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Abstract: In the present study, we developed a new adsorbent product with zeolite crosslinked
chitosan (ZL–CH hydrogel) to remove acid red 88 (AR88) in an aqueous solution. The effects of
several factors, such as the comparison of ZL–CH hydrogel and the absence of chitosan, pH, adsorbent
dosage, initial AR88 concentration, contact time, and ion strength, were determined. Obtained results
showed that ZL–CH hydrogel improved AR88 removal compared to the absence of chitosan, with
an adsorption capacity of 332.48 mg/g in equilibrium time of 1 min, and adding ionic strength had
no significant effect. However, with optimal conditions at pH 2.0, dry ZL–CH became hydrogel
due to protonation of amino and hydroxyl groups through hydrogen bonds in the AR88 solution.
Volume fraction and interaction force decreased with increasing porosity, leading to an increase in
adsorption capacity and swelling ratio. Experimental data of the adsorption process showed the
Freundlich isotherm model. The equilibrium for adsorption and swelling kinetics studies showed
and fitted a pseudo-second-order model. NaOH was successful as a desorbing agent with 93.8%, and
it followed the pseudo-second-order kinetics model. The recycling process indicates great potential
for AR88 removal.

Keywords: acid red 88; adsorption; chitosan; dye removal; zeolite

1. Introduction

Water contamination is a significant global problem caused by chemical industry
effluents such as textiles, printing, food, pharmaceuticals, and paints [1]. Textile industries
are one of the main contributors to water pollution, generating 10–15% of toxic dyes [2],
which hurt human health [3]. As a result, dye contamination in wastewater is a significant
issue, as it prevents light from passing through the water, reducing photosynthesis, and
disrupting biota growth, including fish [4]. Among these, azo dyes are widely dominant
and comprise 60–70% [5].

Azo dyes are generally identified by the presence of two aromatic groups followed
by coupling the resultant diazonium salt with an electron-donating aromatic compound
connected to double bond –N=N– [6]. Numerous techniques are studied for the removal
of dyes in an aqueous solution, such as ion exchange [7], adsorption [8–12], membrane
filtration [13], fungal decolorization [14], and coagulation or flocculation [15]. However,
each approach has its own set of disadvantages. Of these, adsorption is a simple method
that uses an adsorbent [16,17]. Many adsorbents are successful because of their ability.
Recently, scientists have focused on finding an adsorbent that is nontoxic, efficient, and
faster even at higher concentrations.

Zeolites are crystalline aluminosilicate minerals with a negative surface charge neutral-
ized by exchangeable cations [18]. Furthermore, zeolites have a high surface area [19], which
was explored to remove azo dyes [6]. However, zeolites are quite effective in removing azo
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dye from an aqueous solution [18]. Thus, we modified zeolite with crosslinked chitosan.
This has various advantages, including strong biocompatibility, nontoxicity, easy chemical
modifications, and it has many functional groups (methyl, amino, and hydroxyl) [20].
Chitosan is derived from chitin by deacetylation, which does not naturally occur in the
environment [21]. Because its pKa is about 6.5, which leads to protonation in a neutral
solution and solubility in acidic pH, it does not dissolve in alkaline conditions [22,23].
Therefore, in the postreaction of zeolite/chitosan, sodium hydroxide was added to obtain
dry zeolite/chitosan hydrogel. This reaction is a new biodegradable product with great
potential to remove dyes from an aqueous solution. Kolodyńska et al. [24] successfully
removed methylene blue and copper using zeolite-modified chitosan. However, there is no
information about the removal of azo dyes by zeolite/chitosan hydrogel. In the present
study, we examined acid red 88 (AR88) in an adsorption experiment. AR88 is one of the
abundant azo dyes in the effluent of the textile industry.

