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Abstract: In the last few decades, a number of wearable systems for respiration monitoring that
help to significantly reduce patients’ discomfort and improve the reliability of measurements have
been presented. A recent research trend in biosignal acquisition is focusing on the development
of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous
recording of different physiological data. This study presents a performance analysis of respiration
monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration
(EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is
a novel technique that records the cardiac-induced vibrations of the chest wall via specific force
sensors, which provide seismocardiogram-like information, along with a novel component that
seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained
from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and
lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component
(R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals
showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR
(sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy
and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99,
0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland–Altman limits of agreement: ±0.61 s vs. ±1.5 s).
This study represents a first proof of concept for the simultaneous recording of respiration signals
and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend
the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory
interactions, also paving the way for the continuous, long-term monitoring of patients with heart
and pulmonary diseases.

Keywords: respiration; forcecardiography; continuous monitoring; force sensor; force-sensitive resistors

1. Introduction

Monitoring respiration is an important task that plays a key role in several different
situations [1,2]. Examples are intensive care units, where vital signs of patients with severe
health conditions must be continuously monitored [2]; follow-up of chronic obstructive
pulmonary diseases (COPD), where long-term monitoring of patients’ respiration can pro-
vide useful information about their pathological condition [3,4]; diagnosis and monitoring
of sleep apnea, where nocturnal monitoring of respiration is critical for both detecting
and avoiding long breath-holding times [5]; and accident and emergency units, where
rapid and unobtrusive monitoring of vital signs is required to assess the actual health
conditions of the patient [1]. Moreover, respiration monitoring is also fundamental in
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case of post-anesthesia respiratory depression, which represents one of the main mortality
factors after surgery [5]; in sudden infant and adult death syndromes, where early detection
of breathing absence is crucial for reducing the number of deaths [6]; and, most recently,
in COVID-19 patient management, where respiration monitoring allows evaluating the
pulmonary function [7].

Many techniques have been proposed in the literature for noninvasive respiration mon-
itoring and are based on different physical principles, sensors and instrumentation [1,2].
They can be essentially divided into two main classes: contact-based and contactless meth-
ods. Moreover, these methods can be further classified according to the particular physical
quantity that is actually measured. Indeed, contact-based techniques include methods
that rely on respiratory airflow, respiratory sounds, air temperature, air humidity, air
components, chest wall movement analysis, thoracic impedance and modulation of other
physiological signals [5,8]. In detail, respiratory airflow-based sensors (e.g., flowmeters,
fiber-optic sensors) are able to extract the temporal trend of the air exhaled and inhaled by
the subject during the breathing, measuring different physical quantities that exhibit linear
or nonlinear relationship with the airflow [9–15]. Microphones, instead, which represent
the most common acoustic sensors, allow the measurement of pressure changes caused by
the air turbulences during the breathing acts [16–20]. Air temperature sensors (e.g., ther-
mistors, thermocouples) exploit different physical phenomena to measure the temperature
variations of the breathed air [21–26], whereas air humidity sensors (e.g., capacitive sensors,
resistive sensors, nanocrystal and nanoparticle sensors) provide a measurement of the
humidity difference in the inhaled and exhaled air, since the latter is richer in water vapor
than the former [27–34]. Besides, air component sensors (e.g., end-tidal O2/CO2 measure-
ment) measure essentially the variations of oxygen and carbon dioxide concentrations in
the air, which allow distinguishing the inhalation and exhalation phases [35–38]. Sensors
based on chest wall movements, instead, are substantially sensitive to the deformations of
the thorax (e.g., resistive sensors, capacitive sensors) [39–47] and to the movements of the
chest and abdomen (e.g., accelerometers, gyroscopes) [48–52]. Electric impedance plethys-
mography measures the changes in transthoracic impedance caused by the variations of
air volume in the lungs involved in the respiratory activity [53–56]. Finally, referring to the
methods based on modulation of other physiological signals, the well-known ECG-derived
respiration (EDR) [57,58] measures ECG morphology changes due to sinus arrhythmia,
relative movement of heart and electrodes and changes in lung volume, whereas the
photoplethysmography (PPG)-derived respiration exploits the modulation in amplitude,
baseline and frequency of the PPG signal caused by changes in blood stroke volume, heart
rate and tissue blood volume and the variation of its pulse wave width under changes
in artery stiffness during the respiratory activity [59,60]. On the other hand, contactless
techniques comprise methods based on environmental respiratory sounds (e.g., micro-
phones), air temperature (e.g., thermal cameras), chest wall movements (e.g., radar sensors,
marker-based stereophotogrammetric systems, stereoscopic camera sensors) or modulation
of other physiological signals (e.g., light intensity measurement, RGB cameras) [8,61–74].
The great part of the instrumentation required by such methods is generally cumbersome
and far from being wearable, or even portable, so its use has remained confined to research
or clinical settings [1,2].

