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Abstract

During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these
error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA
translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork
breakdown and subsequent chromosomal instability.
We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we
review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS
polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity
of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage,
relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the
relevance of TLS polymerases in the context of cancer therapy.

DNA damage response (DDR)
Genomic information is stored as deoxyribonucleic acid
(DNA) in every living organism and needs to be pro-
tected and maintained to guarantee genomic integrity.
Each of the 1013 cells of the human body contains
30’000-40’000 genes encoded by 3 × 109 base pairs of
the DNA [1-3]. The integrity of the DNA is constantly
threatened either by spontaneous decay or by damage
induced by endogenous and environmental sources. In
every single cell, tens of thousands of DNA lesions per
day are formed due to spontaneous hydrolysis and the
attack of reactive oxygen species (ROS) and other intra-
cellular metabolites [4]. In the context of cancer
research, prominent examples for environmental factors
which induce DNA damage are ultraviolet (UV)-light
inducing [6-4]pyrimidine-pyrimidone photoproducts ([6-
4]PP) and cyclobutane pyrimidine dimers (CPDs), and
cigarette smoke, which contains a variety of carcinogens,
e.g. benzo(a)pyrene (BaP) [5]. Cancer treatment regi-
mens are frequently based on DNA damage inducing
agents. For instance, multimodality therapies of solid
tumors are often based on cisplatin, a platinum analo-
gue, which induces intra- and interstrand DNA cross-
links [6].

In addition, accurate DNA duplication is an essential
step carried out by a complex DNA replication machin-
ery but errors during this process can also compromise
genomic integrity. For example, damaged DNA, which
cannot be replicated by the high fidelity replicative DNA
polymerases, can lead to stalled replication forks and
subsequent replication fork breakdown results in chro-
mosomal instability [7].
To counteract the constant loss or the modification of

DNA bases, cells evolved a complex and interplaying
system, the so-called DNA damage response (DDR)
[8,9]. During DDR, DNA lesions are detected, leading to
the activation of a signal cascade resulting either in the
repair or the tolerance of the DNA damage, thereby reg-
ulating the cellular outcome after genomic insult [4]
(Figure 1).
The cellular DNA repair machinery includes non-

homologous end joining (NHEJ) and homologous
recombination (HR) to repair double strand breaks
(DSBs), base excision repair (BER) to counteract modifi-
cation of the nitrogenous bases, nucleotide excision
repair (NER) to excise bulky nucleotide alterations such
as UV-induced [6-4]PPs, mismatch repair (MMR) to
exchange mispaired nucleotides and direct damage
repair for reversal of alkylated nucleotides (Figure 1)
[10]. Although DNA repair processes are not as accurate
as high-fidelity DNA replication, DNA repair is
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considered to be error-free. In eukaryotes, DNA damage
tolerance involves a error-free pathway dependent on
homologous recombination and a more mutagenic path-
way based on TLS polymerases [11]. In this review we
focus on the contribution of TLS polymerases to DNA
damage tolerance and their relevance in cancer research.

Mammalian TLS polymerases: state-of the art
History and Discovery
In 1956, the group of Arthur Kornberg discovered and
described an enzyme purified from Escherichia coli (E.
coli), which is able to create an appropriate copy of its
DNA substrate, i.e. DNA polymerase (Pol) I [12]. DNA
Pol I was shown to generate a copy of the single-
stranded DNA of the small bacterial virus FX174. The
generated DNA kept the infectious activity, thereby con-
firming that DNA Pol I is able to generate genetically
active DNA [13,14]. DNA Pol II was discovered in 1970
[15,16] and shortly afterwards DNA Pol III was discov-
ered as the third DNA-replicating enzyme [17]. Miroslav
Radman and coworkers published in 1974 the “SOS
repair” model, proposing that the UV-induced mutations
of both l phage and host E. coli are due to a “mutation-
prone” cellular replication mechanism [18]. Also in the
1970s, a screen in Saccharomyces cerevisiae (S. cerevi-
siae) for reversionless (rev) mutants unable to revert an
auxotropic marker after UV irradiation led to the dis-
covery of the first eukaryotic genes encoding error-
prone TLS polymerases, i.e. REV1 (encoding the TLS
Pol Rev1) and REV3 (encoding the catalytic subunit of
TLS Pol ζ) [19]. A strategy similar to the one which led
earlier to the discovery of the UmuDC genes (defects in
these genes render cells non-mutable) in E. coli [20]
resulted in the discovery of and REV7, the structural
subunit of TLS Pol ζ, in S. cerevisiae [21]. The co-

discovery of bacterial and eukaryotic TLS polymerases
revealed the conservation of a cellular process that had
until then been considered to be a bacterial-specific
function. Subsequently, it was shown that DNA Pol II is
part of the “SOS repair” [22,23]. Although the DinB [24]
and the UmuDC [20] genes of E. coli were discovered
much earlier, it was shown only in the 1990s that these
gene products constitute the error-prone DNA Pol IV
[25] and Pol V, respectively [26,27]. DNA Pol IV and
Pol V are inducible by DNA damage and can efficiently
bypass various forms of DNA lesions thereby generating
most of the SOS-repair dependent mutations [28].
Other mammalian TLS polymerases such as Pol h (eta;
hRAD30A/XPV), Pol ι (iota; hRAD30B), Pol � (kappa;
DINB1) and Pol θ (theta; POLQ) were identified by
searches for homologues of genes of previously identi-
fied TLS polymerases [25,29-32]. The TLS Pol μ (mu)
[33,34] and Pol l (lambda) were discovered and
described more recently [33,35]. The most recently
described TLS Pol ν (nu) was found due to homology
with mus308 [36].
The ability of eukaryotic TLS polymerases to bypass

DNA lesions, was firstly described for the yeast TLS Pol
ζ, mediating the bypass of UV-induced thymine-thymine
cyclobutane pyrimidine dimers (TT-CPDs) [37]. The
property of Rev1 to insert deoxycytidine monophosphate
(dCMPs) opposite abasic sites was first described in
yeast [38]. Subsequently, the role of human TLS Pol ζ
to bypass DNA lesions [39] and the function of human
Rev1 as dCMP transferase opposite abasic sites [40]
were proposed. The UV lesion bypass activity of human
TLS Pol h was discovered by the fact that xeroderma
pigmentosum variant (XPV) patients show increased
susceptibility to UV-induced skin cancer [41] and hyper-
mutability [42] due to a defect of TLS Pol h. The
human TLS Pol ι was shown to be able to incorporate
deoxynucleotides opposite the 3’ T of [6-4]PPs and aba-
sic sites [43] and opposite N2-adducted guanines [44].
Human TLS Pol � was identified and it was first shown
that TLS Pol � protect cells against the lethal and muta-
genic effects of BaP [45]. Human TLS Pol θ was identi-
fied more recently and it was shown that TLS Pol θ is
implicated in somatic hypermutation (SHM) [46-48].
Similarly, TLS Pol l and TLS Pol μ are both implicated
in V(d)J recombination during the immunoglobulin
(IgG) diversification process [49,50] whereas TLS Pol ν
is able to bypass thymine glycols (Tg) [51]. It can not be
excluded that additional TLS polymerases will be dis-
covered in mammalian genomes.

