intrauterine administration of LPS
from Escherichia coli (O127.B8 from
Sigma-Aldrich, St. Louis, MO) or phos-
phate-buffered saline (PBS) on day 15.5
(E15.5).23 The dams were anesthetized
with isoflurane, and a mini-laparotomy
was performed to access the uterine
horns to administer 250 mg LPS in 100
mL PBS or the equivalent volume of the
vehicle (Figure 1, A). Embryos were
harvested 6 hours after intrauterine
administration and either fixed whole
in formalin or their brains were dis-
sected and flash frozen in liquid nitro-
gen. This timepoint was chosen on the
basis of the studies by Gayle et al24 and
Brown et al,25 which show the up-regu-
lation of inflammatory cytokines before
delivery and loss of viability that can
result beyond 6 hours of LPS exposure.
Fixed whole embryos were weighed
within 7 days of collection.27 Embryo
brains were used for RNA isolation and
subsequent gene expression analyses as
previously described using targeted
gene expression panels intended to pro-
vide insight into neuroinflammatory
responses to LPS, particularly the
molecular pattern of microglia covered
by the NanoString neuroinflammatory
panel.23,26−28 The same samples were
randomly selected and used for each
analysis. Briefly, for quantitative reverse
transcription-polymerase chain reaction
(qRT-PCR) analysis of individual genes
and panels, fold changes were calculated
from relative quantifications normalized
to ribosomal 18s using the ΔΔCt
method.29 Tables and graphs were gen-
erated using Microsoft Excel, and statis-
tical analyses for polymerase chain
reaction (PCR) gene expression were
performed using IBM SPSS software
(version 28; IBM, Armonk, NY). The
analysis of differentially expressed genes
(DEGs) from the NanoString neuroin-
flammatory panel was performed using
the nSolver Advanced Analysis software
(version 4.0; NanoString Technologies
Inc, Seattle, WA). From this analysis,
statistically significant DEGs (those
below an adjusted P<.05) were matched
to canonical pathways using the Qiagen
ingenuity pathway analysis (IPA). To
remove poorly associated processes,
IPA canonical pathways with a �log(P
value) of <7 were filtered from this
analysis. The IPA analysis is presented
as a bubble chart sorted by z scores
along the y-axis and P values along the
x-axis. A complete list of genes and
results for each expression panel and
IPA analysis is listed in the Supplemen-
tal methods and data file.

Results
A significant difference in maternal
weight at conception and at the time
of embryo collection was observed
between obese and normal dams
(Figure 1, B). Other characteristics, such
as number of embryos and their weight,
were similar between dams.
Analysis of key inflammatory genes

shows significant up-regulation with
LPS exposure (Figure 2, A). The expres-
sion of Il6 was significantly greater in
the fetal brains of dams with obesity
than in the fetal brains of normal dams.
No difference was observed in PBS con-
trols. Gene expression analysis
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FIGURE 1
Experimental design and pregnancy characteristics

A, Outline of the experimental design specifying the timeline of diet introduction, intrauterine administrations, and subsequent fetal brain harvest.
B, Maternal and fetal characteristics between normal dams and dams with obesity. P values were generated using the Student t test.
Leonard. Increased fetal neuroinflammation with maternal obesity in a murine model of preterm labor. Am J Obstet Gynecol Glob Rep 2024.
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examining a panel of 92 immune genes
across a smaller sampling of brains
revealed substantial differences
(Figure 2, B). Although this analysis
was underpowered for detecting differ-
ences with LPS for key inflammatory
genes shown in Figure 2, A, it is
intended to provide a broader survey of
differences between diet conditions.
With LPS exposure, 6 genes were signif-
icantly up-regulated with a normal diet,
whereas 26 genes were different with an
obese diet. In contrast, a panel of 83
metabolic-related genes showed few
differences within brains from embryos
of dams with obesity compared with
brains from embryos of normal dams
(Figure 2, C). Specifically, no gene was
different between LPS and PBS for the
normal diet group, whereas only 3 genes
were slightly up-regulated in the obese
diet group.