In the last few decades, wearable systems for respiration monitoring have attracted
major attention, as their applications not only range from long-term monitoring of both
bedridden and ambulatory patients to the tracking of athletes’ performances during sport
activities [4,75–78] but also include the monitoring of people working under heavy psy-
chophysiological stress conditions, such as pilots, soldiers and surgeons [5]. Indeed, wear-
able systems provide a simple and unobtrusive solution that helps to significantly reduce
patients’ discomfort and to improve reliability of measurements, thus supporting long-term
monitoring, as opposed to, e.g., methods based on dry electrodes, which suffer from differ-
ent drawbacks [79,80]. Bifulco et al. showed the possibility of simultaneously monitoring
respiration, seismocardiogram and heart sounds by using a single wideband polyvinyli-
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dene fluoride (PVDF) piezo film sensor placed on the sternum of the patient, which can also
be easily embedded into continuous monitoring devices [81]. Elfaramawy et al. proposed a
real-time low-power wireless monitoring system built using a wearable patch sensor, where
the two embedded inertial measurement units allow measuring the movements of both the
thorax and the abdominal cavity, to obtain the breathing rate [82]. Al-Halhouli et al. fabri-
cated a wearable and stretchable sensor for continuous respiration monitoring, which is
composed of a stretchable circuit, made of silver nanoparticles deposited via inkjet printing
technology on a polydimethylsiloxane substrate that is attached to a fabric belt. The sensor
extracts the respiration rate by detecting the change in the inductance of the conductive
pattern caused by the volume variations that occur during breathing [83]. Jayarathna et al.
developed a wearable continuous monitoring device, named VitalCore. It is composed of
stretchable electroresistive bands (ERBs) based on carbon-black-impregnated polymer in a
U-shaped configuration to capture breathing pattern from torso expansion and contraction,
ECG electrodes to monitor cardiac activity and accelerometers to detect the body position,
all attached to a T-shirt that can be worn during sleep without loss of signal quality [84].
Furthermore, Gargiulo et al. proposed a single electroresistive band, made of conductive
silicone tubes, as a wearable contactless sensor to measure cardiac stroke volume, tidal
volume and respiratory effort simultaneously during sleep, thus supporting the long-term
monitoring of pneumocardiogram (PNCG) [77,78].

A particular class of wearable respiration sensors, which is based on smart textiles,
has been the focus of the most recent research in this field. Massaroni et al. developed a
smart textile equipped with six piezoresistive sensing elements and showed that, when
placed on the pulmonary rib cage, the abdominal rib cage and the abdomen, the mea-
surement system allows recording the respiration-induced movements of the chest wall
in a wide frequency range [85]. Issatayeva et al., instead, proposed a fiber-optic-based
smart textile for real-time monitoring of breathing rate. The proposed system is composed
of two arrays of five fiber Bragg grating sensors embedded into elastic belts, located on
10 different recording sites on the subject’s chest and abdomen, and aims to reconstruct the
breathing pattern by converting respiratory movements to strain values [86]. Moreover,
Choudhry et al. presented textile-based piezoresistive sensors, which were developed by
stitching multifilament conductive threads on the fabric. These sensors were embedded
into garments, measuring variations in their resistance due to pressure changes caused
by movements of respiratory muscles [87]. Furthermore, Guay et al. made a respiration
sensor using multimaterial fibers arranged in a spiral antenna and integrated into textile.
The lung volume fluctuations and the textile stretching under the chest movements result
in the shift of the operational frequency of the antenna, thus allowing the monitoring of
respiration activity. They also showed that the antenna can be used for respiration data
transmission to mobile devices via Bluetooth [88].

