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Precise information on localized variations in blood circulation
holds the key for noninvasive diagnostics and therapeutic assess-
ment of various forms of cancer. While thermal imaging by itself
may provide significant insights on the combined implications of
the relevant physiological parameters, viz. local blood perfusion
and metabolic balance due to active tumors as well as the ambient
conditions, knowledge of the tissue surface temperature alone
may be somewhat inadequate in distinguishing between some
ambiguous manifestations of precancer and cancerous lesions,
resulting in compromise of the selectivity in detection. This, along
with the lack of availability of a user-friendly and inexpensive por-
table device for thermal-image acquisition, blood perfusion map-
ping, and data integration acts as a deterrent against the
emergence of an inexpensive, contact-free, and accurate in situ
screening and diagnostic approach for cancer detection and man-
agement. Circumventing these constraints, here we report a porta-
ble noninvasive blood perfusion imager augmented with machine
learning–based quantitative analytics for screening precancerous
and cancerous traits in oral lesions, by probing the localized altera-
tions in microcirculation. With a proven overall sensitivity >96.66%
and specificity of 100% as compared to gold-standard biopsy-
based tests, the method successfully classified oral cancer and pre-
cancer in a resource-limited clinical setting in a double-blinded
patient trial and exhibited favorable predictive capabilities consid-
ering other complementary modes of medical image analysis as
well. The method holds further potential to achieve contrast-free,
accurate, and low-cost diagnosis of abnormal microvascular physi-
ology and other clinically vulnerable conditions, when interpreted
along with complementary clinically evidenced decision-making
perspectives.
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B lood perfusion, defined as the volume flow rate of blood
through a given extent of a tissue, is a crucial quantitative

index, depicting physiological phenomena in the capillary
network and extracellular spaces within the tissue matrix and
dictating decisive assessments concerning the tissue health and
diseases. In practice, measurements of superficial blood perfu-
sion disclose functionally relevant information for a multitude
of medical applications, including but not limited to screening
of skin lesion (1), assessment of breast cancer treatment proto-
cols (2, 3), tumor-induced vasculature and metastasis (4), effect
of antiangiogenic agents (5), diabetically triggered vasodilation
disorder (6), viability of a transplanted tissue graft (7), healing
of wounds (8) and burns (9), and monitoring of peripheral arte-
rial (10) and obstructive coronary arterial diseases (11). Quanti-
tative estimates of blood perfusion are intrinsically fundamental
to the tissue and tumor metabolism (12, 13). Such data may
further be correlated with the responses of vascular therapy
(14), tissue hypoxia and hemodynamics (15), and active efficacy

of chemotherapeutic drugs (16). Furthermore, local thermoreg-
ulation may be associated with large value of nonnutritional
component of blood flow (17), enabling specific recognition of
cancerous traits.

Quantification of vascular structures and functional changes in
microcirculation can be achieved through a variety of invasive
and noninvasive vascular imaging systems. Invasive methods
include microscopic analysis, such as immunohistochemistry,
fluorescent imaging, and scanning electron microscopy of the
biopsied tissue sample, which is typically a one-time procedure
and may lead to changes in the host tissue physiology. High-
resolution imaging of microvessel geometry and quantification of
vascular density (VD) as well as branching order is possible using
invasive methods, which is essential for elucidating vascular
abnormalities (18). However, structural analysis with invasive
methods is confined only to the small dissected section. The mini-
mally invasive intravascular optical imaging methods, such as
angioscopy and high-frequency optical coherence tomography
(OCT), are also vital tools for endovascular imaging of
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atherosclerosis structures, arterial embolism, and effects of stent-
wall interaction (19, 20) involving cerebrovascular and coronary
arterial diseases but are not sufficient for assessing functional
changes such as blood flow or structural changes such as vessel
density (18). Further, even minimally invasive methods are not
ideal for critically ill and outdoor patients due to the associated
complexity of device-related effects like bruising, soreness, and
platelet aggregation. In addition, both invasive and minimally
invasive methods are inept to offer a direct measure of functional
changes in blood microcirculation.

While biopsy and subsequent histopathological examination
remain to be the gold standard for cancer diagnostics, various
noninvasive methods are progressively being explored for pro-
viding alternative means of screening and detection outside
advanced laboratory settings for catering to the needs of the
underserved. Further, unlike invasive methods, noninvasive
assessments using positron emission tomography (PET) and
MRI enable dynamic quantification of functional vascular
parameters such as blood perfusion, blood volume and vessel
permeability using suitable contrast agents (5). Noninvasive
methods also maintain the physiology of host tissues. PET is
considered a clinical standard for measuring metabolic parame-
ters, blood perfusion, and blood volume, which are related to
the clearance rate of radiotracers, but the quantification is often
limited due to low spatial resolution, accuracy of the input
function, and the model assumptions. Dynamic contrast-
enhanced MRI provides an indirect measurement of vessel per-
meability and perfusion by linking with the strength of contrast
uptake and washout parameters. However, these methods often
depend on the flow and diffusivity of the contrast agent. Also,
the measurement is semiquantitative in nature, resulting in
ambiguities in interpretation, considering the fact that various
perfusion parameters used for the analysis remain to be stan-
dardized (5). Further, PET and MRI systems are resource-
intensive and not routinely available in community healthcare
facilities.

OCT has of late emerged as a fast imaging method having
spatial resolution between macroscopic and microscopic optical
imaging systems, capable of providing cross-sectional or volu-
metric images of vascular structures at superficial locations up
to penetration depth of 1 to 2 mm (21). In addition to charac-
terizing structural changes, OCT augmented with special fea-
tures such as spectral analysis (22) and Doppler shift algorithms
(21) could also provide functional images depicting hemoglobin
concentration and blood flow information, respectively. How-
ever, OCT probes and setups are sensitive optical imaging
systems with limited field of view and often suffer from attenua-
tion loss, revealing speckles and bright artifacts due to multiple
scattering of light (23, 24). Further, OCT systems are commonly
bulky and expensive and are not commensurate with the restric-
tive infrastructure inevitable in resource-limited settings.

Measurement of peripheral microvascular function is generi-
cally vital for interpreting various aspects of tissue physiology
like hemodynamics, oxidative stress, muscle metabolism, claudi-
cation, ischemic ulceration, muscle mitochondrial injury, or
gangrene due to reduced blood microcirculation and failure to
meet the demand of tissue metabolism (25). Currently, other
noninvasive optical devices like laser Doppler flowmeter (LDF)
(26–28) and laser speckle (29) are used to assess peripheral vas-
cular diseases and related conditions such as rheumatic dis-
eases, sclerosis, dermal replacement, and oxygen therapy for
wounds, but these methodologies suffer from their intrinsic lim-
itations in terms of arriving at an unambiguous and explicit
quantitative index of the microcirculation characteristics (17,
30). Patient-specific variations may also lead to anomalous pre-
dictions, considering significant noise in the signal resulting
from randomly scattered light (30). Further, despite its wide-
spread use, the voluminous nature of the instrumentation and a

gross inability to provide quantitative information of the blood
perfusion in terms of absolute units limit the efficacy of LDF in
decisive clinical applications (17).