2. Materials and Methods
2.1. Materials

Chitosan (CH) (CAS: 9012-76-4) (deacetylation rate (after drying ≥ 80%)) was pur-
chased from Wako Pure Chemical Industries, Ltd (Tokyo, Japan). Synthetic zeolite (ZL)
was supplied from Tosoh Ltd (Shunan-shi, Japan). Acid red 88 (AR88) (CAS: 1658-56-6),
sodium hydroxide (NaOH) (CAS: 1310-73-2), hydrochloric acid (HCl) (CAS: 7647-01-0),
sodium chloride (NaCl) (CAS: 7647-14-5), and acetic acid (CH3COOH) (CAS: 64-19-7) were
purchased from Kanto Chemical Co. Inc. (Tokyo, Japan). The general characteristics of
AR88 are shown in Table 1.

Table 1. General characteristics of AR88.

Characteristics AR88 Chemical Structure

General name Acid red 88
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Molecular weight 400.39
Chemical formula C20H13N2NaO4S
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λmax (nm) 503

2.2. Preparation of Zeolite/Chitosan (ZL–CH) Hydrogel

The modified zeolite/chitosan hydrogel was synthesized under ambient conditions.
First, 1 g of chitosan (CH) was mixed with 100 mL of 1% and 3% acetic acid (AA) for 24 h
on a magnetic stirrer. Then, we mixed 25 mL of dissolved CH with 0.5 g of zeolite (ZL) for
2 h on a rotary mixture (Rotator RT-50). Afterwards, we added 25 mL of 1M NaOH for
30 min. The synthesized ZL–CH hydrogel was filtered, washed to remove any residual
sodium hydroxide by distilled water, and dried at 60 ◦C for 48 h. Lastly, the product was
crushed and sieved.

2.3. Adsorption Experiments

In the present study, all experiments were conducted at room temperature with a
magnetic stirrer with diameter particles <100 µm. The first step compares the zeolite
adsorption capacity on ZL–CH hydrogel using 30 mg of zeolite/ZL–CH hydrogel with
10 mg/L in 100 mL of AR88 solution at room temperature. After being produced, the
ZL–CH hydrogel was used for the next step. The effects of initial pH, different adsorbent
dosages and different initial AR88 concentrations, were investigated. Because the initial
AR88 (100 mg/L) was achieved in higher adsorption capacity, we used it for the next
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treatment. Each sample was measured three times, and the average value was taken. The
amount of adsorption capacity was calculated using Equation (1).

qe = {(Co − Ce)/W}V (1)

where qe is adsorption capacity (mg/g), Co is the initial concentration of AR88 concentration
in liquid (mg/L), Ce is the equilibrium of acid red 88 in liquid (mg/L), W is the weight of
the adsorbent (g) of the ZL–CH hydrogel, and V is the volume of AR88 (L).

2.4. Adsorption Kinetics

ZL–CH hydrogel was mixed with 100 mg/L (100 mL) AR88. The AR88 supernatant
was collected to measure the concentration. The amount of AR88 adsorbed at the time was
calculated with Equation (2).

qt = {(Co − Ct)/W}V (2)

where Ct is the AR88 concentration at time t (min) (mg/L), Co is the initial concentration of
AR88 in liquid solution (mg/L), W is the weight of the adsorbent (g), and V is the volume
of AR88 solution (L).

2.5. Desorption Studies

Practical applications always use an adsorbent with good reusability. This study
produced different desorbing agents to release AR88 from ZL–CH hydrogel. First, 30 mg
of ZL–CH hydrogel was loaded with 100 mL (100 mg/L) of AR88 at a fixed pH (2.0). The
dye-adsorbed ZL–CH hydrogel was soaked in a 0.01 M aqueous solution of HCl, NaCl,
and NaOH at a ratio of 12 mg/40 mL (S/L). Desorption amount and rate of desorption
efficiency are shown in Equations (3) and (4), respectively.

qdes = (C1/W)V (3)

%desorption = (qdes/qe)V (4)

where qdes is the desorption amount of the dye (mg/g), %desorption is the rate of desorp-
tion efficiency (%), C1 represents the dye concentration of desorption supernatant (mg/L),
V is the volume desorption solution (L), and W is the adsorbent mass (g).

2.6. Swelling Studies

Swelling behavior was studied by a gravimetric method. The ZL–CH hydrogel was
left to swell in AR88 solution (100 mg/L) with pH 2.0 at room temperature. The swelling
was measured for each sample at a certain time after the excess surface water had been
carefully removed with wet filter paper. The swelling ratio was calculated as follows:

Swelling ratio (g/g) = (Ww − Wd)/Wd (5)

where Ww is the swollen weight, and Wd is the dry ZL–CH hydrogel sample.