Finally, in a technical systematic review, Vanegas et al. categorized respiration moni-
toring systems according to different criteria, including sensor type, respiration parameter
and sensor location. They were substantially divided into two categories: wearable and
environmental sensors. For both, chest wall movement detection is the most widespread
sensing technique, adopted in 60% of the considered studies, while the respiration rate is
the most acquired breathing parameter. Furthermore, in the wearable category, fiber-optic
sensors are the most used, followed by resistive sensors, accelerometers and capacitive
sensors. In the environmental category, instead, the predominant technique is represented
by radar sensors. In addition, wearable sensors are usually placed on the chest or the
abdomen of the subject, unlike environmental sensors which are placed at a fixed distance
from the subject [89].

Very recently, some of the authors presented the novel forcecardiography (FCG)
technique for the measurement of the chest wall vibrations induced by the mechanical
activity of the beating heart [90]. This technique proved capable of acquiring, in addition
to a seismocardiogram-like signal, a novel low-frequency component that seems to carry
information on ventricular filling and emptying dynamics. FCG is performed by plac-
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ing custom-designed force sensors on a subject’s chest wall. FCG sensors are based on
force-sensitive resistors (FSRs) that have already proved suitable for muscle contraction
monitoring [91] and have enabled the recognition of different hand gestures [92]. Thanks
to the wide bandwidth of the FSRs [91], the FCG sensors reasonably appear to be suit-
able for the measurement of tissue motion originating from many kinds of physiological
mechanical events; for this reason, their potential application in respiration monitoring
is worth investigating. Indeed, if properly coupled with a subject’s chest, an FCG sensor
can measure the force exerted by the ribcage expansions and consequent releases that
occur during the breathing acts, thus offering the possibility to simultaneously record a
respiration-related signal in addition to the forcecardiogram.

This study aims to demonstrate the suitability of the FCG sensor [90] for accurate,
continuous and unobtrusive monitoring of respiration. Experimental tests were performed
on seven healthy volunteers, who were asked to perform several respiration cycles while
resting on a chair. Simultaneous recordings were acquired from an FCG sensor, an ERB
and an ECG monitor. The respiration signal provided by the FCG sensor and the EDR
signal extracted from ECG were compared to the ERB signal, which was considered
as the benchmark. To this end, statistical analyses were performed on the interbreath
intervals estimated from the three acquired signals. The results of this proof of concept
show that the FCG respiration signal provides very accurate estimates of the interbreath
intervals and clearly outperforms the EDR signal. Due to its ability to acquire information
on both respiratory and cardiac activity, the FCG sensor could be effectively used for
cardiorespiratory monitoring, but further tests on larger cohorts of subjects are needed to
confirm such performances.

2. Materials and Methods
2.1. Forcecardiography Sensor

The FCG sensor used in this study is depicted in Figure 1. It consists of a force-sensing
resistor (FSR03CE, Ohmite Mfg Co, Warrenville, IL, USA) equipped with a dome-shaped
mechanical coupler, which ensures a good transduction of the force to the active area of
the sensor. The FSR responds to a force applied on its active area by changing its electrical
resistance, which must be conveniently transduced into a voltage signal by means of a
conditioning circuit [93,94].
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In particular, considering that the FSR shows a linear response to the applied force in
terms of electrical conductance, a conditioning circuit based on a transimpedance amplifier
was used [90,91]. This circuit ensures linearity and minimizes sensor drift by keeping the
voltage across the FSR at a constant value [91,93,94]. The FCG sensor was calibrated before
measurements in order to obtain the transduction coefficient from voltage to force [90,91].