Simple thermography images measuring the increase or
decrease in tissue temperature may turn out to be viable alterna-
tives toward pinpointing the mosaic of hypo- and hyperthermic
locations associated with abnormal blood microcirculation in
skin (31, 32), breast (33), and oral cancers (34). Premised on the
postulate that cancer cells divide more aggressively than healthy
cells by draining in nutrients and creating an alteration in the
metabolic balance, local differentials in tissue temperature,
obtained around surface or subsurface lesions in the human
body via contactless thermographic imaging procedures, may
lead to the identification of cancerous traits in a rather elegant
manner. However, these are likely to provide only an indirect
and nonspecific interpretation of malignancy-associated alter-
ation in the blood perfusion or otherwise. Physically, the mea-
sured tissue temperature varies with the surrounding ambient
temperature and humidity and due to tissue blood perfusion and
metabolism. Hence, the tissue temperature measurement by
thermography alone is often not reliable for quantification of the
diseased state of the tissue and cannot be considered as a funda-
mental depiction of the underlying pathophysiology because of
its sensitive dependence on several other relevant parameters
impacting the selectivity of prediction. Reported thermographic
studies revealed elevation in the surface temperature of an oral
lesion and its periphery, which is mainly due to hypervascularity
(35, 36). However, due to lack of explicit mapping with
malignancy-associated changes in the blood microcirculation,
such events in the thermogram did not emerge to provide an
essential classification between plausible alternative states of
health and disease in an affirmative manner. This deficit may be
attributed to an unaddressed specific correlation between the
temperature and vascular growth features. As a consequence,
surface temperature data may need to be augmented with some
more specific attributes and parameters for confirmatory differ-
ential diagnostics between visually deceptive and overlapping
presentations of the disease, in particular an accurate classifica-
tion of precancer, cancer, and normal scenarios. Blood perfusion
data, derived from the tissue temperature and other relevant
considerations, may therefore offer a viable proposition to miti-
gate this challenge, by explicitly and specifically linking with the
physiological features of the identified lesion or any other form
of suspected abnormality.

Commercially available blood perfusion imagers (BPIs) are
typically expensive. Further, these commonly offer relative read-
out of the perfusion data in arbitrary units (or in voltage units in
some cases) over a restricted region of interest only. To circum-
vent these constraints, it may be imperative to develop a broad-
field imaging-based screening tool fundamentally premised on
the blood perfusion data in absolute units of physiological refer-
ence (i.e., milliliters per minute per 100 g of tissue). This value-
added proposition, in conjunction with powerful optical (37) or
thermometric sensors (38), may provide a decisive quantitative
index of localized microcirculation consistent with clinically
proven “gold standards” (5, 17, 30). This, along with the emer-
gence of a user-friendly and inexpensive portable detection unit
for thermal image acquisition and data integration, may enable
the technology to perform a simple, inexpensive, quantitative,
and noninvasive in situ screening and diagnostic procedure for
evaluating the disease with an envisaged high level of accuracy
in resource-limited settings, avoiding erroneous differential
diagnostics between potentially ambiguous scenarios.

While blood perfusion imaging devices are not uncommon in
sophisticated clinical settings with adequate infrastructure and
human resource support, their affordable parallels for use at
underserved locations with uncompromised predictive accuracy
remain elusive. Availability of the latter may emerge as an
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exclusive value-added decision-making tool for public health
management, considering that it may not be trivial to come up
with an accurate classification on the malignant state or other-
wise of the observed abnormalities during clinical examination,
purely by appealing to “trained eyes and hands.” Such a
“clinical dilemma,” as per the present state of the art, can be
resolved to confirmation only by appealing to invasive and
resource-intensive biopsy-based procedures that are otherwise
extremely rare facilities to be made available in primary health
settings. However, whereas the development and advancement
of a simple BPI may add a decisive value proposition to this
cause, the same may alone not be adequate considering the
subjectivity in manual interpretation of the obtained images.
Therefore, it is further imperative to develop a machine learn-
ing (ML)-based classification algorithm that applies on the
physics-based blood perfusion data derived from the thermal
images and in turn accurately classifies different types of poten-
tial tissue abnormalities and lesions in a clinically decisive
manner.

Here, we introduce a portable and user-friendly BPI that
combines a miniature far-infrared (FIR) camera and a humid-
ity sensor, which are electronically controlled and interfaced
with a combined physics-based and data-driven software
engine, with a vision of classifying cancerous and different non-
cancerous traits in an identified subsurface tissue in vivo which
can be deployed in resource-limited settings. The thermal ana-
lytic procedure of the device combines coordinated simulta-
neous readout of pixelated tissue temperature, as well as
temperature and humidity of its immediate surroundings, to
arrive at a precise quantification of blood perfusion in terms of
absolute physiological units from the thermal image data.
Toward this, the measured tissue temperature distribution acts
as an input field data to construct the blood perfusion map
using a blood perfusion correlation (BPC), which is developed
based on a physics-based equation (bioheat transfer model).
The data of temperature and humidity incipient to the tissue
here act as inputs to develop this correlation via a simple inver-
sion approach. Realistic depictions of blood perfusion measure-
ment in absolute units, as obtained from the present device, are
confirmed by comparing with reported practical ranges of blood
perfusion in oral tissues (SI Appendix, section S8).

Subsurface cancer such as oral cancer, at its early stage, is
known to manifest an increase in blood perfusion, whereas a
full-grown cancer reveals decrease in blood perfusion similar to
precancer or normal cases. Accordingly, clinical classification
based on either visual inspection or even by naıve blood perfu-
sion imaging in many situations is likely to result in misclassifi-
cation due similar deceptive features among certain stages of
cancer and precancer, and even other completely temporary
artifacts. One major aspect of this confusion stems from inter-
patient variability that leads to potential misclassification. This
present technology, accordingly, is further augmented with an
ML algorithm designed for automatic classification of fine-
grained variability in the captured images that are not visually
distinguishable on the surface. Toward this, an ML-based algo-
rithm is developed with a group of classified blood perfusion
maps as training datasets, to avoid misclassification associated
with interpatient variability. It needs to be mentioned here that
ML is employed with the sole purpose of accurately classifying
the study groups as per a training-based classification algorithm
but is in no way used to determine the blood perfusion values.
Finally, “untrained” blood perfusion data are classified using
the developed ML, where the physics-based blood perfusion
map acts as input and the disease classification as the output.
Premised on the principle of local change in blood microcircu-
lation’s being associated with the metabolic need of the lesions
at different growth phases (12, 13) and the alteration of ther-
mal field as a consequence of local thermoregulation (33), this

ML-augmented approach executed in community healthcare-
based settings is proven to report unambiguous differential
classifications of cancerous and precancerous traits, as validated
by double-blinded clinical trials with the gold-standard biopsy
data as the benchmarking reference. Further, going beyond the
specific scope of diagnosing superficial lesions, the present
method opens up newer possibilities of arriving at a generic
principle of contrast-free and accurate mapping of a variety of
diseased traits by establishing correlation with complementary
evidence-based principles (39–42).

