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In decision-making systems, how to measure uncertain information remains an open issue, especially for information processing
modeled on complex planes. In this paper, a new complex entropy is proposed to measure the uncertainty of a complex-valued
distribution (CvD). *e proposed complex entropy is a generalization of Gini entropy that has a powerful capability to measure
uncertainty. In particular, when a CvD reduces to a probability distribution, the complex entropy will degrade into Gini entropy.
In addition, the properties of complex entropy, including the nonnegativity, maximum and minimum entropies, and bound-
edness, are analyzed and discussed. Several numerical examples illuminate the superiority of the newly defined complex entropy.
Based on the newly defined complex entropy, a multisource information fusion algorithm for decision-making is developed.
Finally, we apply the decision-making algorithm in a medical diagnosis problem to validate its practicability.

1. Introduction

Uncertainty is inevitable in the applications of decision-making
systems [1–4]. Considerable attention has addressed uncer-
tainty in the past few decades [5, 6]. How to express the
knowledge involved in sources of uncertain information still
remains an open issue [7, 8]. Hence, researchers have
attempted to model and measure uncertain information using
extended soft sets [9], evidence theory [10], reasoning [11–13],
belief structures [14, 15], D numbers [16, 17], Z numbers
[18, 19], and other hybrid methods [20–23].

One successful alternative uncertain information mea-
sure is Gini entropy [24], which is simple to implement and
has received a substantial amount of attention from re-
searchers. Inspired by Gini entropy [24], Yager and Petry
[25] recently devise an intelligent quality-based approach for
fusing multisource information [26]. Bouhamed et al.[27]
extend it to combine multisource possibilistic information.
Later, researchers generalized the Gini entropy-based in-
formation quality to belief functions to measure uncertainty.
*e method of Li et al.[28, 29] is an example that has been

well applied in various fields. Although Gini entropy [24]
can be used to measure uncertainty, it can only be used for
probability distributions.

*e complex-valued model has potential expressional
properties, especially for the modeling of uncertainty
[30, 31]. *erefore, the complex-valued model was widely
investigated and applied in various fields, such as medical
diagnosis [32], decision-making [33, 34], and predicting
interference effects [35, 36]. Given that the complex-valued
representation model is well suited for certain applications,
how can Gini entropy be generalized to complex planes to
provide a more powerful capability to measure uncertainty?

In this paper, to address the abovementioned issue, a
generalized entropy is proposed for measuring the un-
certainty of CvDs. When CvDs reduce to probability
distributions, the newly defined entropy degrades into
Gini entropy. Specifically, vector expressions of CvDs are
first proposed to model knowledge in complex planes.
After that, a novel complex entropy called Xiao entropy is
defined to measure uncertainties of CvDs. *en, the
properties of complex entropy, including nonnegativity,
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maximum and minimum entropies, and boundedness, are
analyzed and discussed. Based on the newly defined
complex entropy, a multisource information fusion al-
gorithm for decision-making is devised. Finally, we apply
the decision-making algorithm in a medical diagnosis
problem to verify its practicability.

*e contributions of this work are summarized as
follows:

A novel complex entropy, called Xiao entropy, which
has the properties of nonnegativity, maximum and
minimum entropies, and boundedness, is defined for
the CvD
*e multisource information fusion algorithm based
on the newly defined entropy can be well applied to
support decision-making
*is study provides a new perspective of complex-
valued representation for uncertain information and
offers a promising and generalized solution in terms of
uncertainty measurements

*e preliminaries are introduced in Section 2. In
Section 3, CvD vectors are defined. In Section 4, a
complex entropy is defined to measure the uncertainty of
CvDs. In Section 5, several numerical examples illustrate
the properties of complex entropy. In Section 6, an al-
gorithm for decision-making is designed on the basis of
the newly defined entropy. *en, the decision-making
algorithm is used in a medical diagnosis. Section 7
concludes this work.

2. Preliminaries

In this section, some essential concepts of uncertainty
measures related to this work are introduced.

Definition 1 (Gini entropy). Let P � [p1, . . . , pj, . . . , pn] be
a probability distribution vector. *e Gini entropy of P is
defined by [24]

G(P) � 1 − 􏽘
n

j�1
p
2
j . (1)

Definition 2 (Pennecchi and Oberto’s uncertainty mea-
sures). Let C � [c1, . . . , cj, . . . , cn] be a CvD vector, where
cj � aj + bji. Pennecchi and Oberto’s modulus estimations
of C are defined by [37]
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where 1 − 〈‖ c
→

‖〉a and 1 − 〈‖ c
→

‖〉b can be used as uncer-
tainty measures.