2.7. Swelling Kinetics Studies

Dry ZL–CH hydrogel was mixed with 100 mg/L of AR88 (100 mL) solution at room
temperature. Water uptake data were analyzed with the first- and second-order kinetics in
Equations (6) and (7), respectively [25].

ln[Se/(Se − St)] = K1t (6)

t/W = 1/(K2S2e) + t/Se (7)

where Se is the maximal water uptake, St is the water uptake at the time (K1 (min−1)), and
K2 (g/g min−1) is the specific rate constant.
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2.8. Swelling Structure Parameters of Zeolite/Chitosan (ZL–CH) Hydrogel

The structure of the crosslinked ZL–CH hydrogel could be described by porosity and
volume fraction [26,27]. The experiment was conducted in a beaker glass using 30 mg
ZL–CH hydrogel mixed with 100 mg/L AR88 solution at pH 2.0, with a contact time from
0.17 to 3 min. Porosity and volume fraction were calculated as follows:

Dl = mass/volume (8)

Vh = volume − (S2 − S1 − mass/Dt) (9)

Dh = mass/Vh (10)

Φ = {[Swet − Sdry]/Swet} × {Dh/Dl} (11)

where Dl is the density of AR88 (g/cm3), Vh is the volume of hydrogel (cm3), Swet is
the mass of the wet ZL–CH composite hydrogel (g), Sdry is the mass of the dry ZL–CH
composite hydrogel, Dh is the density of the ZL–CH composites hydrogel (g/cm3), and ϕ
is the porosity.

Interaction constant x (interaction force parameter) is the interaction index between
hydrogel (ZL–CH hydrogel) and solvent (AR88). Force parameters were derived using
Flory–Huggins theory [28]. The force parameter can express by the effective swelling
balance in Equation (12).

Ø2 + ln (1 − Ø2) + xØ2
2 + veV1(Ø2

1/3 − 2Ø2f−1) = 0 (12)

where Ø2 is the volume fraction of the swelling polymer, V1 is the molar volume of the
solvent, ve is the effective crosslink density, and f−1 is the average number of active elastic
chains. Because the value of ve in the system was small, it could be ignored. On the basis
of the literature [29], it was modified to obtain Equation (13). Lastly, the force parameter
between polymer (ZL–CH hydrogel) and water molecule (AR88) is shown in Equation (14).

Ø2 + ln (1 - Ø2) + xØ2
2 = 0 (13)

x = (1/2) + (Ø2/3) (14)

where x is the interaction force parameter between the ZL–CH hydrogel and AR88. Volume
fraction Ø2 could be calculated by Equation (15).

Ø2 = 1 − {[Swet − Sdry]/Swet}/{(Sdry/Dh) + {(Swet-Sdry)/Dl}} (15)

2.9. Characterization

Liquid solution AR88 was measured using a UV–vis spectrophotometer (Jasco V-
530, Jasco Corporation, Tokyo, Japan) at 503 nm. The morphology of zeolite and ZL–CH
composites was analyzed using scanning electron microscopy (SEM) (Hitachi TM3000,
Hitachi High-Tech Co., Ltd, Tokyo, Japan). Element composition was analyzed using
SEM-EDS (JIED-2300) (Shimadzu, Kyoto, Japan). The ATR-FTIR of the ZL–CH hydrogel
was investigated before and after adsorption at a resolution of 1 cm−1 in the region of
400–4000 cm−1 (Thermo Scientific Nicolet iS10, Thermo Fisher Scientific Inc., Waltham,
MA, USA).