Results
Design and Operation of the Blood Perfusion Measuring Device.
The design and operation of the blood perfusion measuring
device are shown in Fig. 1A. The prototype assembly is shown
in SI Appendix, section S1. The design consists of a probing
unit for screening and a processing unit for obtaining blood
perfusion data and disease recognition. The probing unit is
composed of a three-dimensional-printed holder and sensor
housing, such that the holder is used for guiding the sensor
housing to the measurement site (Fig. 1B) and the sensor hous-
ing is used to maintain a stable environment for sensors to min-
imize the effect of breathing. The sensor housing consists of an
on-chip FLIR Lepton 3.5 long-wave infrared (IR) camera
(FLIR Systems Inc.) for measuring tissue temperature and a
fully calibrated digital humidity sensor HTU21D (Measure-
ment Specialties, Inc.) for measuring ambient temperature and
relative humidity. The IR camera sensor array captures the
spectral radiance in the wavelength range of 8 to 14 μm and
uses additional signal-processing electronics to convert the
radiometric values into temperature value with thermal sensi-
tivity <50 mK and for imaging at a rate of 8.7 Hz. The camera
is calibrated with a linear temperature calibration equation (SI
Appendix, section S2) determined by fitting the temperature
data of a reference black body measured using the camera and
that of a thermocouple.

The acquisition platform uses an external processor, which
passes the raw data, i.e., immediate surrounding temperature
and relative humidity, from the humidity sensor to the process-
ing unit. These data are accessed using a computer by establish-
ing a remote connection with the external processor. The
device operation is shown in Fig. 1C, wherein the motion arti-
facts in raw thermal image sequences are stabilized using image
registration steps. Each pixel of thermal image sequences is cal-
ibrated by a temperature calibration equation. Subsequently,
the pixel value of the thermal image for each time instant is
automatically scanned in a raster fashion and is processed
through a routine composed of BPC, wherein the blood perfu-
sion images are quickly extracted from raw data with the aid of
an iterative computational algorithm. The BPC correlation (see
Materials and Methods) is effectively obtained by developing a
physics-based semianalytical solution that is premised on the
bioheat equation and the associate thermal boundary condi-
tions (see SI Appendix, sections S4–S6 for details). Data from
the thermal imager to measure the tissue temperature field and
the humidity sensor to measure the temperature and humidity
of its immediate surrounding within the oral cavity are inputs
to the BPC correlation deduced after simple analytical inver-
sion of the bioheat equation. Accordingly, the tissue tempera-
ture distribution measured by the thermal imager is used to
construct the underlying blood perfusion maps, with the ambi-
ent temperature and humidity within the oral cavity measured
by the temperature and humidity sensor, respectively, acting as
the boundary conditions. This modeling approach accounts for
an obvious variation in the tissue temperature specifically due
to in vivo blood perfusion and metabolism. The BPC correla-
tion normalizes the effect of the immediate surroundings to
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extract the absolute value of the blood perfusion from the mea-
sured tissue temperature field that has obvious dependence on
its surrounding conditions.

Finally, the blood perfusion image data corresponding to the
region of interest (ROI) are passed through a robust ML algo-
rithm to recognize and screen the target disease conditions.
This ML algorithm has been trained by classified blood perfu-
sion images of oral cavity cancer and precancer as a training
database, authenticated by combined clinical examination and
biopsy reports as performed and supervised by specialist
experts, to avoid misclassification associated with interpatient
variability among the study groups. Finally, “untrained” blood
perfusion data are classified using the developed ML for assess-
ing the predictive efficacy of the method developed, where the
physics-based blood perfusion map acts as input and the data-
driven disease classification acts as the output. The details of
the ML algorithm are discussed in Materials and Methods. For
the image registration step, formulation of modified bioheat

equation, analytical solution, and iterative computational algo-
rithm constituting the physics-based equation please refer to SI
Appendix, sections S3–S7.

Spatiotemporal Variation in Blood Perfusion of Oral Cancer and
Precancer. Here, we demonstrate a clinical application of our
method for differentiating oral squamous cell cancer (OSCC)
and oral submucous fibrosis (OSF) from normal tissue, based
on measured changes in blood perfusion undertaken in a non-
invasive manner. OSF is a commonly found precancer in the
South-Asian population, which is often identified clinically
based on visual/palpable inspection of submucous fibrosis and
difficulty in opening the mouth. Also, OSF with dysplasia shows
a high rate of malignant transformation (43). Currently, nonin-
vasive diagnostic tests that offer a quantitative evaluation of the
underlying condition are limited. We initially measured the
baseline value of blood perfusion for 10 different oral sites of
normal participants (SI Appendix, section S8) and quantified

Fig. 1. BPI overview. (A) Design specifications of blood perfusion imaging device and a magnified layout of the sensor housing with an FIR camera and a
humidity sensor controlled by a computer and external processor. (B) An illustration of oral cancer screening with the device. Here, a patient is lying in a
decubitus-supine comfortable position on a dental chair and the probe head is placed within the oral cavity for screening of LBM. The right-hand posture,
i.e., a comfortable grip on the device and support on the patient’s face using the operator’s fingers is a useful practice to avoid movement of the device
during screening. (C) Operational steps to extract the absolute value of blood perfusion and automatic disease classification using an integrated ML
algorithm.
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the deviation from the baseline range due to the presence of
OSCC and OSF in the similar oral sites.

It is important to mention here that one major study objec-
tive of the clinical trial undertaken for oral cancer screening is
to establish the proposition of precise classification among
three different patient groups (normal, OSCC, and OSF) based
on the measured blood perfusion data. Accordingly, a set of
confirmed cases of participants in the clinical study is first allo-
cated in each group with the sole objective of creating a dataset
for training the ML algorithm developed for disease classifica-
tion, according to the inclusion criteria as detailed in Materials
and Methods. Here, analysis and interpretation by a qualified
clinical expert and supportive confirmatory diagnostic informa-
tion are utilized for labeling the input blood perfusion images
during the training of the ML algorithm. Once the training of
the ML algorithm is complete, the validation of the method is
carried out using a randomized unlabeled image dataset inclu-
sive of newly captured images that were not used for training
the ML algorithm to avoid any bias in disease recognition and
classification. The obtained sensitivity and specificity values, as
an outcome of this clinical trial, thus reflect the resulting accu-
racy of disease classification from the double-blinded dataset.
The efficacy of classification has independently been verified by
the gold-standard procedure executed by the expert clinicians
on the sample cohort.

Fig. 2 A–C depicts the clinical, thermal and blood perfusion
maps of a healthy individual and individuals with OSCC and
OSF, respectively. The spatiotemporal maps cover a wide area
inside the patient’s mouth and reveal demarcations in blood
perfusion among the individual patients, thus enabling a quali-
tative comparison of malignant and premalignant changes from
the images. Here, the individual with OSCC shows higher
blood perfusion in the symptomatic site in contrast to normal
and OSF (Fig. 2D). The maximum and minimum values of spa-
tial line graphs in Fig. 2E indicate blood perfusion of the highly
vascularized region (i.e., center/perilesion area) and relatively
less vascularized surrounding healthy region, respectively. In
Fig. 2F, BPC correlation fidelity is established, displaying good
fit between predicted temperature by a finite element method
(FEM) model and measured temperature of the lesion.