3. Vector Representation of CvD

Modeling uncertainty has attracted a substantial amount of
attention in a variety of areas [38]. Many methods have been
proposed and applied in various fields, such as failure and
risk analysis [39], classification [40, 41], information fusion
[42], and decision-making [43, 44]. Here, a vector repre-
sentation of CvD is presented for expressing uncertainty in a
complex plane. In addition, the norm of CvD is also defined
and analyzed.

Definition 3 (CvD vector). Let Ck be a CvD vector on the
frame of discernment (FOD) Ψ � ψ1, . . . ,ψj, . . . ,ψn􏽮 􏽯,
denoted by

Ck � ck1, . . . , ckj, . . . , ckn􏽨 􏽩, (3)

where ckj is the complex value with regard to the occurrence
of ψj:

ckj � akj + bkji, (4)

where akj and bkj are real numbers and i is the imaginary
unit, satisfying i2 � − 1.

ckj in equation (4) satisfies
�������
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(5)

where |ckj| is the modulus of ckj.
Equation (4) is also expressed as follows:

ckj � rkje
iθkj , (6)

with

rkj �

�������

a
2
kj + b

2
kj

􏽱

, (7)

where rkj � |ckj|≥ 0 and θkj ∈ [− π, π] denotes an angle
(phase) of ckj.

Definition 4 (norm of CvD). LetCk be a CvD vector on FOD
Ψ. Norm of CvD vector, ‖Ck‖, is defined by

Ck
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Consider properties of CvD vector in Definition 3, where
for each ckj, a2

kj + b2kj ∈ [0, 1] and 􏽐
n
j�1 |ckj| � 1, we observe

the following:

Case 1. *e maximal value of ‖Ck‖, denoted by max[‖Ck‖],
is generated, when

ckj � 1, for one j,

ckj � 0, for others j,

⎧⎨

⎩ (9)

such that
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max Ck

����
����􏽨 􏽩 � 1. (10)

Case 2. When ckj degrades into real numbers, i.e., ckj � akj

(bkj � 0), the minimum value of ‖Ck‖, denoted by
min[‖Ck‖], is generated, when

ckj �
1
n

, 1≤ j≤ n, (11)

where
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where ‖Ck‖ has amaximum value of 1 with ckj � 1 for one ψj

and others ckj � 0; ‖Ck‖ has a minimal value of 1/
�
n

√
with all

ckj � (1/n).

4. Entropy for CvD

Entropy is useful for measuring uncertainty [45–47], where
many kinds of entropies, such as Tsallis entropy [48], fuzzy
entropy [49, 50], Deng entropy [51–53], and cross-entropy
[54], are presented for different aspects [55–59]. Among
them, Shannon and Gini entropies are very popular. *e
greater the uncertainty is, the greater the entropy is; the
lesser the uncertainty is, the lesser the entropy is [60]. We
make use of the concept of Gini entropy [24] to measure the
uncertainty of CvD.

Definition 5 (complex entropy). Let Ck be a CvD vector on
FOD Ψ. *e complex entropy of Ck, denoted as EX(Ck), is
defined as

EX Ck( 􏼁 � 1 − Ck
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When a CvD reduces to a probability distribution, where
bkj � 0 and ckj � akj, then EX(Ck) can be expressed as
follows:

EX Ck( 􏼁 � 1 − 􏽘
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which is equal to equation (1).

Property 1. EX is a generalized model of Gini entropy [24].
Specifically, when a CvD becomes a probability distribution,
EX degrades into Gini entropy [24].

According to equation (13), because (1/
�
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√
)≤ ‖Ck‖≤ 1,
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*us, EX(Ck) has the boundedness of [0, (1/n)].
It is inferred that

EX(Ck) reaches its maximal value EX(Ck) � 1 − (1/n)

when ckj � (1/n) for 1≤ j≤ n. When n⟶ +∞ and
(1/n)⟶ 0, X(Ck) reaches the maximum value 1.
EX(Ck) reaches its minimal value EX(Ck) � 0 when
one ckj � 1 and others ckj � 0.

Remark 1. Notably, the larger EX(Ck) is, the larger the
uncertainty in CvD Ck is, which results in lower certainty.

