CRYSTALLOGRAPHIC COMMUNICATIONS

Received 3 August 2020
Accepted 13 August 2020

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: viologen; crystal structure; atropisomer; synthesis.

CCDC reference: 2023167
Supporting information: this article has supporting information at journals.iucr.org/e

4,15-Dimethyl-7,12-diazoniatricyclo[10.4.0.0 ${ }^{2,7}$]-hexadeca-1(12),2,4,6,13,15-hexaene dibromide monohydrate

Edward J. Behrman, ${ }^{\text {a* }}$ Alexandar L. Hansen, ${ }^{\text {b }}$ Chunhua Yuan ${ }^{\text {b }}$ and Sean Parkin ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry \& Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio, 43210, USA, ${ }^{\mathbf{b}}$ Campus Chemical Instrument Center, The Ohio State University, 496 W. 12th Avenue, Columbus, Ohio, 43210, USA, and ${ }^{\text {c }}$ Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky, 40506, USA.
*Correspondence e-mail: behrman.1@osu.edu

The title compound, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$ (1) is a member of the class of compounds called viologens. Viologens are quaternary salts of dipyridyls and are especially useful as redox indicators as a result of their large negative oneelectron reduction potentials. Compound $\mathbf{1}$ consists of a dication composed of a pair of 4-methylpyridine rings mutually joined at the 2-position, with a dihedral angle between the pyridine rings of $62.35(4)^{\circ}$. In addition, the rings are tethered via the pyridine nitrogen atoms by a tetramethylene bridge. Charge balance is provided by a pair of bromide anions, which are hydrogen bonded to a single water molecule $\left[D_{\mathrm{O} \cdots \mathrm{Br}}=3.3670(15)\right.$ and $3.3856(15) \AA$ A . The crystal structure of $\mathbf{1}$, details of an improved synthesis, and a full analysis of its NMR spectra are presented.

1. Chemical context

The title compound (1) is a member of the class of compounds called viologens. Viologens are quaternary salts of dipyridyls, which have proven useful as redox indicators as a result of their large negative one-electron reduction potentials (Anderson \& Patel, 1984). The herbicides, paraquat, and diquat are viologens. We found that the literature synthesis of 4,4'-dimethyl-2, 2^{\prime}-dipyridyl- N, N^{\prime}-tetramethylene dibromide, i.e., 1 (Spotswood \& Tanzer, 1967) could be improved by a change in the solvent. We report details of our improved synthesis of $\mathbf{1}$ along with the crystal structure and a full analysis of its NMR spectra.

Spotswood \& Tanzer (1967) give general directions for the syntheses of a series of bridged dimethyl $2,2^{\prime}$-dipyridyl salts. Our attempts to make the title compound by their directions failed; only a salt of the starting dipyridyl was recovered. Homer \& Tomlinson (1960) noted that HBr is formed by dehydrohalogenation of the dibromide. We think that the conditions used by Anderson \& Patel (1984), i.e., refluxing

Figure 1
A view of 1 showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds between water and Br^{-}are shown as dashed lines.
o-dichlorobenzene, b.p. 453 K , produced a good deal of HBr , which protonated the dipyridyl, rendering it unreactive. Carrying out the reaction in refluxing xylene (mixed isomers, b.p. ca 413 K) does not produce HBr , but the reaction is slow; after five h , about 50% of the starting dipyridyl was recovered. The quaternization of tertiary amines is known as the Menschutkin reaction (Menschutkin, 1890). The velocity of this reaction shows a strong dependence on solvent (Abraham
\& Grellier, 1976), with about a 65,000 -fold increase from hexane to DMSO. The addition of nitrobenzene to the solvent gave satisfactory yields of the product in a reasonable time (see Synthesis and crystallization section).

2. Structural commentary

The molecular structure of $\mathbf{1}$ is shown in Fig. 1. It consists of a dication composed of a pair of 4-methylpyridine rings mutually joined at their 2-positions, with a dihedral angle between the pyridine rings of $62.35(4)^{\circ}$. In addition, the rings are tethered via the pyridine nitrogen atoms by a tetramethylene bridge. There are no unusual bond lengths or angles. As a result of the two bridges between the pyridine rings, $\mathbf{1}$ occurs as two optical isomers, and therefore provides an example of atropisomerism (Eliel et al., 1994; Alkorta et al., 2012; Mancinelli et al., 2020). Crystals of 1, however, were centrosymmetric, with space group $P 2_{1} / n$, and are thus strictly racemic. Charge balance is provided by a pair of bromide anions, which are hydrogen bonded to a single water molecule of crystallization $\left[D_{\mathrm{O} \cdots \mathrm{Br}}=3.3670(15)\right.$ and $3.3856(15) \AA$ A $]$ (Table 1).