Comparison with the Gold-Standard Method. Next, we performed
a qualitative comparison between blood perfusion images, clini-
cal observation, and histopathological findings to establish a
connection with a disease condition. Fig. 3 depicts clinical, ther-
mal, blood perfusion, and histological images of normal,
OSCC, and OSF patients. Participant 1 (Fig. 3A) is a healthy
male with no signs and symptoms of systemic disease or oral
lesion. Participant 2 (Fig. 3B) is a male with OSCC extending
from the left oral commissure region to the buccal mucosa. The
lesion is ulcerated and has an irregular floor and margins, with
exophytic white necrotic uneven crust formation. Participant 3
(Fig. 3C) is a male with OSF of the buccal mucosa. Both the
right buccal mucosa (RBM) and left buccal mucosa (LBM)
have a blanched, opaque, blotchy marble-like appearance along
with a firm, coarse, and palpable vertical fibrotic band. Partici-
pant 3 also reported a burning sensation and progressive reduc-
tion of mouth opening, and the measured interincisal distance
was ∼3.0 cm. Blood perfusion values of Participants 1 through
3 (Fig. 3 G–I) vary approximately in the range of 2 to
8 mL�min�1�100 g�1 in healthy tissue, exhibiting a mosaic of
low and high value in the region involving OSCC and an overall
reduction in the value in OSF case. In the case of OSCC (Fig.
3H), white, firm, keratotic regions indicate less perfusion as
compared to the adjacent ulcerated and necrotic region. In the
case of OSF (Fig. 3I), the overall reduction of the tissue tem-
perature and blood perfusion are likely to be an indication of
obliterated or narrowed blood vessels due to increased fibrosis

of the tissue (43). In all these cases, confirmation of disease
states was made by an experienced oncopathologist with the aid
of clinical and gold-standard hematoxylin/eosin-stained light
microscopic features as depicted in Fig. 3 J–L. For disease con-
firmation, histological features such as shape of rete ridges,
thickness of epithelium, existence of inflammatory cells, and
degree of fibrosis/hyalinization have been considered. Normal
tissue (Fig. 3J) shows V-shaped rete ridges and negligible
inflammatory cells. The OSCC cases (Fig. 3K) reveal loss of
epithelium, manifestation of malignant islands, and increase in
inflammatory cells. The OSF cases (Fig. 3L) exhibit epithelial
atrophy and significant subepithelial hyalinization and display a
flat interface across epithelium-connective tissue and an
increase in inflammatory cells.

In most cases of OSCC, we have observed intra- and interpa-
tient heterogeneity in lesion blood flow rates with 1) significantly
high blood perfusion at its center/perilesion area as compared to
surrounding normal tissue in its developing stage and 2) poor/
similar blood perfusion over lesion compared to its surrounding
for grown tumor or tumor originated from earlier history of OSF
(SI Appendix, section S9).

Quantification of Blood Vessel Structures Using OCT as a Complementary
Multimodal Image Analytic Approach. Since, unlike the present
device, the existing commercial devices are not capable of
providing the blood perfusion data in absolute units, direct vali-
dation of the obtained blood perfusion values in terms of mea-
sured changes with or without lesion is not possible. Hence, we
have presented an indirect parallel assessment of the final diag-
nostic recommendation (which is the focus of interest so far as
the utilitarian importance of the work is concerned) via corre-
lating with the complimentary evidence corroborating mea-
sured changes in the lesion perfusion value with VD as
measured by OCT-based imaging, in addition to validating with
the gold-standard biopsy results. In this regard, it needs to be
emphasized that the operational paradigm and principle of the
present method and OCT are mutually exclusive, although the
final predictive purpose in this context remains the same. In
particular, whereas the present device provides the functional
information (i.e., increase or decrease in blood perfusion),
OCT provides the relevant structural information (i.e., changes
in number of blood vessels at superficial locations) unless aug-
mented by further complexities hallmarked by spectral analysis
and Doppler shift investigation. While their scopes of specific
nature of information obtainable are distinctive, these may
clearly act as complementary approaches to arrive at decisive
information on a specific diseased state as per the scope of this
work. Such a paradigm of multimodal analytics for diagnostic
and clinical decision-making is becoming increasingly more
prominent for disease detection and management in the mod-
ern digital era.

By employing the BPI and OCT we have thus performed a
parallel comparison in a multimodal format between the
aspects of the disease-associated functional changes (blood per-
fusion) and structural changes (vessel density and area) to
arrive at a well-correlated framework. The interpatient devia-
tion in pixel-averaged blood perfusion (ωb) value of OSCC and
OSF groups from the normal group involving the RBM and
LBM is shown in Fig. 4 A and B. The two subframes of time
series blood perfusion in Fig. 4A indicate higher values prevail-
ing among OSCC participants compared to normal groups,
whereas the OSF groups indicate an opposite trend. The
observed decay in time series in blood perfusion data are
mainly due to the fact that the real-time thermal imaging on
the patient was carried out in a dynamic condition starting
from the closed position to the open position of mouth, albeit
in a slow transition mode. This led to a small but dynamic
change in the tissue temperature and the boundary conditions
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in its immediate surroundings, influencing the in vivo blood
perfusion. However, this dynamic variation remained effectively
consistent for all the patient trials. Accordingly, a 3-min stabili-
zation/equilibration pause was adopted for the diagnostic pro-
cedure, as discussed in Materials and Methods (Methods Applied
to Imaging Intraoral Sites). We also performed a unit root test
on the mean of time-series data using the “Augmented
Dickey–Fuller” method to identify whether the time-series data
exhibited a stationary trend or not and obtained the significance
level of stationary trends (P < 0.007), indicating statistical sig-
nificance. However, the SD/error of time series data failed to
reject the unit root test revealing a nonstationary trend.

The paired comparison of pixel averaged blood perfusion of
different study groups by box-and-whisker plot (Fig. 4B) indi-
cates significantly higher blood perfusion (P < 0.001) for OSCC
as compared to the normal group in LBM, and the OSF group
displays significantly lower blood perfusion values (P < 0.001)
as compared to the normal group in RBM and LBM, respec-
tively. Fig. 4B also reveals overlapping feature in blood

perfusion value due to interpatient variability in the lesion
blood flow. We have also performed manual classification of
each pair by defining a blood perfusion threshold value (s)
within the range of blood perfusion in the box-and-whisker plot
(SI Appendix, Fig. S13). However, the manual classification is
observed to underperform in distinguishing the class (or patient
conditions) within the pairs due to overlapping in blood perfu-
sion data. We have also performed a parallel comparison using
thermal image data and blood perfusion data. Direct use of
thermal images leads to less sensitivity and specificity in disease
classification while using tissue surface temperature as the sole
basis of interpretation (SI Appendix, Fig. S11) as compared to
blood perfusion data. To overcome the poor performance of
manual classification, we have further incorporated an auto-
mated computer-aided classification of diseases using an ML
algorithm (see Fig. 5). It can be noted here that the plausible
contrasting predictive features depicted in Fig. 4 as opposed to
the ones subsequently presented in Fig. 5 stem from the fact
that the blood perfusion remains to be only one feature out of

Fig. 2. Local variation in blood perfusion and tissue temperature of normal, OSCC, and OSF participants. Clinical, thermal, and spatiotemporal maps of blood
perfusion of (A) healthy individual (34-y-old male) and individuals with (B) OSCC (82-y-old male) and (C) OSF (45-y-old male) involvements in the LBM reveal-
ing alteration in malignant and premalignant changes in perfusion. (D) Measured well-defined deviation in time series blood perfusion (ωb) among individual
patients with OSCC and OSF involving LBM (represented by pixel-averaged value of the ROI shown in A–C). (E) Spatiotemporal variation of blood perfusion in
the y direction along the red dashed line in thermal image B, indicating peak value at the lesion center/perilesion area. (F) Measured temperature at the
surface of the oral mucosa above the OSCC lesion along with predicted temperature by FEM using the blood perfusion value in D.
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several considered for the ML-based interpretation. The fact
that the latter has been trained to use about 20 image and data
features for the desired classification rationalizes possible con-
trasting interpretations from ML- and non-ML-enabled
decision-making procedures for any identified patient hall-
marked by visually ambiguous data presentation.