Fidelity of TLS
TLS is defined as the incorporation of a nucleotide
across DNA damage followed by extension of the poten-
tially mispaired primer-template, which can be error-

Figure 1 DNA damage induced by spontaneous decay or
endogenous and environmental sources can either be repaired
or tolerated (Adapted from [245]). See text for details.
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free or error-prone [52]. The basic necessity for the pre-
sence of TLS polymerases reflects a trade-off between
the maintenance of genomic integrity by avoiding repli-
cation fork breakdown and subsequent chromosomal
instability and the occurrence of mutations on the
nucleotide level by the TLS polymerases mediated DNA
damage bypass reaction.
Although the tertiary structure consisting of palm,

thumb and fingers is conserved among the different
polymerase families, the thumb and fingers of the TLS
polymerases are smaller. Compared to the DNA replica-
tion polymerases where the fingers tightly bind the
incoming dNTPs and make a conformational change
upon correct Watson-Crick base pairing, the active site
of TLS polymerases is more open and less constrained
to reject wrong paired base pairs. Therefore, TLS poly-
merases are able to mediate the bypass reaction of non-
coding DNA lesions. The additional little finger of the Y
family TLS polymerases supports the stabilization of the
template DNA and influences fidelity and activity [53].
The error rate of DNA replication polymerases of the

families A, B and C including correct incorporation of
the nucleotide and the proofreading activity is between
10-6 and 10-8. Auxiliary proteins such as proliferating
cell nuclear antigen (PCNA) and replication protein A
(RP-A) [54] and postreplicative MMR decrease the error
rate to 10-8 and 10-10 . The error rate of the TLS poly-
merases ranges from 10-1 to 10-3 for replication of unda-
maged DNA [55,56]. Due to the characteristic low
fidelity DNA synthesis and the lack of an exonuclease
proofreading activity, it was initially assumed that TLS
is generally a mutagenic process. Recently it became
clear that the use of specialized TLS polymerases at spe-
cific lesions can be error-free. The best example is the
ability of TLS Pol h to bypass TT-CPDs, the main DNA
lesion induced by both UVB and UVA radiations, in a
non-mutagenic manner [57,58].
In this context, it is important to address whether the

accurate bypass of a particular lesion by a TLS Pol in
vitro can be used as an indicator whether this polymer-
ase also processes the corresponding lesion in vivo. In
addition to the TT-CPDs in vitro bypass activity of TLS
Pol h, it was also shown that inactivation and deletion
of Pol h decreases UV survival of human [59,60] and
yeast cells [29,61]. Similarly, TLS Pol θ is able to bypass
oxidative DNA lesions, i.e. apurinic/apyrimidinic (AP)
sites in vitro [62] and knockout of TLS Pol θ in the
chicken DT40 B-cell line resulted in hypersensitivity to
hydrogen peroxide (H2O2) [63]. Thus, in general, the in
vivo sensitivity to a DNA damage inducing agent of cells
deficient for a specific polymerase can be predicted by
the in vitro ability of the Pol to bypass the induced
DNA lesion. However, it became clear that the bypass
reaction of most DNA adducts requires the concerted

action of protein complexes containing several TLS
polymerases. Inactivation or deletion of a TLS polymer-
ase can disrupt protein-protein interactions essential for
lesion bypass therefore indirectly affecting the in vivo
sensitivity to the DNA lesion inducing agent. Thus,
based on the in vivo sensitivity of an inactivation or
deletion mutant, it can not be concluded that the
induced DNA damage is processed by the modified TLS
Pol activity. For example, although TLS Pol ζ is sensitive
to UV-irradiation, other TLS polymerases perform the
bypass reaction whereas Pol ζ mainly performs the sub-
sequent extension step [64] (see also Table 1).

TLS polymerase families
The Y-family TLS polymerases h, ι, � and REV1 [65]
and the B-family TLS Pol ζ [66,67] perform most of the
TLS in mammalian cells and are well characterized. Less
is known about the member of the A-family TLS poly-
merases, which were more recently identified. An invol-
vement in DNA damage tolerance was also shown for
the TLS polymerase members of the X-family although
their involvement in DNA repair processes might be
their main cellular function (Figure 2).

Family A: TLS polymerases theta (θ) and nu (ν)
The A family polymerases consist of DNA Pol g
(gamma), which is the mitochondrial DNA replicase and
the TLS Pol θ and TLS Pol ν.

TLS Pol θ
The POLQ gene encoding TLS Pol θ was mapped on chro-
mosome 3q. The C-terminal region of TLS Pol θ includes
the polymerase motifs A, B and C, which are typical for A
family polymerases whereas the N-terminal region con-
tains an ATP domain. The POLQ gene encodes a protein
of 2592 amino acids (aa). The protein sequence shares
homology to the Mus308 protein of Drosphila melanoga-
ster [30,68]. Further research estimated a protein of 290
kDa, with an N-terminal ATPase helicase domain
although no helicase activity could be detected so far [68].
Additionally, TLS Pol θ has been shown to have 5’ dRP
lyase activity that is involved in short patch BER in vitro
[69]. It was shown that TLS Pol θ is able to bypass AP
sites and also thymine glycols, e.g. a DNA damage product
of ionizing radiation and other oxidative mutagens. TLS
Pol θ preferentially incorporates adenine (A) opposite an
AP site, which allows DNA replication to continue by
using the incorporated nucleotide as a primer (henceforth
referred to as extension step) [62]. Additionally, TLS Pol θ
can carry out the extension step from mismatches after
error prone dNTP incorporation by human TLS Pol ι [70]
or S. cerevisiae TLS Pol ζ opposite [6-4]PPs in vitro [43].
Due to the lacking 3’ to 5’ exonuclease proofreading activ-
ity [68], the fidelity of TLS Pol θ during dNTP
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Table 1 TLS opposite DNA lesions by mammalian one and two-polymerase mechanisms

DNA lesion Insertion Extension Outcome

Apurinic/apyrimidinic (AP) site TLS Pol b/�/θ/h/l/μ/δ+PCNA same Pol Mutagenic [184,185,189,62,186,191]
[187,188,190,191]

REV1 (Pol h; Pol δ/PCNA) Mutagenic [191]

TLS Pol ι (Pol h; Pol δ/PCNA) Mutagenic [191]

7, 8-dihydro-8-oxoguanine (8-oxo-G) TLS Pol ι/�/μ same Pol Accurate [197]/Mutagenic [196,190]

TLS Pol b/l/h ND Mutagenic/Accurate (+PCNA and RPA) [198,199]

Thymine glycol (Tg) TLS Pol � TLS Pol ζ Accurate [201]

TLS Pol ν same Pol Accurate (5S-Tg); Mutagenic (5R-Tg) [51]

TLS Pol b/l same Pol Mutagenic [200]

TLS Pol θ ND Mutagenic [62]

[6-4]photoproduct ([6-4]PP) ND TLS Pol ζ Accurate? [205]

TLS Pol ι TLS Pol θ Mutagenic [70,205]

TLS Pol h ND Mutagenic [51,205]

Cyclobutane pyrimidine dimer (CPD) TLS Pol h same Pol Accurate [51,208,209]

TLS Pol μ TLS Pol ζ Accurate [190]

TLS Pol ι TLS Pol ζ Mutagenic [160]

TLS Pol � TLS Pol ζ Mutagenic [160]

ND TLS Pol ζ Mutagenic [160]

Benzo[a]pyrene-guanine (BP-G) TLS Pol �/h/ND TLS Pol ζ Accurate/Mutagenic/Accurate? [64]

TLS Pol �/μ same Pol Mutagenic [190,211]

Intrastrand-crosslink TLS Pol h same Pol; Pol ζ/REV1 Accurate [186,213,64,105]

Pol b/ζ/μ same Pol Mutagenic [122,212,64,214,215]

TLS Pol � TLS Pol ζ Mutagenic [64]

Interstrand-crosslink (ICL) Recombination-independent ICL repair including NER, REV1
and TLS Pol ζ

Mutagenic [221]

Recombination-dependent ICL repair including NER, REV1,
TLS Pol ν and ζ

Mutagenic [76,104,222]

Abbreviations: One-polymerase mechanism (same Pol); not determined (ND). Note: TLS activity by a one-polymerase mechanism was in general determined by in
vitro experiments. Therefore, it can not be excluded that the extension step in vivo is performed by another TLS polymerase, i.e. a two-polymerase mechanism.