Definition 6 (the completely certain CvD). CvD Ck is
completely certain when EX(Ck) � 0.

Definition 7 (the completely uncertain CvD).
CvD Ck is completely uncertain when EX(Ck) � 1.

Theorem 1. EX has the desired properties of the entropy of
the CvD, including nonnegativity, maximum and minimum
entropies, and boundedness.

Property 2. Let Ck be an arbitrary CvD:

P 2.1 Nonnegativity: EX(Ck)≥ 0
P 2.2 Maximum entropy: EX(Ck)≤max[EX(Ck)]

P 2.3 Minimum entropy: EX(Ck)≥min[EX(Ck)]

P 2.4 Boundedness: 0≤EX(Ck)≤ 1

Proof. *e proofs are trivial. □

5. Numerical Examples

In this section, several examples are presented to illustrate
the entropy for CvD.

Example 1. Consider a CvD C in the FOD Ψ � ψ1,ψ2􏼈 􏼉:

C � [x, 1 − x]. (18)

In Example 1, C changes as parameter x varies, where x

is set within [0,1], such that C reduces to a probability
distribution.

By leveraging the Gini entropy G and Xiao entropy EX,
the corresponding entropy measures are shown in Figure 1.
Clearly, EX is the same as G entropy, which verifies that
when a CvD reduces to a probability distribution, EX de-
grades into Gini entropy. Additionally, when x � 0 or x � 1,
such that C � [0, 1] or C � [1, 0], G(C) and EX(C) achieve
the minimum entropy of 0, because in this case, C is the
completely certain CvD. By contrast, only when x � 0.5,
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such that C � [0.5, 0.5], can G(C) and EX(C) achieve a
maximum entropy of 0.5.

Example 2. Consider a CvD C in the FOD Ψ � ψ1,ψ2􏼈 􏼉:

C � re
((π/2)i)

, (1 − r)e
((π/9)i)

􏽨 􏽩. (19)

In Example 2, C changes as modulus r varies, where r is
set within [0.01,0.99].

Because C consists of complex numbers, Gini entropy is
not applicable.*e result of EX entropy is shown in Figure 2.
As r increases from 0.01 to 0.5, EX entropy increases from
0.0198 to 0.5, while as r increases from 0.5 to 0.99, EX

entropy gradually decreases to 0.0198. *is result shows a
similar trend as the entropy measures in Figure 1.

A comparison of the results in Examples 1 and 2 shows
that the proposed EX entropy is a more capable uncertainty
measure than Gini entropy.

Example 3. Consider a CvD C in the FOD
Ψ � ψ1, . . . ,ψj, . . . ,ψx􏽮 􏽯:

C �
1
α

, . . . ,
1
α

, . . . ,
1
α

􏼔 􏼕. (20)

In Example 3, we set six different scales of α, namely,
α ∈ [1, 10], [1, 102], [1, 103], [1, 104], [1, 105], and [1, 106],
to measure the variation of G(C) and EX(C).

Figures 3(a)–3(f) depict the results of G(C) and EX(C)

with regard to six different cases, respectively. Particularly,
as α varies within [1, 10], EX(C) has a maximum value of
max[EX(C)] � 0.9 and a minimum value of
min[EX(C)] � 0. When α changes within [1, 102],
max[EX(C)] � 0.99 and min[EX(C)] � 0. When α varies
within [1, 103], max[EX(C)] � 0.999 and min[EX(C)] � 0.
When α changes within [1, 104], max[EX(C)] � 0.9999 and
min[EX(C)] � 0. When α varies within [1, 105],

max[EX(C)] � 1 and min[EX(C)] � 0. When α changes
within [1, 106], max[EX(C)] � 1 and min[EX(C)] � 0.
*us, when a CvD becomes a completely certain distribu-
tion, i.e., a probability distribution, in which ckj � akj � 1 for
one j and other ckj � 0, it has a minimum entropy of
min[EX(C)] � 0. On the other hand, when α⟶ +∞,
max[EX(C)] is close to 1, because in this case C is com-
pletely uncertain.

Example 4. Assume that there is a CvD C in the FOD
Ψ � ψ1, . . . ,ψj, . . . ,ψx􏽮 􏽯:

C � re
(ξπi)

, (1 − r)e
(ξπi)

􏽨 􏽩. (21)

In Example 4, C changes as r and ξ vary. Here, we set r

within [0,1] and ξ within [-1,1], as shown in Figure 4(a). *e
entropy measure of EX(C) is presented in Figure 4(b),
which shows how the variations in the modulus and angle of
the elements in C impact EX(C).