3. Results and Discussion
3.1. Adsorbent Morphology

The photograph and EDS analysis of the raw zeolite and ZL–CH hydrogel before
and after adsorption are shown in Figure 1. As seen, the zeolite surface was nonadhesive
(Figure 1a). On the other hand, the dry ZL–CH hydrogel before adsorption had an interlayer
and adhesive on the surface (Figure 1b). Surface changes may have been due to dissolved
chitosan molecules adsorbed onto the zeolite surface. Figure 1c shows that the dry ZL–CH
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hydrogel surface had a rough texture after adsorption. Furthermore, EDS spectrum analysis
showed that the raw zeolite Si/Al ratio (6.7/1). The sodium peak appeared in ZL–CH due
to the pretreatment of the adsorbent, which consisted of sodium. Sulfur, chloride, and iron
were visible after adsorption, and confirmed that the dye particles of AR88 adhered to the
adsorbent surface.
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3.2. Comparison Adsorption Capacity between ZL–CH Hydrogel and Absence of Chitosan

Figure 2 shows a comparison of AR88 removal from the ZL–CH hydrogel and the
absence of chitosan. The average adsorption capacity of ZL–CH hydrogel was greatly
impacted by the absence of chitosan, which caused the molecular interactions between
zeolite and chitosan to be active surfaces to capture AR88 dye particles. On the other hand,
a higher concentration of acetic acid (3%) decreased adsorption capacity. This indicates that
the higher concentration of acetic acid would be higher than the dissolution of chitosan,
and the surface tension would be decreased [30].
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(A) Original zeolite, (B) chitosan dissolved with 1% acetic acid (AA), (C) chitosan dissolved with
3% acetic acid (AA) (ZL–CH hydrogel 30 mg, 100 mL of 10 mg/L AR88, Original pH of AR88 (6.5),
contact time 15 min).

3.3. Effect of Different Initial pH and pH Zero Point Charge (pHzpc)

The different initial pH of AR88 in the ZL–CH hydrogel was determined in a pH range
from 2.0 to 8.0 at an AR88 concentration of 10 mg/L (Figure 3). Obtained results showed
that adsorption capacity decreased from 3.2 to 0.9 mg/g for pH 2.0 to 8.0, respectively. This
was due to the formation of sulfonic acid groups (R–SO3

–) from protonated AR88 to form
R–SO3H under acidic conditions. However, the dye molecules dispersed, trapped inside
the adsorbent, and became a (water-soluble) gel. These phenomena were due to the strong
ionic interaction between the amino groups (–NH2) of ZL–CH hydrogel and AR88 through
hydrogen bonding (H bond) [31–33]. However, even more so under acidic conditions,
sulfonic acid groups still exhibit a pKa value below zero [34]. This agrees with [9], which
reported that anionic dye adsorption was preferred under acidic conditions. However,
AR88 still adsorbed on ZL–CH under alkaline conditions (pH 8). This was due to the
interacting hydrogen bond between both ZL–CH hydrogel and AR88 in weak capacity. In
addition, Figure S1a shows the value of pH > pHzpc at an initial pH range of 2–10. This
indicates that the surface area of ZL–CH was negatively charged. In comparison, the pHzpc
of zeolite was 5.5 (Figure S1b), which indicated that the zeolite surface was positively
charged, which was not efficient to uptake dye particles in the initial pH 6.5 (Figure 2).
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3.4. Effect of Adsorbent Dosage

Figure 4 shows the effect of different adsorbent dosages (30–80 mg/100 mL of solution)
on AR88 adsorption in an aqueous solution. By increasing the dosage, the adsorption
capacity of ZL–CH hydrogel decreased from 32.0 to 6.7 mg/g. The reduction in AR88
adsorption capacity at a higher dosage of ZL–CH hydrogel may have been due to the lower
accessibility of the active adsorbent sites resulting from the collection and overlap of the
adsorbent particles [35]. In other words, the phenomenon that happened in the higher
content of the adsorbent caused a reduction in the uptake of dye molecules into the ZL–CH
hydrogel. Therefore, the remaining experiments were performed at 30 mg/100 mL of the
ZL–CH hydrogel dosage.
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Figure 4. Effect of different adsorbent dosages (ZL–CH hydrogel) (pH 2.0, 100 mL of 10 mg/L AR88,
contact time 15 min).