Figure 2 Overview of TLS polymerases (Adapted from [246]). See text for details.
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incorporation is lower than usual for A family polymerases
[62]. It is proposed that TLS Pol θ has a function in SHM
of IgG diversification due to misincorporation of nucleo-
tides opposite AP sites and the low fidelity during DNA
replication of undamaged DNA [46-48]. Conversely, it was
suggested that human TLS Pol θ from HeLa cells nuclear
extracts synthesizes DNA with a high fidelity and pos-
sesses 3’ to 5’ exonuclease proofreading activity [71].
TLS Pol θ mutant mice show an increase of sponta-

neous and radiation-induced micronuclei formation
[72,73] and TLS Pol θ knockout chicken DT40 B-cell
line shows hypersensitivity to hydrogen peroxide (H2O2)
[63]. Furthermore, CH12 mouse B lymphoma cells con-
taining a knockdown of TLS Pol θ showed elevated sen-
sitivity to UV irradiation, the crosslinking agent
mitomycin C and cisplatin, etoposide, ionizing irradia-
tion and the alkylating agent methyl methanesulphonate
(MMS) [74]. Thus, TLS Pol θ is involved in the toler-
ance of a broad range of DNA adducts, which indicates
that TLS Pol θ mainly functions as an extender poly-
merase similar to TLS Pol ζ.

TLS Pol ν
The full length POLN gene comprises 24 exons with a
length of 900 aa. The POLN gene is located on chromo-
some 4p16.2 and is deleted in approximately 50% of
breast carcinomas [75]. The POLN gene encodes a pro-
tein with a size of 160 kDa. The C-terminal polymerase
domain of TLS Pol ν consists of the typical A family poly-
merase motifs A, B and C and shares 29% identity with
the C-terminus of TLS Pol θ. Neither a 3’ to 5’ nor a 5’ to
3’ nuclease domain were identified [36]. In vitro experi-
ments showed the ability of TLS Pol ν to bypass thymine
glycols [51]. Interestingly, it has been shown that TLS Pol
ν is involved in cross link repair and homologous recom-
bination. In detail, depletion of TLS Pol ν sensitizes HeLa
cells to the DNA cross-linking agent mitomycin C but
not to UV irradiation [76]. Depletion of TLS Pol ν in
U2OS cells reduced the efficiency of homologous recom-
bination in a GFP-based reporter assay and increased the
sensitivity of HeLa cells to camptothecin-induced DSBs,
i.e. a substrate for homologous recombination [77]. Con-
tradictorily, deletion of POLN did not sensitize chicken
DT40 cells to campothecin. However, the same study
showed that TLS Pol ν in chicken DT40 cells has a domi-
nant role in homologous recombination-dependent
immunoglobulin gene conversion and in TLS-dependent
immunoglobulin hypermutation [78].

Family B: TLS Pol zeta (ζ)
The family B includes the highly accurate DNA poly-
merases δ (delta), ε (epsilon), a (alpha), and the error-
prone TLS Pol ζ [79,80].

TLS Pol ζ
Unlike the replicative DNA polymerases δ and ε, TLS
Pol ζ lacks the 3’ to 5’ exonuclease proofreading activity.
The human TLS Pol ζ and its yeast homologue are het-
erodimeric proteins consisting of the catalytic subunit
REV3 and the structural subunit REV7 [37,81]. The
human REV3 protein has two transcripts that have a
length of 3052 and 3130 aa and the larger protein has a
size of 353 kDa compared to 173 kDa of the yeast
REV3. The discrepancy in size between the yeast REV3
and the human REV3 is due to the exon 13 with a
length of 1388 aa. Human REV3 shows ~36% identity
with the N-terminal region, ~29% identity with the cen-
tral REV7 binding region and ~39% identity with the C-
terminal DNA polymerase region of the yeast homolo-
gue. The C-terminal region consists of six B-family con-
served DNA polymerase motifs and two zinc finger
motifs [66,67,82]. Human REV3 is located on chromo-
some 6q21 and its mouse equivalent on chromosome 10
[83,84]. Interestingly, the REV3 gene is located in the
chromosomal region 6q21 within the fragile site FRA6F,
which is known to be commonly deleted in several types
of human leukemias and solid tumors [85]. The human
REV3 contains an out-of-frame ATG in the 5’ region
that reduces the rate of correct transcripts. Moreover, a
sequence upstream of the AUG initiator codon has the
potential to form a stem-loop hairpin that lowers the
rate of translation. It is suggested that the characteristic
structural features in combination with the alternative
splicing are responsible for the observed low REV3
expression levels [66,83]. Indeed, the protein concentra-
tion of REV3 in Xenopus laevis egg extracts is much
lower than those of other replication and repair proteins
and does not change within the early embryonic devel-
opment [86].
In contrast to viable REV3 null yeast mutants, the dis-

ruption of REV3 in mice causes embryonic lethality
around midgestation [87-90]. It is known that during
the early stages of embryogenesis checkpoints are
actively silenced [91] to allow rapid cell division and it
was proposed that REV3 is essential during this strict
temporal program. The embryonic lethal effect could
not be rescued by the absence of p53 suggesting a p53-
independent pathway. However, mouse embryonic fibro-
blasts (MEFs) with a p53-deficient background could be
generated [92,93].
An in vitro study showed that REV3 expression levels

are directly regulated by a p53 responding element in
the REV3 promoter region. In addition, REV3 expression
was increased after DNA damage induction in a p53-
dependent manner [94]. An independent study also
showed increased REV3 mRNA level after cisplatin
treatment [95]. Over-expression of REV3 in yeast led to
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an elevated rate of UV-induced mutagenesis [96]. These
findings together with the embryonic lethal effect after
REV3 abrogation indicate that the level of REV3 has to
be tightly regulated to maintain genomic integrity.
Within the exon 13 of REV3, serine 995 was shown to

be phosphorylated by CHK2 [97]. In addition, REV3
shares an AT-hook domain with AHDC1, which has
been proposed to be phosphorylated by either ATM and
ATR upon DNA damage, indicating a putative regula-
tion of REV3 by ATM and ATR [98].
The human TLS Pol ζ is thought to be the major con-

tributor to the error-prone bypass of DNA lesions. Rele-
vant for tumorigenesis, REV3 knockout in MEFs leads
to increased chromosomal instability in a p53-deficient
background [92]. Moreover, in mice with a conditional
deletion of REV3, thymic lymphomas occurred with
decreased latency and elevated incident in a p53-defi-
cient background [99]. Relevant for cancer therapy,
REV3 down-regulation in human foreskin fibroblasts
revealed decreased mutation frequency after treatment
with UV or BaP-diolepoxide [100]. Similarly, MEFs
derived from mice expressing REV3 antisense revealed
decreased mutagenic frequency after UV treatment
[101]. Recent in vitro and in vivo studies revealed that
inhibition of REV3 expression increased the sensitivity
of lymphoma to cisplatin [102]. Similarly, REV3 deple-
tion in combination with cisplatin treatment decreased
the growth rate of a p53-deficient non small cell lung
cancer cell line (NSCLC) transplanted into mice and
prolonged the survival of the host. The same study
showed that the frequency of 6-thioguanine resistant
colonies after cisplatin treatment was reduced in REV3
deficient cells compared to the control [103]. Thus,
although REV3 is involved in the maintenance of geno-
mic integrity, inhibition of REV3 expression might
enhance the anti-tumor activity of DNA-damage indu-
cing agents as discussed below.
Recent findings propose TLS Pol ζ to have a function

not only in TLS synthesis but also in DNA repair, e.g.
REV3 deletion impairs HR [95] and ICL repair
[104,105]. Furthermore, SHM and/or class switch
recombination (CSR) of IgG were affected by TLS Pol ζ
ablation [106].
Although human REV3 contains a REV7 binding

region no interaction between full-length REV3 and
REV7 could be demonstrated so far. However, it was
shown, that a human REV3 fragment interacts with full-
length REV7 and a part of human REV7 interacts with
human REV3 and REV1 [107]. The human REV7 pro-
tein has a length of 211 aa and a size of 24 kDa and
shares ~23% identity with the yeast REV7. The human
REV7 is located on the human chromosome 1p36.
REV7 displays ~23% identity with the spindle check-
point assembly protein MAD2 and it is therefore also

known as MAD2B and MAD2L2 in higher eukaryotes.
The REV7 contains a HORMA (Hop1/Rev7/Mad2)
domain that is known to interact with chromatin [108].
Additionally, REV7 interacts with CDH1 and CDC20 of
the anaphase-promoting complex/cyclosome (APC/C)
[109] and the protein MAD2, a spindle checkpoint pro-
tein [81], indicating that REV7 is involved in the regula-
tion of mitosis. Interestingly, the bacterial pathogen
Shigella delivers the effector IpaB into epithelial cells to
efficiently colonize the epithelium. It has been shown
that IpaB interacts with MAD2L thereby inducing a cell
cycle arrest [110].