2.2. Electroresistive Band for Respiration Monitoring

The assessment of FCG sensor performances in respiration monitoring required the
comparison with a reference method. The respiration monitoring method presented in [84],
which is based on the use of an ERB applied on the chest of the subject, was adopted as a
benchmark. An ERB consists of a stretchable stripe or cord, made of conductive rubber,
that increases its electrical resistance when stretched. Hence, it can be used to monitor
the increases and decreases in chest circumference that occur during the inhalation and
exhalation phases of the respiratory acts. The ERB used in the experimental tests is based on
carbon-black-impregnated polymer in a U-shaped configuration and is shown in Figure 2.
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Figure 2. The electroresistive band used in the experimental test.

2.3. Sensor Placement and Measurement Setup

The FCG sensor was placed on the chest of the subject via medical adhesive tape, by
first locating the point of maximal impulse (PMI), and then fastened with a belt around the
thorax. The ERB for respiration monitoring was mounted on the upper chest of the subject
so as not to interfere with the FCG sensor. An ECG lead II was also acquired by means of a
WelchAllyn Propaq Encore monitor (Welch Allyn Inc., New York, NY, USA). Figure 3 shows
the placement of the FCG sensor and the ERB on subject #7. The signals provided by the
ERB, the FCG sensor and the ECG monitor were simultaneously acquired via a National
Instrument NI-USB6009 DAQ board, with 13-bit precision and 5 kHz sampling frequency.

The experimental tests were carried out on 7 healthy volunteers (5 males and 2 females,
age 33.7 ± 11.5), who signed the informed consent. The subjects comfortably sat on a chair,
leaning against the seatback while keeping their back straight. Different acquisitions were
performed, where each subject was first asked to breathe in a natural way, then to slightly
increase the breathing rate and finally to slow down the respiratory rhythm, so as to obtain
measurements of a wide range of breathing rates.
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Figure 3. Example of ERB and FCG sensor placement on the chest of subject #7: (a) FCG sensor
mounted on patient’s chest by means of medical adhesive tape; (b) FCG sensor secured on the chest
via a belt fastened around the thorax, with the ERB mounted on the upper chest, so as not to interfere
with the FCG sensor.

2.4. Data Processing and Analysis

The raw signals acquired from the FCG sensor, the ERB and the ECG were first pre-
processed to extract the respiration signals, and the peaks related to the inspiratory acts were
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then located, in order to estimate the interbreath intervals. All processing operations were
performed in MATLAB R2017b (The MathWorks, Inc., 1 Apple Hill Drive, Natick, MA, USA).

In particular, both the FCG and ERB signals were low-pass filtered at 0.6 Hz, to main-
tain the low-frequency components that provide information on the respiratory activity
and filter out the spectral components at higher frequencies, which are mainly related to
the cardiac activity and to the electronic noise. The rationale for the choice of the cut-off
frequency is that the average number of breaths per minute in adult healthy subjects ranges
between 12 and 18 [95], corresponding to the 0.2–0.3 Hz frequency range, and thus the
cut-off frequency was set by considering a doubled rate (i.e., 0.6 Hz) as a reasonable upper
limit, able to filter out the cardiac components. The respiration signal extracted from the
raw FCG signal was referred to as R-FCG to avoid confusion with the whole FCG, which
also contains information on the cardiac activity.

The EDR signal was extracted from the raw ECG signal by means of the “BioSigKit”
MATLAB toolbox [96] and was reversed in amplitude to obtain positive peaks correspond-
ing to inspiratory acts, as for the R-FCG and ERB respiration signals. Then, in each of the
three respiration signals thus obtained, the positive peaks were located via the MATLAB
function “findpeaks”, and the interbreath intervals were computed. The inspiratory peaks
detected in the R-FCG and EDR signals were compared with those detected in the ERB
signals to annotate the number of missed and spurious peaks. The interbreath intervals
related to the missed and spurious peaks were discarded for the subsequent statistical
analyses. The accuracy and reliability of the FCG sensor in respiration monitoring were
assessed by comparing the interbreath interval measures obtained from the R-FCG signals
with those obtained via the ERB. To this end, correlation and Bland–Altman analyses were
carried out via the MATLAB function “bland-altman-and-correlation-plot” [97]. The same
analyses were repeated for the interbreath intervals obtained from the EDR. Finally, the
FCG sensor and EDR performances obtained from these analyses were compared.