The analysis with a NanoString panel
of 757 neuroinflammatory-associated
genes yielded 594 DEGs between LPS
and PBS for normal diet and 600 DEGs
between LPS and PBS for obese diet
(Figure 3 and Supplemental methods
and data). Among the 594 DEGs
detected for normal diet, 98 were below
our criteria for statistical significance
(adjusted P<.05). With the obese diet,
76 DEGs were statistically significant
among the 600 DEGs detected. With a
normal diet, 13 of 98 statistically signifi-
cant DEGs had a fold change of >1,
whereas 24 DEGs crossed this thresh-
old, and the adjusted P values were gen-
erally lower with the obese diet. Among
these genes, Casp4 and Lcn2 were up-
regulated only with the obese diet
(Figure 3), and Spp1 was down-
August 2024 AJOG Global Reports 3
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FIGURE 2
Fetal brain immune and metabolic gene expression

A, Box and whisker plots show real-time PCR results for key inflammatory genes Il1b, Il6, Tnf, and Tlr4. Brains analyzed for normal PBS (n=16), normal
LPS (n=21), obese PBS (n=23), and obese LPS (n=20). The relative expression normalized to 18s is shown as log2 along the y-axis. The x within each
box reflects the mean. The Δ reflects a P<.05 by 1-way analysis of variance, and the ** reflects a P<.005 and the **** reflects a P<.00005 by the
Tukey posthoc test. B and C, Volcano plots for real-time PCR analysis using preformatted panels for 92 immune-related genes (A) and 83 mitochon-
drial-related genes (B) in 4 to 5 brains per condition. The differential expression between LPS vs PBS exposures normalized to 18s is shown as log2
along the x-axis. P values are shown along the y-axis in log10. For normal diet, all genes with P<.05 are annotated red if significantly up-regulated and
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blue if down-regulated. For the group with obesity, genes up-regulated with a fold change of >1and a
down-regulated with P<.05 are in blue. The dotted horizontal lines denote a P=.05, and the dotted vert
LPS, lipopolysaccharide; PBS, phosphate-buffered solution; PCR, polymerase chain reaction.

Leonard. Increased fetal neuroinflammation with maternal obesity in a murine model of preterm labor. Am J Obstet Gynecol

FIGURE 3
Neuroinflammatory expression profile

Volcano plots show the differential expression for 757 DEGs within the NanoString neuroinflamma-
tory panel from 15 fetal brains per condition. Expression shown as log2 along the x-axis reflects
the brains from embryos exposed to LPS vs PBS, from normal dams (A) and dams with obesity
(B). False discovery rate adjusted P values are shown in log10 along the y-axis. DEGs with an
adjusted P<.05 and a fold change of >1 are annotated red if up-regulated and blue if down-
regulated. The dotted horizontal lines denote an adjusted P=.05, the dashed lines denote an
adjusted P=.01, and the dotted vertical lines reflect a fold change of 1.
DEG, differentially expressed gene; LPS, lipopolysaccharide; PBS, phosphate-buffered solution

Leonard. Increased fetal neuroinflammation with maternal obesity in a murine model of preterm labor. Am J Obstet
Gynecol Glob Rep 2024.
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regulated with the normal diet but up-
regulated with the obese diet (Supple-
mental methods and data).
The expression pattern among genes

that were statistically significant
(adjusted P<.05) (Supplemental meth-
ods and data) from the NanoString
panel linked to similar IPA canonical
pathways among normal and obese
diets (Figure 4). Similar patterns and
levels of statistical significance were
observed across 43 IPA canonical path-
ways, with the exception of 9 pathways
that did not overlap between normal
and obese diets. Pathways with the
highest z scores (predicted to be acti-
vated) for the normal but not for obese
diet include SUMOylation of immune
response proteins, TAK1-dependent
IKK, NF-kappa-B activation, and toll-
like receptor signaling. In contrast,
pathways predicted to be activated for
obese but not for normal diet include
HiF1a, ceramide, and erythropoietin
signaling.
Comment
Principal findings
Using a mouse model of intrauterine
inflammation and preterm birth, we
demonstrated that maternal obesity
magnifies perinatal neuroinflammation.
This was independent of paternal con-
tribution or variables, such as gesta-
tional age, that were experimentally
controlled. Our findings suggest that
maternal obesity is a risk factor for fetal
brain injury in the setting of intrauter-
ine infection.
Clinical implications
Obesity is a major public health issue
that affects approximately 40% of adults
in the United States.30 Obesity is associ-
ated with poor pregnancy outcomes,
including intra-amniotic infection, pre-
mature birth, cesarean delivery, and
maternal surgical site infections.15,16,31

In offspring, maternal obesity is associ-
ated with neurologic issues, such as
P<.05 are annotated in red, whereas all genes
ical lines reflect a fold change of 1.