Family X: DNA Pol beta (b), TLS Pol lambda (l) and TLS
Pol mu (μ)
The polymerases of the X family include DNA Pol b,
terminal deoxynucleotidyl transferase (TdT), TLS Pol l
and TLS Pol μ. All the X family polymerases lack the 3’
to 5’ exonuclease proofreading activity.

DNA Pol b
DNA Pol b is a 39 kDa monomeric protein and the
encoding gene POLB is located on chromosome 8 in
both mice and human [111]. DNA Pol b consists of two
protease resistant segments linked by a short protease
sensitive segment indicating that DNA Pol b activity
might be controlled by proteolytic activity. The 8 kDa
N-terminal lyase domain shows a strong affinity to
ssDNA [112], whereas the 31 kDa C-terminal polymer-
ase domain specifically binds double-stranded nucleic
acids [113]. The 31 kDa polymerase domain consists of
three subdomains. The catalytic subdomain (palm) coor-
dinates two metal-ions and mediates the nucleotidyl-
transferase reaction [114] and the other subdomains
mediate the binding of duplex DNA (thumb) and nas-
cent base pairs (fingers) [115]. It has been shown that
DNA Pol b is able to fill short gaps in double stranded
DNA [116]. The 8 kDa lyase domain was shown to
direct DNA Pol b to phosphorylated 5’ side of a DNA
gap for its bypass [117] and recently to mediate the
removal of 5’ dRP from the AP site via b-elimination
after the incision step by the AP endonuclease [118].
Beside the role of DNA Pol b in short patch BER, a
function in long patch BER was proposed. Both short-
and long-patch repair are impaired after DNA Pol b
ablation [119-121]. Additionally, DNA Pol b has a role
in bypassing DNA lesions such as cisplatin-DNA
adducts [122]. It was shown that DNA Pol b is not
involved in the diversification of IgG [123]. DNA Pol b
knockout mice are not viable reflecting the important
role of Pol b during embryonic development [124].
Down-regulation of DNA Pol b sensitized mouse

fibroblasts to cisplatin, UV-irradiation, oxidizing- and
methylating agents [125-128]. Ectopic expression of
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DNA Pol b leads to aneuploidy, aberrant localization of
the centrosome-localized g-tubulin protein during mito-
sis, checkpoints defects in vitro and tumour induction in
vivo [129]. In addition, DNA Pol b expression is upregu-
lated in chronic myelogenous leukemia (CML) patients
[130]. Thus, a strict regulation of DNA Pol b activity is
essential to maintain genomic integrity.

TLS Pol l
TLS Pol l has a size of approximately 69 kDa and its
gene POLL is located on the chromosome 10 in human
and on the chromosome 19 in mice [33,35]. The human
TLS Pol l consists of 575 aa and shares 32% residue
identity with Pol b, comprising a C-terminal Pol domain
including palm, thumb and fingers and the 8 kDa 5’
dRP lyase domain. Additionally, TLS Pol l contains an
N-terminal BRCT (BRCA1 C-terminus) domain fol-
lowed by a serine/proline rich region that is absent in
Pol b [131]. Tandem BRCT domains mediate binding to
phosphorylated proteins and are widely found in pro-
teins involved in DDR [132]. TLS Pol l shows terminal
TdT activity [131], which prefers the incorporation of
pyrimidine nucleotides [133]. The TLS Pol l has been
shown to be less accurate for base substitutions and
much less accurate for single-base deletions [134].
Further, TLS Pol l is unable to differentiate between
matched and mismatched primer termini during the
extension step, therefore suggesting TLS Pol l as a can-
didate for NHEJ and as mismatch extender during TLS
[134,135]. Additional in vitro studies showed that TLS
by Pol l requires the BRCT domain and is physically
and functionally dependent on Ku during NHEJ [136].
Recently, it has been shown, that a TLS Pol l variant
containing of a single nucleotide polymorphism (SNP), a
cytosine/thymine variation, leads to increased mutation
frequency, chromosomal aberration and defects in NHEJ
[137].
TLS Pol l is also discussed to participate in BER. Ura-

cil-containing DNA was efficiently repaired in an in
vitro reconstituted BER reaction by the 5’ dRP lyase
activity of TLS Pol l, in coordination with its polymeri-
zation activity [138]. TLS Pol l null mice are viable and
fertile, but shortening of the heavy chain coding joints
was reported [49].

TLS Pol μ
TLS Pol μ has a size of 55 kDa and its gene POLM is
located on the human chromosome 7. It consists of 492
aa and shares 42% identity with TdT [33,35]. TLS Pol μ,
as TLS Pol l, contains a polymerase domain and a
BRTC domain. In contrast to Pol b and l, the TLS Pol
μ lacks a 5’ dRP lyase activity [138]. Isolated TLS Pol μ
is highly error-prone for frameshifts during DNA synth-
esis. Interestingly, TLS Pol μ is able to extend from

mismatches by frameshift synthesis mechanism and
thereby promoting microhomology search and microho-
mology pairing between the primer and the DNA tem-
plate [139]. Moreover, TLS Pol μ shows template-
independent polymerase activity under physiological
conditions (Mg2+ present) preferring the incorporation
of pyrimidines and thereby generating terminal micro-
homology, which can be ligated by the XRCC4-DNA
ligase IV [140]. All these findings suggest TLS Pol μ as
a candidate for NHEJ of DSBs. It has been shown that
TLS Pol μ, as TLS Pol l, interacts with the Ku-DNA
complex through its BRCT domain [136].
Interestingly, TLS Pol μ null mice are viable and fer-

tile, but they show impaired V(D)J recombination due
to shortening of the light chain coding ends, but not of
the heavy chain coding ends [49,50].

Family Y: Rev1, TLS Pol eta (h), kappa (k) and iota (ι)
The human TLS Pol members of the Y family include
REV1, TLS Pol h, TLS Pol k and TLS Pol ι [65]. All the
Y family members lack the 3’ to 5’ exonuclease proof-
reading activity [56] and share a general conserved N-
terminal polymerase domain for the catalytic activity
and a non-conserved C-terminus, which, at least for the
human TLS Pol ι [141] and Pol � [142], is responsible
for the regulation of the activity. The conserved N-ter-
minus of the DNA polymerase domain includes five
motifs (I to V) corresponding to the catalytic core com-
plex. Motif I and II form the catalytic epicentre (palm)
with its three acidic residues harbouring the two metal
ions mediating the nucleotide transfer. Despite sequence
differences, the palm domain with its nucleotide transfer
function is widely conserved between Y-family TLS, A-
and B-family replicative DNA polymerases. The motifs
III and IV belong to the finger and thumb domain,
respectively. They bind the triphosphate of the nascent
incoming dNTP and mediate the incorporation of the
nascent nucleotide whereas the additional motif V binds
the primer strand. The C-terminus of the motif V
resides either the so called little finger (LF), polymerase
associated domain (PAD) or the wrist that supports the
DNA synthesis activity and is conserved and unique
among the Y-family TLS polymerases [53,143,144].