Fig. 4C is a demonstration of image analysis steps adopted to
extract the in situ vascular parameters from raw OCT images of
tissue sections. Initially, the raw OCT image of the buccal mucosa
is preprocessed using low-pass spatial filtering and an intensity
transformation method to remove the speckle/noise and enhance
the image contrast, respectively. Then, an image segmentation
operation is executed to segment the vascular structure from
immediate background. After segmentation, the vessel region
properties are extracted from the segmented image to evaluate
the VD and total vascular area (TVA) (Materials and Methods).
The processed OCT images of a patient during image analysis
are also shown in Fig. 4C, such that the raw image (top) is fol-
lowed by segmented images with and without traced vessel
boundaries, and finally the original image is displayed with the
fused boundary mask of traced vessels (bottom). A comparison
between OCT images of OSCC and normal buccal mucosa
reveals an overall increase in red-colored vascular structures
(Fig. 4D). However, processed OCT images of OSF involving the
buccal mucosa reveal fewer stretched vascular structures due to
fibrosis. This trend is found to be consistent with the VD and
TVA extracted from segmented OCT images (Fig. 4 E and F),
revealing a significant difference in VD and TVA among the
groups (P < 0.05) except for TVA occupied by normal and

OSCC cases. It clearly implicates 1) an increase in vascularity in
the case of malignant lesion (44), and 2) obliterated or significant
narrowing of the vessels in subepithelium of OSF cases due to
fibrosis (43). In fact, we have identified not far off linear correla-
tion between functional changes in the microcirculation (indi-
cated by blood perfusion) and that of the structural variation in
vessel density (Fig. 4G) narrating the reason behind reduced
blood microcirculation for the OSF cases.

High-Throughput Screening of Diseases Using the ML Algorithm. To
automate the disease recognition process as well as to over-
come the misinterpretation inevitable with manual classifica-
tion, we have integrated a robust multiclass classification model
based on an ML algorithm (Fig. 5) which enables automatic
and accurate classification of normal, OSCC, and OSF for all
oral sites based on blood perfusion images taken by the device.
Fig. 5A demonstrates the method employed for automatic clas-
sification of disease cases (Materials and Methods). We have
compared the accuracy of three different classification models:
multiclass support vector machine (mSVM), k-nearest neighbor
(KNN), and ensemble of learners (ENS) in Fig. 5B for the
entire image pool, training image pool, test image pool and
new image pool separately. The confusion matrices for each
image pools are separately shown in SI Appendix, Fig. S14.
Except for the ENS model, all other classification models reveal
higher misclassification of the newly grabbed blood perfusion
image pool. Particularly, the ENS model (Fig. 5C) accurately
predicts 100% of normal and OSCC cases and 96.6% of the
OSF cases; 3.3% of OSF was misclassified as OSCC in the
unlabeled data pool. The ENS model also indicates overall
high sensitivity (true positive rate) >96.66% and specificity
(true negative rate) 100% in distinguishing one class from other
two classes as shown by the receiver operating characteristic
(ROC) curve (Fig. 5D). Here, the sensitivity and specificity val-
ues refer to the overall validation accuracy of the best-
performing algorithm to accurately identify disease classes from
the unlabeled “double-blinded” dataset maintained and ana-
lyzed by clinical experts, with supportive evidence from com-
bined clinical examination and gold-standard biopsy.

The algorithm has also achieved the desired accuracy in mar-
ginal cases that are not visually discernible (see SI Appendix, Fig.
S15 for illustration). In fact, the inclusion criteria of our study
covered a variety of marginal cases wherein the inflammation
could not be visually classified by even highly experienced clini-
cians without ambiguity. For example, some marginal cases
revealed negligible visually discernible difference between normal
and OSF. In addition, the clinically demarcating feature of
“interincisal distance” appeared to be virtually indistinguishable,
and no conclusion could be arrived at on palpation of the sus-
pected tissue site as well. This ambiguity on clinical examination
created confusion to even highly trained and experienced doctors.
Such ambiguities could be resolved by appealing to the diagnostic
screening technology developed and advanced herein and were
finally confirmed by gold-standard biopsy.

The demonstrated capability of differential diagnosis of OSF
reasonably early, when the visual features remain indistinguish-
able from normal scenarios, is extremely critical for public
health management at under-resourced locations, since further
complexities in the disease progression may lead to irreversible
damage as well as transformation to malignancy via epithelial-
to-mesenchymal transformation. The potential lifestyle disrup-
tion, if allowed to progress indefinitely, may lead to an inability
of the patient to open the mouth at a later stage. However, if
the disease is detected early, cessation of the chewing/other
adverse oral habit along with rounding-off sharp teeth and
extracting third molars may be adequate means of disease man-
agement without further complications. As a more recently
introduced therapeutic intervention, intralesion injection of

Fig. 3. Montage representing clinical (A–C), thermal (D–F), blood perfu-
sion (G–I), and histological images (J–L) of healthy, well-differentiated
OSCC, and OSF tissues. For interpretation, the rows represent the image
type and columns represents the cases, i.e., healthy, OSCC, and OSF,
respectively. The representative images are from a common site, i.e., LBM,
which corresponds to different participants (participant 1: healthy male,
34-y-old, participant 2: male, 57-y-old with OSCC, and participant 3: male,
45-y-old with OSF). Here, the histological images were presented with
original magnification of 10×. The healthy area of the oral mucosa is well-
perfused and indicates high temperature. The area of cancerous lesion
indicates mosaic of high and low temperature and/or blood perfusion
(E and H). The fibrosis case indicates significant reduction in overall blood
perfusion and tissue temperature (F and I).
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autologous bone marrow stem cells may also be effective in
reversing such early stage of the disease via triggering angio-
genesis leading to arresting the fibrosis and facilitating normal-
ized mouth opening. However, since early detection of this
remains unfeasible in healthcare practice in resource-limited set-
tings in the current state of affairs, patients with OSF typically
present with advanced disease progression, with inevitable irre-
versible damage. Results from the present study have clearly
established the value in this regard by offering a community-level

measure toward arresting critical oral diseases at underserved
locations.

We have further performed parallel comparison using the
learners to predict disease classification accuracy while trained,
tested, and validated for blood perfusion and thermal image
data separately (SI Appendix, Figs. S12 and S14). It is evidenced
that surface temperature data alone as an interpreter lead to
more misclassification from an untrained pool of data as com-
pared to blood perfusion data. These validations established

Fig. 4. Disease-specific variability in blood perfusion and structural vascular parameters. (A) Time series data (mean ± SE) of blood perfusion (ωb) comparing
normal, OSCC, and OSF tissue of RBM and LBM, respectively. The two subframes of time-series data correspond to average of pixels in the ROI presenting
higher value of perfusion for OSCC and normal cases as compared to OSF. (B) Box-and-whisker plot differentiating measured pixel-averaged blood perfusion
between different diseases classes in RBM and LBM used for quantification of the diagnostic test. Data revealed statistically significant differences in the
time-series data of blood perfusion (*P < 0.001). (C) Image processing steps adopted for extraction of vessel structural parameters (i.e., VD and vascular area)
from OCT images of tissue section. (D) Qualitative comparison between fused OCT images of buccal mucosa of patients indicating an overall reduction and
increase in red-colored vascular structures in OSF and OSCC case, respectively, as compared to the normal case. (E) Disease-specific alteration in VD
(mean ± SD; *P = 0.009, **P = 0.009, ***P = 0.009; n = 5). (F) Changes in TVA (mean ± SD; *P = 0.009, **P = 0.028, n.s., not significant; n = 5). (G) Compara-
tive evaluation of blood perfusion (mean ± SD) and VD of selected OSF patients indicating strength of linearity (Pearson’s r = 0.25).
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the accuracy of the blood perfusion imaging device augmented
with the trained machine learner to distinguish disease classes
accurately without any manual supervision. This successful dem-
onstration further ensures the clinical potential of the present
method and device for screening superficial cancer and pre-
cancer, featuring a quantitative method to noninvasively monitor
malignant transformation and associated alteration in blood
microcirculation without demanding specialized laboratory-based
procedures.