3. Results

Figure 4a shows an excerpt of the raw FCG, ERB and ECG signals acquired. In the
raw FCG signal, the typical FCG components related to the cardiac activity [90] appear as
superimposed to a much larger and slower component, which is related to the respiration.
Indeed, Figure 4b depicts the respiratory and the cardiac components extracted from the
same FCG signal depicted in Figure 4a.

Examples of ERB, R-FCG and EDR signals are shown in Figure 5. In particular, an
excerpt from signals acquired on subject #3 during quiet breathing is depicted in panel
(a), while excerpts from signals corresponding to forced breathing at higher and lower
respiratory rates are shown in panels (b) and (c), respectively. In all three panels, it can be
observed that the R-FCG signals featured very similar peaks as compared to the reference
ERB signals. The EDR signals, instead, exhibited a much higher variability, which is
particularly noticeable in the signals related to the forced slower breathing. Indeed, the
EDR clearly presented peaks that turned out to be inconsistently lagged with respect to
ERB ones, as well as a number of double peaks corresponding to single ERB peaks, which
resulted in a conspicuous number of spurious peak detections.

Table 1 outlines the number of respiratory acts detected per subject in the ERB, R-FCG
and EDR signals, along with the number of missed and spurious acts in the R-FCG and
EDR signals. A total of 743 respiratory acts were detected in the ERB signal and provided
the ground truth to recognize the potential missed or spurious respiratory acts in the R-FCG
and EDR signals. No missed respiratory acts were found in the R-FCG signal; i.e., all actual
inspiratory peaks were correctly detected, and only eight spurious peaks were misclassified
as actual respiratory acts. Hence, the R-FCG scored a sensitivity of 100% and a positive
predictive value (PPV) of 98.9%. As opposed to the R-FCG signal, a total of 31 missed
respiratory acts were found in the EDR signal, along with 58 spurious respiratory acts,
resulting in an overall sensitivity and PPV of 95.8% and 92.5%, respectively.



Sensors 2021, 21, 3996 8 of 17

Sensors 2021, 21, x FOR PEER REVIEW 9 of 18 
 

 

respiratory acts, resulting in an overall sensitivity and PPV of 95.8% and 92.5%, respec-

tively. 

 
(a) 

  
(b) 

Figure 4. (a) An excerpt of raw FCG, ERB and ECG signals acquired from subject #7; (b) respiratory 

(R-FCG) and cardiac (C-FCG) components extracted from FCG signal depicted in panel (a). 
Figure 4. (a) An excerpt of raw FCG, ERB and ECG signals acquired from subject #7; (b) respiratory
(R-FCG) and cardiac (C-FCG) components extracted from FCG signal depicted in panel (a).



Sensors 2021, 21, 3996 9 of 17
Sensors 2021, 21, x FOR PEER REVIEW 10 of 18 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Examples of ERB, R-FCG and EDR signals extracted from data acquired on subject #3: (a) 

quiet breathing; (b) forced breathing at higher rate; (c) forced breathing at lower rate. 
Figure 5. Examples of ERB, R-FCG and EDR signals extracted from data acquired on subject #3:
(a) quiet breathing; (b) forced breathing at higher rate; (c) forced breathing at lower rate.



Sensors 2021, 21, 3996 10 of 17

Table 1. Respiration acts detected in the ERB, R-FCG and EDR signals. The missed and spurious acts
are reported for the R-FCG and EDR signals with reference to the acts detected in the ERB signal.