Rev1
The 1251 aa human REV1 protein has a size of 138 kDa
and is encoded by the gene REV1, located on chromo-
some 2. Beneath the typical Y-family conserved
domains, a BRCT domain is located at the N-terminus
[132]. At the C-terminal end, there are two ubiquitin
binding motifs (UBM) [145] followed by a polymerase
interaction region [146].
The polymerase activity of Rev1 is restricted to the

incorporation of C over G and DNA lesions such as AP
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sites [147]. It has been proposed that the nucleotide
insertion activity is not the main function of REV1 but
that REV1 helps to coordinate the polymerase switch
between the normal- and the substituting TLS Pol upon
PCNA monoubiquitination. Murine Rev1 binds ubiqui-
tin through its UBMs and thereby mediating its localiza-
tion to DNA damage foci. UBM mutants showed
increased mutational aberrations after UV irradiation
and elevated sensitivity to UV irradiation and cisplatin,
which was further increased in UBM and BRCT double-
mutants [148]. Although it was shown that murine
REV1 binds monoubiquitinated PCNA via its UBMs, it
is assumed that the polymerase switch function of REV1
might also be dependent on the other protein interac-
tion domains of REV1, e.g. the BRCT and the polymer-
ase interaction region. In detail, the C-terminal end of
human Rev1 is able to interact with several TLS poly-
merases including Pol h, Pol ι, Pol � and Pol ζ, thus
supporting the assumption that Rev1 acts as a scaffold
protein for several TLS polymerases [107,146,149].
Additionally, murine REV1 binds PCNA through its
BRCT domain and the monoubiquitination of PCNA
enhances this reaction [150].
Rev1 ablation sensitizes DT40 chicken cells to various

DNA damaging agents including cisplatin, UV irradia-
tion and MMS. Additionally, Rev1 is required for the
maintenance of chromosomal stability after UV irradia-
tion [150]. Rev1 deletion in chicken DT40 cells did not
affect basal and damage induced sister chromatid
exchange and immunoglobulin gene conversion indicat-
ing that homologous recombination repair is likely to be
intact [151]. However, the same study showed that
knockout of Rev1 in chicken DT40 cells reduced the
level of non-templated immunoglobulin gene mutations
indicating a defect in translesion bypass of DNA replica-
tion blocking lesions. An in vivo mouse model showed
that REV1 inhibition in B-cell lymphoma reduces cispla-
tin and cyclophosphamide induced mutagenesis and
prolongs survival of mice upon cyclophosphamide treat-
ment [102].
Recently, it has been shown that Rev1 silencing

impairs the replication of G-quadruplex (G4) structures
thereby, on one side, limiting the recycling of histones
and, on the other side, favouring the incorporation of
newly synthesized histones resulting in changes of the
epigenetic pattern, e.g. gene silencing [152].

TLS Pol h
Loss of TLS Pol h activity in human results in a cancer-
prone syndrome known as xeroderma pigmentosum var-
iant (XPV), which is characterized by an increased inci-
dence of skin cancers and sensitivity to sunlight [153].
Human TLS Pol h consists of 713 aa and is encoded by
the POLH (Xeroderma pigmentosum variant, XPV)

gene, localized on chromosome 6. TLS Pol h has a size
of 78 kDa. Additional to the N-terminal conserved poly-
merase domain, TLS Pol h consists of a Rev1-interacting
region (RIR), an ubiquitin binding zinc finger (UBZ), a
nuclear localization domain (NLD) and two PIPs [154].
XPV cells are sensitive to UV irradiation and show an
increased mutagenic rate despite functional NER indi-
cating that TLS Pol h bypasses specific UV lesions in a
non-mutagenic manner [41,57,155]. It is proposed that
in the absence of TLS Pol h, TLS Pol ι serves as the
error-prone polymerase which bypasses the UV-induced
lesions [156]. Also Rev1 is suggested to have a regula-
tory role in TLS of UV-induced lesions [157]. The PIP
and the UBZ domain of TLS Pol h are essential for
binding the monoubiquitinated PCNA and its TLS activ-
ity. Mutation in either the PIP or the UBZ domain
increases the UV sensitivity [145].
Interestingly, it has been shown that loss of TLS Pol h

in mice leads to decrease in adenine/thymine mutations
during SHM of IgG indicating that TLS Pol h bypasses
adenine and thymine in an error prone manner [158].

TLS Pol �
The human TLS Pol � is encoded by POLK gene and
has a length of 870 aa. The TLS Pol � has a size of 99
kDa and is located on chromosome 5. The N-terminal
part consists of the conserved polymerase domain
whereas the variable C-terminus consists of a RIR, two
UBZ and a PIP. It has been shown that TLS Pol � co-
localizes to a lesser extend with PCNA at replication
foci after UV irradiation, hydroxyurea or BaP treatment
compared to TLS Pol h [159]. It has been shown that
embryonic stem (ES) cells deficient in the TLS Pol �
gene are more sensitive and acquire more mutations
after treatment with BaP and that TLS Pol � bypasses
BaP-G accurately and efficiently in vivo [45]. Addition-
ally, XPV cells treated with siRNA against TLS Pol �
reveal increased UV sensitivity [160] indicating that TLS
Pol � is able to bypass UV-induced DNA lesions. Recent
findings suggest that TLS Pol � has a function during
NER and that its activity is dependent on RAD18 and
monoubiquitinated PCNA [161].
A role of TLS Pol � in promoting tumorigenesis has

been discussed since ectopic expression of Pol � leads
to DSBs, aneuploidy and tumorigenesis in nude mice
[162].

TLS Pol ι
Human TLS Pol ι is encoded by the POLI gene consists
of 715 aa. The TLS Pol ι has a size of 80 kDa and is
localized on chromosome 18. TLS Pol ι shares with the
other Y family members the N terminal conserved poly-
merase domain and at the variable C-terminal a RIR,
two UBMs and the PIP. Interestingly, TLS Pol ι
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possesses a 5’ dRP lyase activity [163] that is located
within a NLD [164].
As in the case of TLS Pol h, the PIP and the UBM

domains of TLS Pol ι are important for localization to
the replication fork by binding monoubiquitinated
PCNA [145]. The localization and accumulation of TLS
Pol ι to stalled replication forks is dependent on physical
interaction with TLS Pol h [165]. Recently, it has been
shown that BER activity is decreased in human fibro-
blasts in which TLS Pol ι is stably downregulated result-
ing in increased sensitivity to the oxidizing agents H2O2

and menadione [164]. Additionally, after H2O2 treat-
ment, TLS Pol ι binds to chromatin and interacts with
the BER factor XRCC1, suggesting a role of TLS Pol ι
not only in TLS but also in the repair process of oxida-
tive DNA damage [164].

Activation of TLS and polymerase switch reaction
In response to DNA damage, it is proposed that activa-
tion of the DNA damage tolerance mechanisms is
mainly mediated by modifications of PCNA [166,167].
Monoubiquitination of PCNA by the RAD6-RAD18
complex triggers DNA damage tolerance by TLS. Y-
family TLS polymerases can bind to monoubiquitinated
PCNA through ubiquitin-binding domains such as the
UBM, the UBZ and a PCNA interacting peptide box
(PIP), thereby initiating TLS [145,148].
In S. cerevisiae, monoubiquitinated PCNA is subse-

quently polyubiquitinated by RAD5/Ubc13/Mms2,
which triggers the error-free DNA damage tolerance
response carried out by template switching including
fork reversal or recombination past the lesion [168,169].
There are two Rad5 orthologs in humans, HLTF and
SHPRH, which are both capable of polyubiquitinating
PCNA in vitro [170,171]. An interplaying mechanism
was proposed between the deubiquitinating enzyme
USP1 and ubiquitination factors including RAD6 and
RAD18. USP1 acts as a negative regulator, thus remov-
ing the ubiquitin residue from the monoubiquitinated
PCNA to reduce the mutagenic effect of TLS poly-
merases [172,173].
Studies in yeast indicate that other factors than PCNA

might be involved in the recruitment of TLS poly-
merases to damaged sites and the subsequent polymer-
ase exchange reaction. Similar to PCNA, the Fanconia
anaemia (FA)-ID complex might also promote the
exchange of replicative DNA polymerases by TLS poly-
merases after replication fork blockage [174-176]. The
yeast Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp, which
is loaded by the RAD24-replication factor C (RFC)
clamp loader, physically interacts with Pol ζ indicating a
putative role of the (9-1-1) checkpoint clamp in the
recruitment of TLS polymerases after checkpoint activa-
tion [177].