Discussion
In the first possible clinical examination, any potential abnor-
mality in the oral cavity may be manifested as lesions (malig-
nant or premalignant) and also in other inflammatory forms.

Apart from malignant lesion (i.e., OSCC), there could be the
four most common precancer conditions (OSF, oral leukopla-
kia, oral erythroplakia, and oral lichen planus) that could turn
into malignant lesions at later times. On the other hand, trivi-
ally benign forms of inflammation could be manifested as white
lining due to pressure of teeth on soft tissue, mouth sores, and
painful ulcers. Further, some fewer common cases of sores and
ulcers could arise due to poor oral hygiene (such as viral, bacte-
rial, and fungal infections) and/or chemotherapy drug-induced
cases. An experienced clinical expert attempts to distinguish
potentially concerning oral lesions from common oral inflam-
mation based on subjective factors like appearance, touch,
high-risk oral sites (buccal mucosa, tongue, gum, palate, etc.),
lesion duration, patient history, and response to preliminary
medications. Often, in resource-limited settings, the mnemonic

Fig. 5. ML-enabled OSCC and OSF recognition. (A) Overview of the training and validation process of the ML algorithm to recognize disease condition
with high accuracy based on captured blood perfusion images by the device. Here, the training and validation dataset consist of images from all oral sites
and the ROI was picked by the operator (or clinician) during acquisition to emphasis on the lesion area. These ROI are subjected to texture analysis and
signal processing during feature extraction. The extracted features are passed to an unfitted machine learner with untrained parameters. Subsequently,
the fitted model (or trained learner) could be saved and deployed as C or MATLAB scripts to the device processing unit for automatic classification. The
model validation is ascertained by passing a pool of randomly distributed unlabeled images (i.e., training, testing, and newly acquired images) through a
fitted model. The output console of the processing unit displays the actual and predicted conditions. (B) Comparison of disease detection results
(i.e., accuracy [Acc] and misclassification [Mis]) by three different classifiers (mSVM, KNN, and ENS) of testing, the new and the entire image pool. (C) The
heat map compares the actual condition (identified by clinical and histological features) and predicted condition identified by best learner (i.e., ensemble
model) for the entire data pool (see SI Appendix, Fig. S14 for other pools). (D) ROC curve to represent the performance (i.e., true positive rate [TPR] and
false positive rate [FPR]) of the ensemble model to accurately classify one class from other two classes. Areas under the curve for all curves were >0.98.
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RULE (red and/or white lesion, ulcerated, lump, exceeding
duration of 3 wk) is applied by the doctors/dentists as the sole
plausible mode of screening of a potentially concerning lesion
from other oral inflammation. However, with well-known vul-
nerable sources of misclassification, a compelling challenge
turns out to be accurate characterization and assessment of the
oral lesions where clinical ambiguities are deceptive.

Nonavailability of facilities with clinical acumen and support-
ive histopathological evaluation in resource-limited settings as a
confirmatory decision-making tool make it immensely challeng-
ing to come up with an accurate classification of the observed
abnormalities in tissues during clinical examination, when con-
fronted with the above-mentioned dilemma. Considering these
challenges, the BPI tool developed here has been perceived as
a unique way of distinguishing oral cancer, precancer, and nor-
mal scenarios, with a clear impact on the distinctive clinical
decision-making and therapeutic procedure that are to follow
for malignant and nonmalignant yet vulnerable or threatening
scenarios. Whereas the invasive biopsy procedure remains the
only clinical gold standard to confirm such distinctions in estab-
lished and resourced medical centers, the present device offers
its value as a noninvasive and inexpensive screening tool to cat-
egorize various oral abnormalities in a resource-limited setting.
The clinical trials presented here not only establish the efficacy
of the method but also validate the fundamental scientific prop-
osition that the alteration of thermal field of the potentially
abnormal tissue location has a direct relation with the increase
or decrease in blood perfusion depending on the localized
growth features. Our analysis has further demonstrated congru-
ence between the changes in lesion blood perfusion and that of
in situ structural parameters such as vessel density and vessel
area measured by optical biopsy method. This method, in a
generic sense, also paves the way for contrast-free assessment
of abnormal microvascular physiology, if integrated with more
advanced medical thermometric devices such as microwave
thermometry (39), ultrasound thermography (40), CT (41), and
MRI (42) thermometry.

It also needs to be noted here that prior to this work methods
suitable for fast and noninvasive diagnosis as well as differentia-
tion of oral cancer and precancer have been implemented by
saliva metabolic profiling as an altogether different approach
(45). However, such an approach is expensive, sophisticated, and
not ideal for underserved community and resource-limited clini-
cal settings and is not a viable proposition for community-level
screening. Circumventing those constraints, emergence of a sim-
ple, low-cost, hand-held device for rapid yet accurate screening
of subsurface cancers and precancers holds utilitarian impor-
tance, considering the fact that cancer of the oral cavity is one of
the major causes of morbidity and mortality among males and
females in the underserved community, which reveals 80%
chance of 5-y survival rate if diagnosed before metastasis; the sur-
vival rate drops to 65% or less in more advanced stages (46). The
key reason for such reduced therapeutic outcome is the fact that
most oral cancers are diagnosed at an advanced stage. From that
perspective, the present technology offers an exclusive perspec-
tive of detecting the possible vulnerable cases early enough, pos-
sibly during the precancer stage itself, during a first examination
by a clinician, to enable working out immediate therapeutic
measures to ensure disease reversal.

The above-mentioned major bottleneck of oral cancer treat-
ment and management, stemming from the failure of detecting
the precancerous stage of the disease early enough, is likely
to be circumvented to a great extent via integrating the
ML-empowered automatic classification of fine-grained vari-
ability in the captured blood perfusion images that are not dis-
tinguishable visually. Whereas the invasive biopsy procedure
remains the only clinical gold standard in established and
resourced medical centers, the present method in this respect

has demonstrated its early success as a noninvasive and inex-
pensive screening tool to categorize various oral abnormalities
in a resource-limited setting. Our clinical trials, thus, in addi-
tion to providing a quantitative insight on the method efficacy,
established the value proposition that the inexpensive and por-
table device may be deployed in remote locations, as well as in
low-resourced urban settings (for example, slums), for captur-
ing the vulnerable cases early enough by raising serious concern
among the clinician and patient and obviating any inattention.
The screened vulnerable cases may eventually be subjected to
confirmatory gold-standard biopsy procedure before adminis-
tering the requisite therapy. As an inexpensive co-option to the
standard and established clinical practices, this value-added
tool is likely to strengthen the confidence of doctors in prelimi-
nary decision-making. Furthermore, the fundamental scientific
premise of the present technique holds the potential of opening
new vistas in rapid and affordable diagnostics of various other
diseased conditions that can be uniquely mapped with precise
quantitative alterations in localized microcirculation at surface
and subsurface levels, including chronic pain, inflammation,
vascular blood flow irregularities, and beyond.