EX(C) changes as r varies, whereas the variation in angle
θ � ξπ has no effect on EX(C). *is result is reasonable
because r2kj � |ckj|

2 � a2
kj + b2kj is related to the modulus r

rather than θ.

Example 5. Consider Example 2.

In Example 5, r is set within [0,1]. We compare the
proposed EX with related works, that is, Pennecchi and
Oberto’s uncertainty measures 1 − 〈‖ c

→
‖〉a and 1 − 〈‖ c

→
‖〉b.

By comparing the results of EX, 1 − 〈‖ μ→‖〉a, and
1 − 〈‖ μ→‖〉b shown in Figure 5, we can see that 1 − 〈‖ c

→
‖〉a

remains 0.5 and cannot accurately measure the uncertainty.
However, 1 − 〈‖ μ→‖〉b provides a better measure of the un-
certainty compared to 1 − 〈‖ c

→
‖〉a because as r increases from

0.01 to 0.5, it increases from0.2929 to 0.4208, while as r increases
from 0.5 to 0.99, it gradually decreases to 0.2929. Nevertheless,
the proposed EX has better discrimination as an uncertainty
measurement and is superior to other methods.
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Figure 3:*e entropy measures of G(C) and EX(C) in Example 3. (a)G(C) and EX(C): 1≤α≤ 10. (b)G(C) and EX(C): 1≤α≤ 102. (c)G(C)

and EX(C): 1≤α≤ 103. (d)G(C) and EX(C): 1≤α≤ 104. (e)G(C) and EX(C): 1 ≤α≤ 105. (f )G(C) and EX(C): 1≤α≤ 106.
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6. Algorithm and Application

How to deal with decision-making problems has attracted
much attention [61–65], especially for complex-valued
expressed information [66, 67]. In this section, we first
design a multisource information fusion algorithm for
decision-making based on the proposed entropy.*en, we
apply the decision-making algorithm in medical diagnosis
to validate its practicability.

6.1. A Multisource Information Fusion Algorithm for
Decision-Making. Problem statement: let Ψ be a FOD with
a set of objectives ψ1, . . . ,ψj, . . . ,ψn􏽮 􏽯 to be recognized.
Suppose there are t CvDs: C � C1, . . . ,Ck, . . . ,Ct􏼈 􏼉 where
Ck � [ck1, . . . , ckj, . . . , ckn] and ckj � akj + bkji. *e

decision-making algorithm is to identify the target from
ψ1, . . . ,ψj, . . . ,ψn􏽮 􏽯 by combining multiple CvDs
C1, . . . ,Ck, . . . ,Ct􏼈 􏼉.

*e specific steps are given as follows:

Step 1: For 1≤ k≤ t, its corresponding entropy of CvD
Ck, denoted by EX(Ck), can be generated as follows:

EX Ck( 􏼁 � 1 − Ck

����
����
2
. (22)

Step 2: For 1≤ k≤ t, its corresponding information
volume of CvD Ck, denoted by IV(Ck), can be mea-
sured by

IV Ck( 􏼁 � e
EX Ck( ). (23)

Step 3: *e information volume IV(Ck) is normalized by

IV Ck( 􏼁 �
IV Ck( 􏼁

􏽐
t
h�1 IV Ch( 􏼁

, 1≤ k≤ t. (24)

Step 4: According to the normalized information
volumes, the weighted average CvD, denoted as 􏽥C, is
defined by

􏽥C � 􏽘
k

i�1
IV Ck( 􏼁 × Ck

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩, 1≤ k≤ t, (25)

where |Ck| � [|ck1|, . . . , |ckj|, . . . , |ckn|] and
|ckj| �

��������
x2

kj + y2
kj

􏽱
.

Step 5: 􏽥C is fused via the complex Dempster’s com-
bination rule [68] by t − 1 times:

􏽢􏽥Ct− 1 � (􏽥C⊕􏽥C)1⊕ · · ·⊕􏽥C􏼐 􏼑
t− 1.