It was proposed that the major function of TLS poly-
merases is to allow replication to continue in the pre-
sence of DNA damage during S-phase [178]. However,
subsequent studies in yeast revealed that TLS poly-
merases also have a function in post-replicative gap fill-
ing, the so called post replicative repair (PRR) [179].
PRR is not necessarily temporally separated from S-
phase. Yeast REV1, which interacts and thereby regu-
lates the activity of several TLS polymerases, is highly
expressed in late S and early G2 phase [180]. Addition-
ally, studies in mammalian U2OS cells revealed that
human REV3 accumulates in G1-phase and at the G2/M
transition [97]. In addition, it was show that replication-
dependent TLS across UV-adducts is not affected in
REV3-deficient MEFs. However, although a significant
fraction of CPDs were still bypassed, post-replicative
repair of [6-4]PPs was completely abolished in REV3-
deficient MEFs [181]. Recently, it was shown in chicken
DT40 cells that REV1 is essential to maintain normal
replication fork progression in the presence of replica-
tion-blocking DNA lesions whereas PCNA is required
for post-replicative gap filling [182].
Taken together, the activation of the DNA damage

tolerance pathway is regulated by the mono- or polyubi-
quitination of PCNA, REV1, and the FA-ID complex,
and might also dependent on the stage of the cell cycle.
The regulation of TLS and post-replicative repair
recently got into the limelight but more studies are
needed to fully elucidate how TLS is regulated during
DDR.

One- and two-polymerase mechanism
Some TLS polymerases are able to autonomously repli-
cate over a DNA lesion by both incorporating nucleo-
tides opposite the damaged DNA and by extending
from the inserted nucleotides. This so called one- poly-
merase mechanism has been shown to be performed by
TLS Pol � replicating over AP sites in vitro and by TLS
Pol h bypassing UV-induced CPDs in vivo. Interestingly,
CPDs, the main DNA lesions induced by both UVB and
UVA radiation, are bypassed by Pol h in an error-free
manner (Figure 3).
However, other lesions such as BaP-G or cisplatin-

DNA adducts are mainly bypassed in a process requiring
the continuous processing by two TLS polymerases, a so

Figure 3 One- polymerase error-free bypass of a UV-induced
TT-CPD carried out by TLS Pol h (adapted from [247]). See text
for details.
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called two-polymerase mechanism. The first TLS poly-
merase incorporates the nucleotides opposite the DNA
lesion and a second TLS polymerase subsequently
extends from the inserted nucleotide. Depending on the
type of DNA lesion, different pairs of TLS polymerases
interact together to replicate the DNA lesion resulting
in either an error-free or error-prone bypass (Figure 4).

DNA damage specific TLS
A variety of different DNA damages can result in the
arrest of DNA replication, subsequently requiring TLS
to avoid the conversion of a stalled replication fork or
post-replication gap into a genotoxic DNA double
strand break. Thus, TLS is essential to maintain the
genomic integrity and it is therefore not surprising that
the system is redundant, i.e. every kind of DNA damage
can be bypassed by various combinations of one- or two
TLS polymerases (Table 1).

DNA apurinic/apyrimidinic (AP) sites
Nonenzymatic hydrolysis of the base-sugar bonds in
DNA and the accumulation of BER-intermediates results
in the formation of an estimated 10’000 AP sites per
human cell per day [4]. Ionizing radiation and bleomy-
cin, which both are used to treat various types of can-
cers, not only induce cytotoxic DNA DSBs but also AP
sites [183]. AP sites are processed by BER and Pol b is
the primary enzyme used for gap filling DNA synthesis

during BER. If not repaired, AP sites can be bypassed by
TLS polymerases. However, TLS across an AP site is
highly error-prone since the sequence information of an
AP site is missing. It was shown that TLS Pol b can
bypass an AP site resulting in deletions and base substi-
tuting errors [184,185]. A one-polymerase mechanism
has been proposed based on an in vitro assay where the
TLS Pol θ preferentially incorporates an adenine oppo-
site the AP site followed by a guanine (G) and cytosine/
thymine (C/T) [62]. An A opposite the AP site is also
the best primer for the extension step by TLS Pol θ
[62]. In addition, it has been shown in vitro that TLS
Pol h is able to incorporate nucleotides opposite AP
sites preferentially A and G and extend from the incor-
porated nucleotide favouring an A [186]. In vitro studies
showed that isolated TLS Pol l from calf thymus is able
to replicate a DNA template containing an AP site in
vitro [187]. Similarly, isolated human TLS Pol l is able
to synthesize over an AP site and this bypass is stimu-
lated by PCNA in vitro [188]. TLS Pol � is able to
autonomously bypass AP sites in vitro [189]. Similarly,
TLS Pol μ is capable to incorporate nucleotides opposite
AP sites in vitro although deletions are frequently gener-
ated due to primer realignment [190]. Additionally, The
replicative DNA Pol δ in the presence of PCNA prefer-
entially inserted A across AP sites and is also able to
extend from the lesion [191].
Alternatively, AP sites might also be bypassed by a

two-polymerase mechanism. TLS Pol ι and REV1 are
able to incorporate one nucleotide opposite an AP site
but the extending polymerase was not identified [191].

7, 8-dihydro-8-oxoguanine (8-oxo-G)
Oxidative stress can lead to the generation of reactive
oxygen species (ROS), which induce base modifications
such as 8-oxo-G and thymine glycol [192,193]. Studies
have shown an increased level of oxidative DNA damage
in cancerous tissue, e.g. a 9-fold increase of 8-oxo-G in
tissue from breast cancer compared to surrounding nor-
mal tissue [194]. 8-oxo-G is generated by oxidative
stress and leads to frequent misincorporation (10-75%)
of adenine by human replicative DNA polymerases gen-
erating a G:C to T:A transversion [195]. In addition,
TLS Pol � also inserts mainly adenine opposite 8-oxo-G
[196]. In vitro experiments revealed that TLS Pol ι is
able to bypass 8-oxo-G with low efficiency in a generally
non-mutagenic manner thereby preferring the incor-
poration of C over 8-oxo-G followed by A and G [197].
It has been shown that 8-oxo-G lesion in vitro can be
bypassed by TLS Pol μ resulting in a -1 deletion due to
primer realignment during TLS [190]. More recently, it
has been shown in vitro that 8-oxo-G lesions are mainly
bypassed by TLS Pol l and TLS Pol h and that the pre-
sence of PCNA and RP-A increases the fidelity of

Figure 4 Two-polymerase mechanisms for bypassing BaP-G
(top) or cisplatin (cisPt) (bottom) DNA adducts. The insertion
step is performed by one or a combination of several TLS
polymerases incorporating nucleotides in an error-free or error-
prone manner opposite the adduct whereas the extension step is
mainly carried out by TLS Pol ζ (adapted from [247]). See text for
details.
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correct C incorporation over the incorrect A incorpora-
tion opposite the 8-oxo-G 1200-fold for TLS Pol l and
68-fold for TLS Pol h [198]. Additionally, PCNA and
RP-A inhibited error-prone TLS opposite an 8-oxoG by
DNA polyerase b [199].

Thymine glycol
Thymine glycol is the most common thymine lesion
induced by reactive oxygen species (ROS). In vitro stu-
dies have shown, that TLS Pol θ is able to incorporate
nucleotides opposite both 5R- and 5S-diastereoisomers
of thymine glycol with similar efficiency but fails to
process the extension step [62]. TLS Pol ν is able to
bypass 5S-thymine glycol in an error-free manner
whereas the bypass of 5R-thymine glycol was less accu-
rate [51]. TLS Pol b and TLS Pol l have been shown
to bypass thymine glycols in gapped DNA structures.
Additionally, dependent on the size of the gap, TLS
Pol l is able to perform the extension step. The bypass
fidelity of TLS Pol l is increased by the presence of
PCNA [200]. Recently, a two-polymerase mechanism
for error-free thymine glycol bypass including TLS Pol
� as nucleotide inserter and TLS Pol ζ as extender was
proposed [201].