3.5. Effect of the Initial AR88 Concentration

Figure 5 shows the effect of different initial concentrations of AR88 from 10 to
100 mg/L. Results show that an increase in initial AR88 concentration increased adsorption
capacity from 33.2 to 326.2 mg/g.
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contact time 15 min).

This is attributed to the higher initial concentration due to the increased driving force
between the liquid and solid phases, and the highly swollen ZL–CH hydrogel network,
which provided an accessible diffusion path for AR88 dye molecules to interact with ZL–
CH hydrogel chains, thus improving the uptake of the dye into the adsorbent [25,36].



Polymers 2022, 14, 893 8 of 18

While the amount of dye adsorbed increased with increasing AR88 concentration, the
adsorption percentage decreased from 99.73% to 97.87%. This was due to the electrostatic
repulsion between AR88 dye molecules with increasing AR88 concentration, which lead to
competition between dye molecules for limited active sites in the ZL–CH hydrogel. This
result agrees with the findings of [35–37].

3.6. Effect of Contact Time

Figure 6 shows the equilibrium of adsorption capacity at the time. Adsorption capacity
was rapid in the first 0.17 min. After 1 min, adsorption capacity reached equilibrium
and gradually decreased the following time. This was due to the dissolved ZL–CH dry
hydrogels, becoming gel molecules, and the electrostatic interaction with AR88 particles
decreased [38].
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3.7. FTIR and Proposed AR88 Adsorption Mechanism onto ZL–CH Hydrogel

We described the AR88 mechanism of the adsorption of AR88 on ZL–CH at pH 2.0
solution. Additional data support for the description was obtained from FTIR data of
ZL–CH hydrogel before and after AR88 adsorption (Figure 7). Hydrophilic/hydrophobic
functional groups existed on the surface of the ZL–CH hydrogel, hydrogen bonding, and
electrostatic interactions. Before adsorption, the peak band of ZL–CH at 3453.16 cm−1

decreased to 3225.31 cm−1 after adsorption. This indicates that the hydrogen bond created
between hydroxyl group AR88 and amine group of ZL–CH hydrogel at pH 2.0 was related
to the stretching vibration of –OH and H2O [39].

Moreover, the decreased band peak before and after adsorption occurred at 1650.65 to
1615.01 cm−1, which corresponded to N–H to –OH groups; thus, the resulting electrostatic
repulsion increased between ZL–CH hydrogel and AR88, leading to the color change in the
solution. On the other hand, an increased band peak was found at 1460.27 to 1501.81 cm−1

before and after adsorption. This may have caused N–O stretching to correspond to C–H
bending, resulting in OH– groups in the dye. Furthermore, new peaks after adsorption
were found at 745.99 and 681.22 cm−1 due to the influence of aromatic bending vibrations of
C–H of AR88 inserted in the adsorbent [40]. The proposed mechanism of AR88 adsorption
onto ZL–CH hydrogel is shown in Figure 8.
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3.8. Adsorption Kinetics

The kinetic adsorption process provides a valuable concept in both the action pathways
and the control mechanisms of the exchange reaction. This study used the pseudo-first- and
second-order models to assess the experimental data in Equations (16) and (17), respectively.

log(qe − qt) = logqe − K1t (16)

t/qt = 1/(K2q2qe) + t/qe (17)

where qe is the amount of adsorbent (mg/g), qt is the equilibrium time (mg/g), K1 is the
rate constant of the pseudo-first-order model (min−1), and K2 is the rate constant of the
pseudo-second-order model (g/mg min−1).

Kinetic data were based on the first- and second-order log (qe − qt) and t/qt, respec-
tively. Correlation and linear kinetic plots are shown in Table 2 and Figure 9, respectively.
Results showed that the experimental data of the pseudo-second-order model were in a
straighter line than those of the first-order model. This suggests that the kinetic adsorption
process is a second-order model.
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Table 2. Correlation and constant coefficients of pseudo-first- and pseudo-second-order kinetic
models for the adsorption of AR88 onto ZL-CH hydrogel.

qe
(exp)

(mg/g)

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

qe
(mg/g)

K1
(min−1) R2 qe

(mg/g)
K2

(g/mg min−1) R2

332.48 2.3546 −3.2791 0.9948 326.80 0.23 1
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3.9. Adsorption Isotherm