(26)

Step 6: For 􏽢􏽥Ct− 1(ψj), the ψδ with the maximum ab-
solute value is chosen:

􏽢􏽥Ct− 1 ψδ( 􏼁 � max
1≤j≤n

􏽢􏽥Ct− 1 ψj􏼐 􏼑􏼚 􏼛, 1≤ j≤ n. (27)
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Step 7: Let λ be a threshold value for decision-making,
which can be set in advance according to specific ap-
plications. If 􏽢􏽥Ct− 1(ψδ)≥ λ, the ψδ can be identified as
the target by

δ � argmax
1≤j≤n

􏽢􏽥Ct− 1 ψj􏼐 􏼑􏼚 􏼛,

Target←ψδ.

(28)

If 􏽢􏽥Ct− 1(ψδ)< λ, it cannot be determined.
*e corresponding pseudocode is given in Algorithm 1.

6.2. Application in Medical Diagnosis. In this section, the
proposed decision-making method is applied in medical
diagnosis to demonstrate its practicability. *e scenario and
data of the application are based on [32].

Considering a medical diagnosis problem, where for a
patient P, P suffers with the most possible disease from D �

D1􏼈 : viral fever, D2: malaria, D3: typhoid, D4: stomach
problem }. To clarify which disease the patient may suffer,
five experts diagnose the patient’s condition, in which the
evaluation data are modeled as CvDs in Table 1. *e
threshold λ is set as 0.80 for this application to make a
decision. We try to diagnose the patient P by integrating the
evaluations from the five experts.

*en, the decision-making algorithm is applied to
medical diagnosis by the following steps:

Step 1: *e entropy values of CvD CEk
(1≤ k≤ 5) are

calculated by equation (22), as shown in Table 2.
Step 2:*e information volumes of CvDCEk

(1≤ k≤ 5)

are calculated by equation (23), as shown in Table 2.
Step 3: *e information volume IV(CEk

) (1≤ k≤ 5) is
normalized by equation (24), as shown in Table 2.
Step 4: *e weighted average CvD 􏽥C is generated by
equation (25), as shown in Table 3.
Step 5: By gradually fusing the weighted average CvD
with 4 times, their corresponding results are generated
by equation (26), as shown in Table 3.
Step 6: *e maximal absolute value of 􏽢􏽥Ct− 1(Dj) is
marked with the correct color in Table 3.
Step 7: Patient P is diagnosed as most likely to suffer the
disease D1:

􏽢􏽥C4 Dδ( 􏼁 � max
1≤j≤4

􏽢􏽥C4 Dj􏼐 􏼑􏼚 􏼛≥ θ, θ � 0.80

δ � argmax
1≤j≤4

􏽢􏽥C4 Dj􏼐 􏼑􏼚 􏼛 � 1,

P←D1.

(29)

6.3. Discussion. As shown in Table 1, we see that
|CE1

(D1)| � 0.65, |CE3
(D1)| � 0.4, |CE4

(D1)| � 0.5, and
|CE5

(D1)| � 0.55, which all support viral fever: D1 disease.

Input: A FOD Ψ � ψ1, . . . ,ψj, . . . ,ψn􏽮 􏽯;
A set of CvDs:C � C1, . . . ,Ck, . . . ,Ct􏼈 􏼉

(1) for 1≤ k≤ t do
(2) Calculate the CvD entropy EX(Ck) by equation (22)
(3) Measure the CvD information volume IV(Ck) by equation (23)
(4) end
(5) Calculate the normalized information volume IV(Ck) by equation (24)
(6) Generate the weighted average CvD 􏽥C by equation (25)
(7) Obtain the fused 􏽢􏽥Ct− 1 via the complex Dempster’s combination rule by equation (26)
(8) Choose the maximum absolute value 􏽢􏽥Ct− 1(ψδ) by equation (27)
(9) if 􏽢􏽥Ct− 1(ψδ)≥ λ then
(10) δ � argmax1≤j≤n

􏽢􏽥Ct− 1(ψj)􏼚 􏼛

(11) Target ←ψδ.
(12) else
(13) Cannot be determined.
(14) end

ALGORITHM 1: Complex entropy-based multisource information fusion algorithm for decision-making.

Table 1: *e evaluated data for patient modeled as CvDs.