[6-4]pyrimidine-pyrimidone photoproduct ([6-4]PP)
The most abundant environmental source of DNA
damage is UV-light, which induces nucleotide dimeriza-
tion, e.g. CPDs and [6-4]PPs at a 3:1 ratio [202]. One
hour at the beach results in the induction of approxi-
mately 1 × 105 UV-adducts per exposed cell [203].
The induction of [6-4]PPs induces a bend of 44° in the

DNA helix, which triggers the efficient recognition and
repair of [6-4]PPs by NER [204]. In a primer extension
assay, only TLS Pol h was able to autonomously insert
nucleotides opposite an [6-4]PP although with a signifi-
cant lower efficiency than opposite CPDs and without
detectable extension [51]. Replication-dependent bypass
of UV-adducts was not delayed in REV3-deficient MEFs.
However, post-replicative repair of [6-4]PPs was com-
pletely dependent on REV3, i.e. TLS Pol ζ [181]. Based
on a in vivo plasmid assay, alternative two-polymerase
mechanism models have been proposed for the bypass
of [6-4]PPs. In the first model, TLS Pol ι and TLS Pol h
alternatively incorporate nucleotides opposite a [6-4]PP
in a process, which is error-free or error-prone at the 3’
thymine and 3’ cytosine, respectively, and which results
in the subsequent extension by a yet unknown DNA
TLS polymerase. In the second model, a yet unknown
polymerase incorporates nucleotides opposite a [6-4]PP
in a process, which is error-free at the 3’ thymine or
3’cytosine. Subsequent extension is carried out by TLS
Pol ζ [205]. An additional two-step model was proposed
where TLS Pol ι incorporates nucleotides opposite a [6-

4]PP in an error-prone manner and TLS Pol θ carries
out the subsequent extension step from the mismatched
primer terminus [70].

Cyclobutane pyrimidine dimer (CPD)
CPDs are not as much DNA helix distorting (9°) as [6-4]
PPs and are therefore not an ideal substrate for NER
[206]. Hence, CPDs persist longer after UV-irradiation
than [6-4]PPs thereby blocking DNA replication more
frequently thus rendering their tolerance more depen-
dent on functional TLS. Depletion of TLS Pol h renders
human cells sensitive to UV-irradiation, especially to
CPD induction [41,160]. TLS Pol h is able to replicate
error-free over CPDs in vitro [207], with a higher error
rate at the 3’T than at the 5’T [208].It has been shown
in vivo that TLS was reduced and mutagenicity
increased in cells lacking TLS Pol h using a quantitative
TLS assay measuring TLS across CPDs. Also in vivo,
most of the mutations were found opposite the 3’T of
the CPD [209].
Subsequently, it has been proposed that CPDs in XPV

cells, e.g. in the absence of TLS Pol h, are replicated by
the two-polymerase mechanism in an error-prone man-
ner. The two step model includes either TLS Pol ι, TLS
Pol � or a yet undefined polymerase or their combined
action for the first and the second pyrimidine nucleotide
incorporation opposite a CPD, followed by the extension
step achieved by TLS Pol ζ and to a minor extend by
TLS Pol � [160]. Additionally, in vitro experiments
revealed that TLS Pol μ can autonomously bypass CPDs
in a mainly error-free manner and that the subsequent
extension was further enhanced by TLS Pol ζ [190].

Benzo[a]pyrene-guanine (BaP-G)
BaP is a major compound of tobacco smoke and forms,
upon metabolic activation, a covalent BaP-G DNA
adduct, which is associated with the development of
lung cancer [210]. BaP-G frequently mispairs during
DNA replication with A therefore leading to G:T trans-
versions [210]. In vitro and in vivo studies showed effi-
cient bypass of BaP-G by TLS Pol � using a gapped
plasmid containing a BaP-G lesion [211]. Additionally,
BaP-G has been shown to be bypassed by a two-poly-
merase mechanism in vivo. TLS Pol � inserts nucleo-
tides opposite a BaP-G error-free whereas insertion by
TLS Pol h is error-prone. Subsequent extension is per-
formed by TLS Pol ζ. Since the combined inhibition of
TLS Pol � and TLS Pol h did not decrease TLS to a
similar extend than depletion of TLS Pol ζ, it was sug-
gested that a third unknown TLS polymerase might be
involved in insertion opposite a BaP-G DNA adduct
[64]. Indeed, it was shown that TLS Pol μ was able to
bypass bulky DNA lesions including BaP-G DNA
adducts [190].
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Intrastrand-crosslinks
The chemical agent cisplatin is used for therapeutical
treatment of most solid tumors including lung cancer
and malignant pleural mesothelioma and forms DNA
intra- and interstrand-crosslinks (ICLs), which can lead
to a blockage of the DNA replication machinery [6].
Intrastrand-crosslinks are the most prevalent form of
cisplatin-induced DNA adducts (> 90%) [6] and are
bypassed by one- or the two-polymerase mechanisms. In
vitro experiments revealed that Pol b can bypass various
cisplatin intrastrand adducts [122,212]. It has been
reported that TLS Pol h in vitro is able to bypass a d
(GpG)-cisplatin intrastrand adduct thereby preferentially
incorporating C opposite the d(GpG)-cisplatin intras-
trand adduct [186,213]. TLS Pol ζ can also bypass cis-
platin intrastrand adducts although with low efficiency
[214]. It was subsequently shown in vitro that TLS Pol μ
is less efficient than pol h in catalyzing translesion
synthesis past platinum intrastrand adducts but appears
to be significantly more efficient than Pol b or Pol ζ
[215]. Recently, it has been shown in vivo, that either
TLS Pol h or TLS Pol � incorporate the correct or
incorrect, respectively, nucleotide opposite the d(GpG)-
cisplatin intrastrand adduct and TLS Pol ζ carries out
the extension step [64]. Similarly, in vivo experiments
proposed a model where RAD18/RAD6 dependent
monoubiquitination of PCNA activates the bypass of the
d(GpG)-cisplatin intrastrand adduct by TLS Pol h and
activated TLS Pol ζ performs the subsequent extension
in a REV1-dependent manner [105].

Interstrand-crosslink (ICL)
An excellent review of ICL repair and cancer has been
published recently [216]. In contrast to the DNA
damages described above, ICLs cannot be bypassed
since, as the name implies, both DNA strands are cova-
lently linked and therefore no template for DNA synth-
esis is available. It was proposed that ICLs kill cells due
to 1.) Blockage of DNA replication 2.) Stalling of tran-
scription or 3.) Distortion of the chromatin thereby pre-
venting the access of DNA-interacting proteins
(reviewed in [216]). Thus, a complex ICL repair machin-
ery evolved and it was shown that TLS polymerases are
involved in this process.
Lipid peroxidation can occur inside the body or in

foods before they are eaten resulting in the production
of by-products capable of crosslinking DNA, e.g. b-unsa-
turated aldehydes [217]. Recent biochemical and cellular
studies implicated that dialdehydes formed by lipid per-
oxidation induce minor groove ICLs, which are repaired
by a TLS Pol � dependent mechanism [218]. In cancer
therapy, cisplatin is the most widely used crosslinking
drug but only approximately 10% of the total DNA
adducts induced by cisplatin are ICLs [6]. XPV cells,

which are deficient for TLS Pol h, are hypersensitive to
cisplatin [219,220].
During the G1 phase of the cell cycle, ICL are repaired

in a recombination-independent pathway including NER,
TLS Pol ζ and Rev1 [221]. Experiments with X. laevis egg
extracts revealed that during replication-dependent ICL
repair, the replicative DNA polymerase stalls about 24
nucleotides before the crosslink [222]. At this site, the
replicative DNA polymerase is replaced by a TLS poly-
merase, most probably TLS Pol ν [76], which extends the
nascent strand to within 1 base pair of the ICL. Subse-
quently, DNA nucleases unhook the ICL and REV1
inserts a cytosine opposite the unhooked ICL [223,224].
Several of the TLS polymerases may extend DNA synth-
esis beyond the ICL but only deletion of TLS Pol ζ abro-
gates TLS extension in X. laevis extracts and is was
suggested that only Pol ν, REV1 and Pol ζ are essential
for ICL repair (reviewed in [216]). Indeed, a recent study
showed in human cells that only REV1 and TLS Pol ζ are
required for the repair of ICLs whereas RAD18, TLS Pol
h, REV1 and TLS Pol ζ are all necessary for replicative
bypass of cisplatin intrastrand DNA crosslinks [175].