AR88 adsorption onto ZL–CH hydrogel and the isotherm of adsorption were as shown
in Figure 10. To improve the design of AR88 adsorption processes, it is necessary to
create the most appropriate linear curve relationship. In the present study, Langmuir
and Freundlich isotherm models were chosen, and many scientists use them [41,42]. The
equilibrium of adsorption capacity was about 332.48 mg/g.
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3.9.1. Langmuir Isotherm

The Langmuir adsorption isotherm model suggested that dye adsorption occurs on a
uniform surface through the adsorption of a single layer. The linear Langmuir isotherm
model is shown in Equation (18).

Ce/qe = (Ce/qmax) + 1/(K1qmax) (18)

where qe is the amount of the adsorbent (mg/g), qt is equilibrium time (mg/g), K1 is the
equilibrium constant of adsorption (L/mg), qmax is the maximal adsorption capacity of a
single layer, qe is the adsorbed amount on the unit mass of the adsorbent (mg/g), and Ce is
the equilibrium concentration (mg/L).

Experimental isotherm data obtained at different initial concentrations of AR88 are
shown in Figure 10a. Slope of 1/qmax, and interceptor of 1/Kl*qmax were obtained. Fur-
thermore, the correlation coefficient of the Langmuir constant is shown in Table 3.

Table 3. Adsorption isotherm model of AR88 onto ZL–CH hydrogel.

qe
(exp)

(mg/g)

Langmuir Isotherm Freundlich Isotherm

qmax
(mg/g)

Kl
(L/mg) R2 RL

Kf
(g/mg min−1)n n R2

332.48 408.57 695.86 0.9497 1.437 252,688.16 0.5272 0.9938

The Langmuir isotherm can be depicted with a dimensionless constant separation
factor, RL also called the equilibrium parameter, used to describe the characteristics of the
Langmuir isotherm. RL was obtained from Equation (19).

RL = 1/(1 + bCo) (19)

where Co is the initial maximal concentration of AR88. The value of the separation factor
(RL) showed the adsorption condition to be favorable (between 0 and 1), irreversible (equal
to 0), and unfavorable (more than 1) on the basis of the experimental data of RL in this study
(1.437). Hence, the adsorption process of AR88 onto ZL–CH hydrogel was unfavorable.

3.9.2. Freundlich Isotherm

The Freundlich adsorption isothermal model implied multilayer adsorption on het-
erogeneous surfaces. The linear Freundlich adsorption isotherm model is shown in
Equation (20).

lnqe = lnKf + 1/n × lnCe (20)

where Kf is related to absorbent capacity (mg/g), Ce and qe are the same as the Langmuir
isotherm adsorption model, n is the adsorption intensity that indicates AR88 and ZL–CH
hydrogel adhesion. Favorability was between O and 1 [11].

Figure 10b and Table 3 show the graphs and constants of the Freundlich adsorption
model, respectively. The correlation coefficient of the experimental data (R2 = 0.9938) was
better compared to that of the Langmuir isotherm model on the basis of the calculation
(n was 0.5272). This indicates that the adsorption process was the Freundlich isotherm
and favorable.

3.10. Effect of Ion Strength

It is essential to investigate the effect of the solution ionic strength because these
aqueous suspensions usually have different salt ion levels. Sodium chloride was used
as a model salt to study the effects of electrolytes and improve the dissolution of dye
molecules, thereby decreasing or increasing AR88 adsorption. AR88 adsorption capacity
was established by adding various sodium chlorides. NaCl (20–100 mg/L of Na+ ions) into
100 mL AR88 dye solution (100 mg/L) containing 30 mg ZL–CH hydrogel with a contact
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time of 1 min. Figure 11 shows that the adsorption capacity of the AR88 dye solution had no
impact on increasing or decreasing ionic strength. This indicated that the ZL–CH hydrogel
could effectively remove AR88 from low to high ionic strength in aqueous solutions. These
results agree with [35,39] for removing methylene blue, acid orange 7 by AC-ZnO, and
eriochrome black T in aqueous solution.
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3.11. Desorption Studies

Desorption studies help in clarifying the adsorption mechanisms and recovery of
adsorbents. As shown in Figure 12a, the desorption percentage of AR88 was fast after
5 min and reached equilibrium at 25 min, about 93.8% with 0.01 M NaOH solution. The,
0.01 M HCl and 0.01 NaCl were produced with the same conditions.