Materials and Methods
BPC. Eq. 1 (see SI Appendix, section S4 for detailed derivation), as presented
below, is a modified variant of the Pennes bioheat equation (47). It follows
from the principle of local energy balance in the tissue as a combined conse-
quence of thermal conduction, exchange of heat within the tissue due local
thermoregulation via blood perfusion, and metabolic heat generation. It
includes the thermal diffusivity α and the thermal capacity qc as effective local
properties, the latter being dependent on the blood perfusion itself, inducing
an inherent nonlinearity in the governing equation:

@T
@t

¼ αeff
@2T
@z2

� �
� ωbqbcb

qcð Þeff
T � Tbð Þ þ EO2ϕO2ωb

qcð Þeff
: [1]

Because of the nonlinearity mentioned as above, an analytical solution of Eq.
1 does not exist. However, considering an iterative framework on the basis of
a guess value of the local blood perfusion, the effective properties may be
ascertained to derive a closed-form expression satisfying Eq. 1, which may be
mathematically inverted (see SI Appendix, sections S5 and S6 for detailed deri-
vation) to obtain a closed-form expression of the pixelated blood perfusion,
ωb,(i,j) corresponding to each grid point (indexed as i,j) of the measured ther-
mogram stencil, referred to herein as the BPC correlation:
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Various parameters appearing in Eq. 2, such as Lt, U ¼ qbcb Ti,j�Tbð Þ�EO2 ϕO2
qbcb Tamb�Tbð Þ�EO2

ϕO2

� �
, as

well as the coefficients obtained as constants of integration are detailed in SI
Appendix. The parameter U is function of measured tissue temperature (Ti,j)
and the measured ambient temperature (Tamb) as obtained via thermal imag-
ing, and EO2ϕO2

is referred to as an energy density parameter, wherein EO2 is
the energy liberated by oxygen per unit volume of the oxygen consumed and
ϕO2

is the volume fraction of oxygen in the blood. Tb is the mean blood tem-
perature which is a weighted average of surface and core body temperature
¼ 1� κð ÞTc þ κTi,j
� �

, Tc being the body core temperature, κ is a weighting
factor, hov is the overall heat transfer coefficient that encompasses thermal
transport due to convection, radiation, and evaporation, w is related to ther-
mal diffusion length scale of the perfused tissue ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωb,gqbcb=keff
p	 


, αeff is the
effective thermal diffusivity ¼ keff= qcð Þeff

� �
, keff is the effective thermal con-

ductivity of the perfused tissue ¼ 1�ϕbð Þkt þϕbkb½ �, (qc)eff is the effective
thermal capacity of the perfused tissue ¼ 1�ϕbð Þqtct þϕbqbcb½ �, ϕb being the
volume fraction of blood in the tissue � ωb,gΔt

	 

, kt is the thermal conductiv-

ity of the unperfused tissue, and qb, cb, and kb are the density, specific heat,
and thermal conductivity of blood, respectively. Here ωb,g is the guess value of
blood perfusion considered as a part of an iterative estimation procedure, to
enable ascertaining numerical values of all the parameters appearing on the
right-hand side of Eq. 2. The coefficients C3,An, and λn represent a dummy var-
iable, integration constant, and eigenvalues of the mathematical solution,
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respectively. Expressions of these are included in SI Appendix, section S5. The
input model parameters for measuring blood perfusion are tabulated in SI
Appendix, Table S2. With these considerations, an iteratively updated value of
blood perfusion, ωb,(i,j), may be obtained explicitly at once, by appealing to the
BPC correlation (Eq. 2). The inner iteration at each temporal instant leads to
rapid convergence to the true value of the blood perfusion at each grid point,
at the specific time instant under concern, by adopting a fast iterative algo-
rithm (SI Appendix, section S7). A time marching scheme following outer itera-
tion is then employed with a time step of Δt (the time interval between the
consecutive frames of the thermogram (¼ 0.125 s for a frame rate set to 8 Hz,
for example), to obtain a spatiotemporal map of the blood perfusion data.

Supervised ML Algorithm for Automatic Disease Classification. As a part of
the device processing unit, we integrated a robust ML model (Fig. 5A) which
enabled automatic classification of normal, OSCC, and OSF cases with high
accuracy, based on histogram/texture analysis and measured pixel-averaged
temporal data ωb,avg tð Þ ¼ 1= N�Mð Þ

XN

i¼1
ωb i, j, tð Þ of the ROI, wherein the

ROI was picked by the operator or clinicians. To train the model, an image
pool involving all individuals was passed through statistical and signal process-
ing functions in MATLAB to extract 20 features. These features are 1) maxi-
mum entropy and energy of the normalized histogram counts of the image
ROI and 2) mean, median, absolute deviation, SD, SE, 25% and 75% quantile,
interquantile, skewness, kurtosis, root mean square (RMS), root-sum-of-
squares, peak-magnitude-to-RMS ratio, Shanon’s entropy, spectral entropy,
and maximum frequency and amplitude of power spectrum of the time series
signal ωb,avg(t). In relation to each training dataset, either of the three
responses (i.e., normal or OSCC or OSF) was labeled based on confirmed clini-
cal and biopsy report. Since the number of individuals of normal, OSCC, and
OSF is distinct, the dataset was balanced by using the same data for OSCC and
OSF two times to obtain a bias-free training dataset. We held out 25% of
actual images as test dataset (n ¼ 61) and 75% as training dataset (n ¼ 183).
Then, the labeled group of extracted features in the training dataset was used
to train the classification models (mSVM, KNN, and ENS) separately to learn
patterns for each response that are not recognizable by the human eye. To
improve the performance of the classifier, we set high cost of misclassification
for OSCC and OSF as compared to normal, implemented 10-fold cross-
validation, and tuned the internal parameters of the classifier by invoking the
Bayesian hyperparameter optimization. These steps were iterated a couple of
times to obtain a robust classifier by discarding unwanted features, setting
the high cost of misclassification, and employing different classification mod-
els. Finally, the trained model was saved that takes input as unlabeled images
defined by the ROI and predicts the accurate response. In the validation step,
apart from unlabeled training and test image pool, we used an additional 13
unlabeled images newly acquired by the BPI device that had never been seen
by the saved model during training or testing. The ML algorithms for classifi-
cation of disease condition is a modified version of example script provided by
MATLAB centralfile exchange (48).