Relevance of TLS polymerases in cancer therapy
Targeting the error-prone Pol ζ by deletion of REV3 in
yeast results in a reduced spontaneous mutation rate
[225]. On the other hand, selective deletion of REV3 in
mature B cells impaired proliferation and genomic stabi-
lity [106]. Thus, as indicated in Figure 5, a reduction of
the mutation rate by inhibition of TLS is inversely cor-
related with an increase in gross chromosomal instabil-
ity. Since genomic instability is a hallmark of cancer, an
important question is how carcinogenesis is influenced

Figure 5 Trade-off between the accumulation of mutations
due to DNA lesion bypass by TLS and the accumulation of
genomic instability in the absence of TLS.
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by changes in the expression or activity of TLS poly-
merases. XPV patients who are deficient for TLS Pol h
activity, suffer from a very high cancer incidence since
TT-CPDs, which are bypassed error-free by Pol h, are
bypassed in the absence of Pol h by alternative TLS
polymerases in an error-prone manner [160]. In addi-
tion, somatic mutations of Pol b were identified in ade-
nocarcinoma of the colon [226] and mutations in the
gene enconding Pol ι are associated with increased sus-
ceptibility to lung cancer in mice [10,227,228] and
humans [229]. Single nucleotide polymorphisms in the
human REV1 gene are associated with increased lung
cancer risk [229]. Changes in expression and mutations
in the genes encoding Pol ι and Pol � have been found
in human tumors [230-232]. Gene expression of TLS
Pol θ is upregulated in two cohorts of patients with
untreated primary breast cancers, which correlates with
poor clinical outcome [233]. In summary, there is a
growing body of literature indicating that increased as
well as decreased TLS activity is associated with
increased and/or accelerated tumorigenesis.
However, transient inhibition of TLS activity might be

beneficial for cancer treatment. In detail, the concept of
“synthetic lethality” is applied as a therapeutic approach
where defects in two pathways alone can be tolerated
but become lethal when combined. DDR is often abro-
gated in cancer cells and it was proposed to develop
cancer treatments taking advantage of cancer-specific
DDR alterations [234]. The principle of synthetic lethal-
ity was successfully applied in cancer therapy of patients
carrying mutations in BRCA1 or BRCA2, a specific
DNA-repair defect. Inhibition of poly(adenosine dipho-
sphate [ADP]-ribose) polymerase (PARP) resulted in
synergistic antitumor activity in the treatment of heredi-
tary ovarian- and breast cancer of patients with BRCA
mutations [235].
In analogy, there are indications that targeting TLS

polymerases per se, i.e. without additional chemother-
apy, might be applicable for cancer therapy. For exam-
ple, based on the overlap in function of mismatch
repair and DNA polymerase proofreading activity, it
was recently shown that inhibition of Pol b or g
induces synthetic sickness/lethality in MSH2- or
MLH1-deficient human cancer cells, respectively [236].
Similarly, a recent study from our laboratory revealed
that inhibition of REV3 expression per se resulted in
decreased colony formation and accumulation of per-
sistent DNA damage in cancer cell lines of different
origin whereas cell growth of control cell lines was less
affected [237].
In addition, it was proposed that targeting TLS should

enhance the therapeutic effect and reduce the resistance
formation of DNA-damaging chemotherapeutics [238].
Indeed, inhibition of REV3 expression sensitized human

fibroblasts to cisplatin and decreased the formation of
cisplatin resistant cells in vitro [95]. Recent findings in a
transplantable mouse xenograft model showed that sup-
pression of REV3 expression increased the sensitivity of
chemoresistant adenocarcinomas to cisplatin and
reduced occurrence of cisplatin-induced resistance
[103]. Similarly, using a preclinical mouse model of Bur-
kitt’s lymphoma, it was shown that suppression of both
REV1 and REV3 expression, sensitized lymphomas to
cisplatin [102]. The same study also showed that REV1
suppression in lymphoma cells inhibited resistance for-
mation after cyclophosphamide treatment in vitro and
improved cyclophosphamide-based chemotherapy of
lymphomas in vivo.
Interestingly, studies in yeast showed that resistance

formation after hydroxyurea treatment, which inhibits
the ribonucleotide reductase and therefore reduces/
imbalances the nucleotide pool, is also suppressed by
REV3 deletion [239]. Thus, suppression of TLS poly-
merases might also reduce resistance formation of
drugs whose therapeutic effect is also based on the
reduction/imbalance of the nucleotide pool, e.g. gemci-
tabine and pemetrexed. In summary, inhibition of the
expression/activity of TLS activity may increase
responsiveness to genotoxic treatments and improve
the clinical outcome.
Although the effects of TLS inhibition on cancer cells

are well investigated, less is known how inhibition of
TLS affects normal cells. No deficiency in cell growth/
survival was mentioned after antisense-based inhibition
of REV3 expression in human non-tumor cell lines
[66,100,237]. In contrast, it was shown by different
groups that REV3 knockout reduced cell growth of
MEFs [92,93]. Thus, it will be crucial to carefully evalu-
ate how normal cells are affected by any cancer therapy
based on TLS inhibition. To minimize the risk of malig-
nant transformation of normal cells due to the induction
of genomic instability by TLS inhibition during cancer
therapy, transient inhibition would be favourable over
long-term inhibition, e.g. specific small molecules inhibi-
tors would be favourable over a lentiviral-based system
constitutively delivering a TLS polymerase-targeting
siRNA.
To date, no specific inhibitors for Y family TLS poly-

merases are available except for the pyrene nucleotide
analogs oxetanocin (OXT)-GTP and -ATP, which are
able to inhibit TLS Pol h [240]. Additionally, some nat-
ural inhibitors are known to have inhibitory effects such
as Petasiphenol, which is a specific inhibitor of TLS Pol
l in vitro [241]. It has been shown that Petasiphenol has
antiangiogenic activity [242,243]. Tormetic acid is
another inhibitor of TLS Pol l and b but also of replica-
tive DNA polymerases, e.g. Pol a. Tormetic acid showed
an antitumorigenic activity in vivo [243].
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Conclusions
The existence of error-prone TLS polymerases reflects a
trade-off between avoiding gross chromosomal instabil-
ity due to replication fork breakdown and the occur-
rence of mutations on the nucleotide level (Figure 5).
It was proposed that the evolution of long lived and large

animals such as vertebrates necessarily entailed the acquisi-
tion of potent tumor suppressive mechanisms [244]. Thus,
compared to lower organisms such as bacteria and yeast, it
can be speculated that the increased number of TLS poly-
merases evolved in higher organisms as a tumor suppres-
sive adaptation. Alternatively, research carried out in the
last years showed that mammalian TLS polymerases are
not only involved in bypassing and repair of DNA lesions
but also in the diversification processes of IgG and the
maintenance of epigenetic modifications. In summary, TLS
polymerases have a function beyond the maintenance of
the genomic integrity and it will be interesting tofurther
elucidate the involvement of TLS in the delicate balance
between cancer suppression and longevity.
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