Obtained results showed that the desorption percentages for HCl and NaCl were
about 6.8% and 11.4%, respectively (Figure 12b). This finding agrees with [43–45], where
NaOH was very efficient in releasing azo dyes. The mechanism may have caused the
detachment of hydrogen (H+) from the –NH+ to OH group of the adsorbent layer, and the
hydrogen bond between ZL–CH hydrogel and the AR88 molecule could not react; then,
AR88 was desorbed from AR88 loaded ZL–CH hydrogel surfaces. However, the ZL–CH
hydrogel’s mass decreased to 90% after the desorption process (Figure 12b), which caused
the ZL–CH hydrogel to be highly soluble in acidic conditions.

The durability of adsorbent materials is necessary, even if the adsorbent materials are
regenerated several times [46]. We performed up to three recycles using the same optimal
operating conditions for adsorption. As shown in Figure 12c, the adsorption capacity of
ZL–CH gradually decreased as cycle time increased. Even in the third cycle, adsorption
capacity was more than 326.68 mg/g, which indicated the excellent reusability of the
ZL–CH hydrogel.

3.12. Desorption Kinetic Studies

To determine the desorption kinetics models, experimental data were fitted by first-
and second-order models, as shown in Equations (21), and (22), respectively.

Log(qdes − qdt) = logqdes − K1t (21)

t/qdt = 1/(K2q2qdes) + t/qdes (22)

where qdes is the adsorbent amount (mg/g), qdt is equilibrium time (mg/g). K1 is the
rate constant of the pseudo-first-order model (min−1), and K2 is the rate constant of the
pseudo-second-order model (g/mg min−1).
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Figure 12. Desorption studies. (a) Release of AR88 in contact time by NaOH; (b) release of AR88 with
different desorbing agents; (c) regeneration of AR88.

The kinetic parameters are listed in Figure 13 and Table 4. The dependent coefficients
(R2) were 0.9036 and 0.9981 for the pseudo first and second orders, respectively. Moreover,
the value of the desorption experiment (qdes, exp) for the second order was closer to
the calculation of the desorption (qdes) than that for the first-order model. These results
demonstrated that second-order desorption is well-described for kinetic models of AR88
from AR88-loaded ZL–CH hydrogel.

3.13. Swelling Studies

To study the effects of the dye molecules on the adsorption of the ZL–CH hydrogel, its
swelling behavior was investigated at a pH 2.0 AR88 solution.

As shown in Figure 14, the ZL–CH hydrogel showed rapid water uptake, and the
swelling ratio increased with time to an equilibrium value of 79.75 g/g at 1 min. This
phenomenon was caused by the protonation of the amino (–NH3+) and carboxyl (–COO–)
groups in the ZL–CH hydrogel network at low pH (2.0). Furthermore, interactions between
polymer chains and silicone networks increase water permeability and resistance forces,
resulting in a chain extension of molecules. As a result, the swelling ratio of ZL–CH
hydrogel is increased [29].
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Figure 13. Linear desorption kinetics of AR88 from AR88 loaded ZL–CH hydrogel. (a) Pseudo-first-
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Table 4. Correlation and constant coefficients of pseudo-first-order and second-order kinetic models
for the desorption of AR88 from AR88 loaded ZL–CH hydrogel.