Glob Rep 2024.
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FIGURE 4
Neuroinflammatory expression pathway analysis

Bubble charts reflect the ingenuity pathway analysis (IPA) canonical pathway analysis for the NanoString DEG results from normal and obese diets
between LPS and PBS exposure. Pathways are sorted vertically by z score (activity). Darker color gradients reflect a greater association for each activity
based on the distance of the z score from 0, whereas white bubbles lack a z score. Bubbles are color coded to denote z score patterns among active
(orange), no activity (gray), and inactive (blue) pathways. Moreover, pathways are sorted horizontally by the P value shown in �log. Represented are the
top pathways with a �log(P value) of >7. The size of each bubble varies by the number of DEGs associated with each pathway and reflect only those
with an adjusted P<.05 from the NanoString analysis. Arrowheads point to pathways that do not overlap between normal and obese diets.
Leonard. Increased fetal neuroinflammation with maternal obesity in a murine model of preterm labor. Am J Obstet Gynecol Glob Rep 2024.

Original Research ajog.org

6 AJOG Global Reports August 2024

http://www.ajog.org


ajog.org Original Research
cognitive deficiency and behavioral dis-
orders.32−34 However, the effect of
maternal obesity on neurodevelopment
alone or in conjunction with comorbid-
ities, such as premature birth, remains
unclear.
With premature birth, there is a sub-

stantial risk of neonatal morbidity and
mortality.35 Preterm birth is often medi-
ated by an underlying bacterial infection
and related intrauterine inflammation.35

Hillier et al36 found a compelling associ-
ation between the onset of labor before
34 weeks of gestation and intrauterine
inflammation. Here, the overwhelming
majority of preterm deliveries showed
elevated levels of IL-1B, IL-6, and TNF
concurrently with bacterial infection.36

These inflammatory cytokines potenti-
ate destructive immune responses, par-
ticularly in the developing brain, when
evaluated in animal models.19,35,37−39

Neuroinflammatory injury is believed
to be the cause of central nervous sys-
tem−related adverse fetal outcomes,
such as cerebral palsy.40

Independently, prematurity and
maternal obesity can negatively affect
brain development.41−43 However, it is
unknown whether obesity increases the
risk of fetal neuroinflammatory injury
in cases of preterm birth. In fetal brains
from dams with obesity, we observed a
significant up-regulation of inflamma-
tory genes and processes, notably Il6.21

Previous studies have indicated that ele-
vated levels of IL-6 initiate a complex
cascade of pathways that result in epige-
netic alterations, including downstream
methylation of key promoters related to
neuronal gene expression.38,44 Such
mechanisms may explain the link
between maternal immune activation of
IL-6 and the modulation of fetal brain
development.38 Therefore, in the con-
text of preterm birth, increased levels of
IL-6 with maternal obesity may impair
neurodevelopment.
Although factors that govern the

severity of fetal neuroinflammatory
injury remain to be fully characterized,
our data suggest that maternal health is
key. Pregnancy itself is an immunologic
phenomenon that requires a delicate
balance between pro- and anti-inflam-
matory pathways. Both preterm labor
and maternal obesity are associated
with inflammatory biases that affect the
intrauterine environment.31,36 It is pos-
sible that adverse fetal neurologic
sequelae related to the maternal envi-
ronment are potentiated by the mater-
nal-fetal interface. This process may
damage the intrauterine environment
and influence epigenetic modifications
that lead to unfavorable pregnancy
outcomes.45

Research implications
In the absence of LPS, we did not
observe differences, suggesting that
these potent inflammatory factors are
not altered by maternal obesity alone
within the fetal brain. As demonstrated
by previous adaptations of this model,
LPS-mediated intrauterine inflamma-
tion significantly up-regulated Il1b, Il6,
and Tnf in fetal brains (Figure 2, A).23,27

Among these key cytokines, only Il6
was different with obesity and LPS.23

These changes occurred without
increases in fetal weight, suggesting that
maternal obesity can influence the
developing brain in the absence of fetal
macrosomia. Maternal obesity alone
elevates Il6 expression in mouse pla-
centas, which may increase systemic
responses in response to intrauterine
inflammation.46 Despite the relation-
ship between LPS and Tlr4 signaling,
differences within fetal brains attributed
to maternal obesity do not coincide
with Tlr4 expression.25