Study Ethics and Selection of Participants. The experimental procedure,
detailed below, was designed to predict the site-specific deviation in the
blood perfusion of OSCC and OSF, which is a precancerous condition, from
healthy oral tissue and for comparative evaluation of the observation with
gold-standard methods and in situ vascular parameters deduced from B-scan
OCT images. These studies were carried out according to the ethical norms
laid down by the Indian Council of Medical Research and World Health Orga-
nization, which was approved by the Institutional Review Boards of Guru
Nanak Institute of Dental Science and Research (GNIDSR), Kolkata (Ref. No.
GN/ADMN/19/023; Date: 1/21/2019), and Indian Institute of Technology Khar-
agpur (Ref. No. IIT/SRIC/DR/2019; Date: 2/5/2019). Following the ethical com-
mittee guidelines, each potential participant was first told about the imaging
procedure and asked for their willingness to volunteer in this study. Uponwill-
ingness to participate and prior to imaging procedure, a signed written
informed consent was collected from each participant along with history of
systemic diseases in a separate form of survey/questionnaires. The study
included 36 healthy volunteers, 14 individuals with OSF, and 11 individuals
with OSCC, ages ranging from 20 to 85 y, irrespective of any gender bias, who
fulfilled the inclusion criteria. All participants were divided into three study
groups: healthy (Group-I), OSCC (Group-II), and OSF (Group-III) based on the
inclusion criteria. Inclusion criteria included 1) healthy volunteers with orwith-
out oral habits, without any oral lesions and systemic diseases, 2) clinically
diagnosed patients with OSF and OSCC who were scheduled for biopsy at a
later date with their previous consent in the department of oral and maxillo-
facial surgery, GNIDSR, Kolkata, India for histopathological evaluation. Exclu-
sion criteria included healthy volunteers not in normotensive status during
imaging. OSF patients with a mouth opening of<2.5 cmwere also excluded.

Methods Applied to Imaging Intraoral Sites. For imaging, participants were
given full details of the experimental procedure and were instructed to rest in
a decubitus-supine comfortable position on a dental chair, wherein the head
position was immobilized. The participant was instructed to be relaxed, not to
gesticulate, swallow, or speak, and to breathe normally during the procedure.
The participants were instructed to open their mouth normally without any
strain for 35 s during which the handheld detector was guided within the oral
cavity by resting the hand on a support tominimize the motion artifacts in the
image sequence of the investigating site. The detector housing and holder are
made of biocompatible and biodegradable polymeric material polylactic acid,
which was readily sterilized prior to its clinical use in each participant. For the
healthy group, the imaging process was carried out in 10 oral sites with a sta-
bilization pause for 3 min before each measurement. These sites are the ante-
rior two-thirds of the dorsum of tongue (DT), left lateral border of the tongue
(LLBT), right lateral boarder of the tongue (RLBT), ventral surface of the
tongue (VST), RBM, LBM, lower labial mucosa (LLM), lower labial gingiva
(LLG), left lower buccal gingiva (LLBG), and right lower buccal gingiva (RLBG).
The entire experiment was performed during the early hours between 9:00
AM to 11:00 AM in an outpatient room. The ambient temperature and rela-
tive humidity inside the oral cavity differed from that of the room condition,
and the measured ambient temperature and relative humidity by the humidity
sensor was found to be in the range 33.507 6 1.503 °C and 47.639 6 9.395%,
respectively. The oral tissue moisture was measured using a digital moisture
meter in the range of 85.05 6 3.412%. In selected participants, B-scan of
OCTwas acquired for comparison.

Methods Applied for Estimation of In Situ Vascular Parameters. We used a
swept-source OCT system (OCM1300SS; Thorlabs Incorporated) operating at
1,325-nm central wavelength for imaging of buccal mucosa. Here, the vessel
structural parameters (VD and TVA) were extracted from a standard
two-dimensional OCT scan of buccal mucosa using an image processing step
(Fig. 4C). The morphological features of blood vessels were extracted by seg-
menting the signal-free dark regions/blobs in the two-dimensional tissue
images, which is supported by negligible light absorption by oxy- and deoxy-
hemoglobin of blood at 1,325 nm (49). The objective is to correlate the change
in blood perfusion with that of the measured in situ vascular parameters
obtained from OCT images. The methodology (Fig. 4C) for image analysis
applied to raw OCT image is detailed here. Initially, the raw OCT image was
converted to a grayscale image. Next, the image was calibrated based onmea-
suredmaximum axial and depth dimensions, and area per pixel was computed
by product of per pixel length in x and y directions. Subsequently, the speckle/
noise in the grayscale image was smoothened by applying a low-pass Weiner
filter with a correlation kernel of size 8� 8 used for local neighborhood filter-
ing operations of any pixel. The image contrast was enhanced by saturating
1% of the pixel data with low and high intensity of input image. After
enhancement, we segmented the image using a multilevel Otsu’s threshold-
ing method for automatic identification of signal-free dark blobs or con-
nected regions in the image, wherein multiple intensity threshold levels were
determined from multimodal histogram distribution. The grayscale image is
converted to binary image, such that all pixel values of the image above the
specified intensity threshold value are assigned as “1” and other pixel values
are assigned as “0.” Further, an intermediate optional step was adopted to
identify the coordinate of the epithelium-papillary layer junction for normal
and OSF cases, which is often identified by the brightest junction in OCT
images (Fig. 4D). However, this step may not apply to OSCC cases due to the
absence of clear boundary, since cancer growth often corrupts the squamous
epithelial layer. In this intermediate step, the algorithm performs a correction
in the segmented binary image by closing all the dark region above the coor-
dinate of the epithelium layer using a region fill operation. The correction
step is essential to ensure no false identification of the vascular structures in
the stratified squamous epithelial layer due to automatic segmentation oper-
ation, since epithelium is a vessel-free region. We further employed the con-
nected component concept to identify multiple signal-free dark regions in the
final segmented image and computed the region property such as vessel area,
number of vessels (NV), total area of vessel (TVA), total area of tissue section,
AROI (representing total area occupied by white pixel and included dark pix-
els), and VD,which is the number of vessel profiles per squaremillimeter of tis-
sue section (VD ¼ NV/AROI). Note that the AROI excludes the region that
touches the outside edge of the segmented image using a clear border opera-
tion. Finally, we traced the region boundaries in the binary image to obtain a
boundary mask and displayed the original image fused with boundarymask.

Histological Examination. Following the imaging procedure, biopsy was per-
formed under local anesthesia from the representative sites of all the selected
study subjects with prior consent and medical fitness, in the department of
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oral andmaxillofacial pathology of GNIDSR, Kolkata, India. All the biopsy sam-
ples were then processed and paraffin sections were prepared, stained, and
evaluated to confirm the clinical diagnosis.

Statistical Analysis. The statistical relation between OSCC and normal, OSF
and normal, and OSCC and OSF tissue data in terms of level of significance
was evaluated using nonparametric Kruskal–Wallis test. Further, an additional
test was performed on the same dataset using two-way ANOVA to corrobo-
rate the level of significance obtained from Kruskal–Wallis test. In all tests, P<

0.05 was considered to be a statistically significant difference between the
datasets. Prior to nonparametric analysis, the normality of selected data was
checked using the Lilliefors test. However, the normal distribution was not
found in any dataset. For the time-series data, unit root test was performed
using the augmented Dickey–Fuller method with an autoregression model
and the test statistics P value was determined using standard t test.

Data Availability. Details of open-source codes are cited in the paper and sup-
porting information, and web links are provided in SI Appendix, section S11.
Custom-built codes may be available by contacting the corresponding author
on reasonable request only for noncommercial purposes but not their disclosure
to third parties. The measured thermophysical parameters and blood perfusion
data of each study participant with and without oral lesions are made publicly
available at GitHub, https://github.com/Arka-Bhowmik/oral_properties (50). All
other study data are included in the article and/or supporting information.
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