Experts CvDs
Diseases

Viral fever: D1 Malaria: D2 Typhoid: D3 Stomach problem: D4

E1 CE1
0.65e0.2i 0.10e0.3i 0.10e0.3i 0.15e0.2i

E2 CE2
0.10e0.3i 0.60e0.2i 0.10e0.3i 0.20e0.2i

E3 CE3
0.40e0.3i 0.10e0.3i 0.30e0.4i 0.20e0.4i

E4 CE4
0.50e0.2i 0.20e0.2i 0.10e0.3i 0.20e0.3i

E5 CE5
0.55e0.2i 0.10e0.3i 0.15e0.2i 0.20e0.3i
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However, |CE2
(D3)| � 0.6 supports malaria: D2 disease.

Hence, CE2
conflicts with CE1

, CE3
, CE4

, and CE5
. By only

using Table 1, it is difficult to make an accurate decision
because a conflict exists among the experts. It is necessary to
fuse the data collected from different experts to better
support decision-making. *ere are five evaluations from
five experts. To illuminate the effectiveness of the proposed
decision-making algorithm, we gradually fuse the weighted
average CvD, and the results are given in Table 3.

When the weighted average CvD is fused by 1 time, we
obtain the result that 􏽢􏽥C1(D1) has the largest value of 0.6435.
Because 0.6435 is smaller than the threshold λ � 0.80, the
patient’s disease cannot be determined. When the weighted
average CvD is fused by 2 times, it is calculated that 􏽢􏽥C2(D1)

has the largest value of 0.8034. Because 0.8034 is larger than
the threshold λ � 0.80, the patient is diagnosed with viral
fever: D1. When the weighted average CvD is fused by 3 and
4 times, it is easy to see that 􏽢􏽥C3(D1) and 􏽢􏽥C4(D1) have
increasingly large values of 0.9011 and 0.9525 to better
support decision-making. Finally, the patient is diagnosed as
most likely to suffer viral fever: D1. Consequently, the value
in terms of disease D1 is increased for decision-making from
0.6435 to 0.8034 to 0.9011 and then to 0.9525 as shown in
Figure 6. As a result, the proposed decision-making algo-
rithm is effective to address medical diagnosis problem.

7. Conclusions

In this paper, a complex entropy, called Xiao entropy, is
proposed to measure the uncertainty of complex-valued
distributions (CvDs). *e complex entropy is a general-
ized model of Gini entropy. Specifically, when the CvD
turns into a probability distribution, the proposed entropy
degrades into Gini entropy. Furthermore, we study the
properties of complex entropy, including nonnegativity,
maximum and minimum entropies, and boundedness.
Several numerical examples compare the proposed
complex entropy with related works. *e results illumi-
nate the superiority of the proposed complex entropy.
Based on the complex entropy, a multisource information
fusion algorithm for decision-making is devised. Finally,
we apply the decision-making algorithm in a medical
diagnosis problem to validate its practicability.

*e main contributions are that this study provides a
new perspective of complex-valued representation for un-
certain information; the newly defined complex entropy has
a powerful capability tomeasure uncertainty. Additionally, it
offers a promising application in decision theory. In the
future work, we intend to apply this complex entropy to
handle more complex decision-making problems, such as
the analyzing and processing of image and physiological
signals.

Table 2: *e results in terms of entropy, information volume, and normalized information volume.

Results
CvDs

CE1
CE2

CE3
CE4

CE5

EX(CEk
) 0.5350 0.5800 0.7000 0.6600 0.6250

IV(CEk
) 1.7074 1.7860 2.0138 1.9348 1.8682

IV(CEk
) 0.1834 0.1918 0.2163 0.2078 0.2007

Table 3: *e weighted average CvD and fused results obtained by the complex Dempster’s combination rule.

Results
Diseases

Diagnosis results
Viral fever: D1 Malaria: D2 Typhoid: D3 Stomach problem: D4

􏽥C 0.4392 0.2167 0.1533 0.1908 Cannot be determined
􏽢􏽥C1 0.6435 0.1567 0.0784 0.1215 Cannot be determined
􏽢􏽥C2 0.8034 0.0965 0.0342 0.0659 Viral fever
􏽢􏽥C3 0.9011 0.0534 0.0134 0.0321 Viral fever
􏽢􏽥C4 0.9525 0.0279 0.0049 0.0148 Viral fever

C1
~

C (D1)
~

C (D2)
~

C (D3)
~

C2
~

C3
~

C4
~

Fusing the weighted average CvD by t – 1 time

0

0.2

0.4

0.8

1

0.6~
Th

e v
al

ue
s o

f C
t–

1 (
ψ j

)

Figure 6: *e fusion results of the weighted average CvD.
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