Qdes
(exp)

(mg/g)

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

qe
(mg/g)

K1
(min−1) R2 qe

(mg/g)
K2

(g/mg min−1) R2

311.83 11.86 0.004 0.9036 333.33 0.0015 0.9981
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The pseudo-first and second-order kinetics models of the ZL–CH hydrogel are pre-
sented in Figure 15 and Table 5. The pseudo-first-order linear coefficient (R2) was about
0.9526. However, significant differences between experimental (Se exp) and calculated (Se)
swelling degrees indicated that the pseudo-first-order kinetic model was unsuitable for
ZL–CH hydrogel swelling processes. On the other hand, the pseudo-second-order model
revealed significantly higher linearly dependent coefficients, about 0.9763, and the swelling
degree (Se, exp) to the calculated (Se) was closer. These results demonstrate that the pseudo-
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second-order model accurately described the swelling kinetics model, corresponding to
adsorption kinetics studies.
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Figure 15. Linear swelling kinetics of AR88 from AR88 loaded ZL–CH hydrogel. (a) Pseudo-first-
order kinetic model; (b) pseudo-second-order kinetic model.

Table 5. Correlation and constant coefficients of pseudo-first-order and -second-order kinetic models
for the swelling of AR88 from AR88 loaded ZL-CH hydrogel.

Se
(exp)
(g/g)

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

Se
(g/g)

K1
(min−1) R2 Se

(g/g)
K2

(g/g min−1) R2

79.75 7.30 0.95925 0.9526 67.57 2.19 0.993

3.14. Analysis of Swelling Structure Parameters of ZL–CH Hydrogel

Table 6 shows the volume fraction, interaction force parameters, and porosity of the
ZL–CH hydrogel.

Table 6. Swelling structure parameters of ZL–CH hydrogel.

Contact Time (Minutes) Volume Fraction (Ø2) Porosity (Φ) Interaction Force (X)

0.17 0.0110 1.957 0.5037
0.5 0.0079 1.968 0.5026
1 0.0062 1.975 0.5021
3 0.0087 1.966 0.5029

The volume fraction and interaction force of the ZL–CH hydrogel during swelling
decreased at the equilibrium time of 1 min. The reason was that ZL–CH was fully dissolved
in the solution, decreased hydrophilicity, and increased intramolecular hydrogen bonding
(hydrophobic groups), which led to the expansion of the molecular chain in the ZL–CH
hydrogel network. In other words, protonation was higher and faster, and slowed down
after 1 min. On the other hand, the porosity of the ZL–CH hydrogel increased and followed
adsorption capacity and swelling degree (Figures 6 and 14, respectively). This indicates
that, during protonation, porosity occurred, which was the main factor for adsorbing the
dye in the aqueous solution.
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3.15. Comparison with Other Studies

The adsorption capacity of AR88 by several adsorbents is shown in Table 7. The
current study indicated that ZL–CH is better than other absorbents at removing azo dye
(AR88) from an aqueous solution.

Table 7. Comparison of ZL–CH hydrogel with other adsorbents.

Adsorbent qmax (mg/g) Reference

Magnetic ZnFe2O4 111.1 [9]
Lemna minor biomass 7.8 [47]
Sesamum indicum seed 25 [48]

Azolla rongpong 78.74 [49]
Anion exchange membrane 42.01 [50]

Activated carbon 109 [51]
ZL–CH hydrogel 408.57 This study

4. Conclusions

Zeolite crosslinked chitosan (ZL–CH) hydrogel showed greatly improved AR88 re-
moval. The adsorption capacity of AR88 decreased with increasing initial pH and adsorbent
dosage, but increased with an increase in initial dye concentration. The effect of ionic
strength (Na+) had no significant impact on the adsorption capacity of the ZL–CH hydrogel.
The equilibrium of adsorption capacity was reached at 1 min with a maximal adsorption
capacity of 332.48 mg/g. Adsorption capacity was fitted with the Freundlich isotherm
and pseudo-second-order model. The equilibrium of swelling capacity appeared at the
same time as adsorption capacity and followed a second-order kinetic model. The value of
the volume fraction and interaction force parameters decreased with increasing porosity.
Desorption studies showed 0.01 M NaOH to be a better desorbing agent, and it reached
equilibrium at 25 min with a percentage of about 93.8%. The kinetic desorption study was
fitted with a pseudo-second-order model. The recycle process was conducted for up to
three cycles, which showed good capability, and that it can be used for AR88 removal.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14050893/s1, Figure S1. pH zero point charge (pHzpc).
(a) ZL-CH hydrogel (1% acetic acid); (b) zeolite.
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