To gain broader insight into the effect
of maternal obesity on the developing
brain, we analyzed 2 gene expression
panels reflecting metabolism and
immunity. There were few metabolic
differences with LPS, irrespective of
maternal status, whereas immune-
related genes were highly up-regulated
with obesity. This comparison suggests
that fetal neuroimmune and metabolic
responses to intrauterine inflammation
are not mutually exclusive or equally
affected by maternal obesity. Based on
these observations, we expanded our
analysis of neuroimmune-related genes
rather than metabolic. With the
expanded analysis, cross-platform con-
sistencies and inconsistencies were
noted. The immune panel analysis
(Figure 2, B) was underpowered com-
pared with the NanoString analysis
(Figure 3). This may relate to differen-
ces for certain genes, such as Ccl3,
which was significant only for the obese
diet using the immune panel, but for
both diets using the NanoString (Sup-
plemental methods and data file). The
exception is Tnf, which was significantly
different by qRT-PCR (Figure 2, A) but
was not detected by the NanoString
(Figure 3), which may reflect cross-plat-
form differences and sensitivities. Over-
all, the gene expression results support
a relationship between maternal health
and fetal neuroinflammation (Figure 3).
Certain genes (Casp4, Spp1 and Lcn2)
up-regulated only with obesity and LPS
relate to white matter injury and may
increase the risk of this pathology com-
mon among children born prema-
turely.47 Specifically, Casp4 (aka
Casp11) can initiate oligodendrocyte
death, whereas Spp1 mediates micro-
glial dysfunction and is linked to poor
myelination in humans.48−50 Concur-
rently, Lcn2 knockout animals have
shown resistance to white matter dam-
age compared with wild-type mice with
subarachnoid hemorrhage injury.51 In
humans, elevated levels of LCN2 in the
cerebral spinal fluid correlate with age-
related white matter decline,52 and
LCN2 is also observed in the circulation
of neonates born prematurely.53

The predicted IPA canonical path-
ways and their activities (delineated by
the z score) were similar between nor-
mal and obese diets. The activation of
several overlapping cytokines and
inflammatory signaling pathways was
biased by our use of a targeted panel of
genes that were mostly up-regulated
with LPS exposure. Despite this and
similarities in activity and statistical sig-
nificance (P value) for most pathways,
there are notable differences. Among
the most significant pathways depicted
in Figure 4, the activation of HiF1a sig-
naling was predicted with the obese but
not for the normal diet. In contrast,
inactivation of peroxisome proliferator-
activated receptor (PPAR) signaling is
predicted for the normal but not for the
obese diet. Studies indicate that HiF1a
promotes brain injury,54 whereas PPAR
August 2024 AJOG Global Reports 7
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signaling can be neuroprotective.55 This
pattern suggests that the influence of
maternal diet on perinatal neuroinflam-
mation may be selective and even
opposing. Further research is needed to
determine the role of select pathways,
including HiF1a and PPAR, within the
context of maternal health and perinatal
brain injury.

Strengths and limitations
A strength of our study is the comparison
of high-fat diet−induced obesity, which
is the leading cause of excessive weight
gain in humans.56 Using a well-validated
experimental mouse model, the differen-
ces can be attributed to maternal obesity.
In contrast, human studies may not be
able to control for variables that also
affect neurodevelopment, such as gesta-
tional age at delivery and genetic
disposition.17,57 Furthermore, we elimi-
nated paternal influence as a contributing
factor using the same sires without obe-
sity for both normal and obese dams.
The controls provide additional insight
regarding maternal influence on fetal
neuroimmune responses and lack thereof
with obesity alone. This was examined
using several gene expression approaches,
including the NanoString digital analysis
platform.58

The major limitation of our study is
that observations in animal models do
not always translate to human biology
and that LPS-mediated inflammation
may not reflect the complexities of intra-
amniotic infection. In addition, we only
compared a high-fat diet along with
intrauterine inflammation using LPS
from E coli. It is possible that our findings
do not extend to obesity linked to genetic
or other dietary types or to other etiolo-
gies of perinatal neuroinflammatory
injury.18 Our analysis of immune and
metabolic genes was not comprehensive
and does not account for all possible
developmental changes related to mater-
nal obesity. Correspondingly, our reli-
ance on targeted gene expression
approaches may relate to the lack of over-
whelming DEGs and pathways observed
in obesity. Finally, our analysis relies on
gene expression, which may not reflect
protein translation and necessitates fur-
ther verification.
8 AJOG Global Reports August 2024
Conclusions
Our findings suggest that maternal obe-
sity compounds fetal neuroinflamma-
tory responses to cytotoxic stimuli in
utero. The combination of obesity and
intrauterine inflammation remains ill
understood, yet it may compound fetal
injury and lifelong comorbidities associ-
ated with premature birth. Further
examination of maternal obesity as a
potentially modifiable risk factor to mit-
igate the severity of neurologic-related
fetal outcomes with prematurity is
warranted. &
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