Subject
Respiration ACTS Missed ACTS Spurious ACTS

ERB R-FCG EDR R-FCG EDR R-FCG EDR

#1 90 93 95 0 0 3 5

#2 110 111 107 0 7 1 4

#3 177 180 178 0 6 3 7

#4 74 74 75 0 3 0 4

#5 86 87 95 0 3 1 12

#6 76 76 88 0 12 0 24

#7 130 130 132 0 0 0 2

Total 743 751 770 0 31 8 58

The interbreath intervals related to the respiratory acts detected in the ERB, R-FCG
and EDR signals were further compared by means of statistical analyses. In particular, the
interbreath intervals from R-FCG and EDR were compared with those provided by the ERB
via correlation and Bland–Altman analyses. To this end, the intervals related to the missed
and spurious respiratory acts were discarded from both the particular signal under test and
the reference ERB signal, so as to carry out the analyses only on reliable measurements. The
statistical analyses were performed on 743 and 689 interbreath intervals for the R-FCG and
EDR signals, respectively, and the results are depicted in Figures 6 and 7. The correlation
analysis reported for the R-FCG a slope and intercept of 0.99 and 0.026 s, with an R2 value
of 0.98, and for the EDR a slope and intercept of 0.98 and 0.11 s, with an R2 value of 0.88.
The Bland–Altman analysis reported a null bias (p = 0.87) with limits of agreement of
±0.61 s for the R-FCG and a bias of 0.040 s (not statistically significant as p = 0.11) with
limits of agreement of +1.5 and −1.4 s for the EDR.
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4. Discussion

This study focused on the assessment of the suitability of FCG sensors for accurate,
continuous and unobtrusive monitoring of respiration. To this end, simultaneous measure-
ments from an FCG sensor, an ERB and an ECG monitor were acquired on seven healthy
subjects at rest. The raw FCG signals showed up as the superimposition of a large, very
low frequency component related to the respiratory activity and a smaller component
corresponding to the FCG signal [90], which carries information about the cardiac activity.
The FCG signal component related to the respiratory activity, referred to as R-FCG, was
extracted from the raw FCG signal by means of simple low-pass filtering, which was also
applied to the other respiration signals, i.e., EDR and ERB.

The FCG sensor performances for respiration monitoring were assessed by comparing
the R-FCG signal with the EDR signal and the ERB signal, which was assumed as the
reference. First, the inspiratory peaks were extracted from the three respiration signals,
and then both missed and spurious peaks were identified in the R-FCG and EDR signals
with respect to the ground truth provided by the ERB signal; finally, the sensitivity and
the PPV were computed. In particular, R-FCG exhibited no missed peaks out of 743 actual
inspiratory peaks (all subjects) and only 8 spurious peaks, with sensitivity of 100% and PPV
of 98.9%, while the EDR exhibited 31 missed peaks and 58 spurious ones, with sensitivity
and PPV of 95.8% and 92.5%, respectively. Hence, FCG turned out to be substantially more
sensitive and precise than EDR in the detection of inspiratory peaks.

Furthermore, correlation and Bland–Altman analyses were carried out to compare
the performances of FCG and EDR for the measurement of interbreath intervals, with
respect to the reference measures provided by the ERB. For each signal, only the correctly
detected peaks were used for the computation of interbreath intervals and the subsequent
statistical analyses. R-FCG and ERB measures exhibited slope and intercept of 0.99 and
0.026, respectively, with an R2 value of 0.98, while slope and intercept for EDR and ERB
measures were 0.98 and 0.11, respectively, with a substantially lower R2 value of 0.88.
In addition, both methods exhibited a null bias with respect to the ERB; however, the limits
of agreement were more than doubled in the EDR with respect to the FCG (about ±1.5 s
compared to ±0.61 s), which demonstrated superior accuracy.

These results of this proof of concept show that monitoring respiration via FCG sen-
sors is feasible and provides accurate detection and measurements of respiratory cycles
in subjects at rest. Although no particular problems arose with the two female subjects
involved in this study, some issues may possibly arise due to the particular morphology
of the breasts. In principle, large breast tissue could cause attenuation of the precordial
vibrations, as well as motion artifacts. This hypothetical drawback deserves deeper in-
vestigation in larger female cohorts. The possibility of monitoring the respiration and
FCG signals simultaneously by means of a single, local, small, unobtrusive, cheap sensor
extends the scope of FCG to monitoring multiple vital signs, as well as to the analysis
of cardiorespiratory interactions, also paving the way for applications that support the
pervasive, continuous, long-term monitoring of cardiorespiratory functions in patients
with heart and pulmonary diseases. Moreover, future studies should focus on assessing
the viability of FCG-based monitoring in physical activities, such as walking or running,
performing heavy work or engaging in sport activities. This would require extensive
testing to verify the robustness of FCG regarding motion artifacts, as already observed in
accelerometer-based SCG studies [98–101].
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