3. Supramolecular features

Aside from the hydrogen bonds between the water molecule and bromide anions, the only other notable intermolecular contacts are interactions of type $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ (Fig. 2, Table 1), with distances that range between $3.5765(17)$ and $3.7762(18) \AA$ for type $\mathrm{C}_{\text {pyridy1 }} \cdots \mathrm{Br}$ and 3.6581 (18) to 3.7700 (19) \AA for type $C_{\text {methylene }} \cdots$ Br. For comparison, the

Figure 2
A packing plot of $\mathbf{1}$ viewed down the crystallographic a axis. Hydrogen bonds between water and Br^{-}are shown as dashed lines, while weaker $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ interactions are shown as dotted lines.

Table 1
Hydrogen-bond geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Br} 2^{\mathrm{i}}$	0.95	2.68	$3.5929(18)$	161
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1^{i i}$	0.95	2.86	$3.7762(18)$	161
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.99	2.96	$3.7700(19)$	139
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{Br}^{\prime i i}$	0.95	2.64	$3.5765(17)$	170
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{Br} 1^{\text {iv }}$	0.95	2.82	$3.6285(17)$	143
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{Br} 1$	0.95	2.74	$3.6735(17)$	167
$\mathrm{C}^{\prime}-\mathrm{H} 7 B^{\prime} \cdots \mathrm{Br} 1^{\mathrm{v}}$	0.99	3.04	$3.6581(18)$	122
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{Br} 1$	$0.81(2)$	$2.58(2)$	$3.3856(15)$	$177(3)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Br} 2$	$0.81(2)$	$2.56(2)$	$3.3670(15)$	$175(3)$

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ; \quad$ (ii) $\quad-x+1,-y+1,-z$; (iii)
$-x+1,-y+1,-z+1$; (iv) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (v) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Percentage of atom \cdots atom contacts between asymmetric units in $\mathbf{1}$.

$\mathrm{H} \cdots \mathrm{H}$	57.0
$\mathrm{H} \cdots \mathrm{Br}$	26.2
$\mathrm{H} \cdots \mathrm{C}$	9.0
$\mathrm{H} \cdots \mathrm{O}$	4.7
$\mathrm{C} \cdots \mathrm{Br}$	1.7
$\mathrm{~N} \cdots \mathrm{Br}$	1.1
$\mathrm{C} \cdots \mathrm{C}$	0.4
$\mathrm{~N} \cdots \mathrm{~N}$	0.0
$\mathrm{O} \cdots \mathrm{O}$	0.0
$\mathrm{Br} \cdots \mathrm{Br}$	0.0

Contact percentages were derived from Hirshfeld-surface fingerprint plots (Spackman \& McKinnon, 2002; McKinnon et al., 2004) using CrystalExplorer 17.5 (Turner et al., 2017). Reciprocal contacts are included in the totals. The sum of all percentages in the table is 100.1% due to accumulation of rounding errors.
standard van der Waals radii of C, H, and Br (Bondi, 1964) are 1.2, 1.7, and $1.85 \AA$, respectively. The percentages of atom \cdots atom contact types between asymmetric units were obtained from Hirshfeld-surface fingerprint plots (Figs. S1 and S2 in the supporting information; Spackman \& McKinnon, 2002; McKinnon et al., 2004) using CrystalExplorer 17.5 (Turner et al., 2017), and are presented in Table 2.

4. Database survey

The most similar structures to $\mathbf{1}$ in the Cambridge Structural Database (CSD, V5.41, update of November 2019; Groom et al., 2016) are BIYTEL, BIYTUB, BIYTOV, BIYVAJ, and BIYTIP (Sanchez et al., 2019). BIYTEL has a trimethylene bridge, BIYTUB has a dimethylene bridge, BIYTOV has a trimethylene bridge but lacks the $4-\mathrm{Me}$ substituents, BIYVAJ has a trimethylene bridge but 5-Me groups instead of $4-\mathrm{Me}$, and BIYTIP has a dimethylene bridge but is a methanol solvate. CSD entry TMEPYR (Derry \& Hamor, 1970) contains a tetramethylene bridge, but lacks 4-Me subsituents. CSD entries DIQUAT (Derry \& Hamor, 1969) and DQUATB (Sullivan \& Williams, 1976), have dimethylene bridges but also lack the 4-Me substituents. Atomic coordinates for TMEPYR, DIQUAT and DQUATB are, however, not present in the CSD. CSD entry PICGAM (Talele et al., 2018) has a $-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ linker and is an acetonitrile solvate. These crystal structures have Br^{-}anions for charge balance and
(unless otherwise stated) include water of crystallization. The tetramethylene bridge is present in CSD entries HIJGAI (Hofbauer et al., 1996), YOBWAN (Schmauch et al., 1995), and YUFCOR (Knoch et al., 1995), but these crystal structures feature complex organometallic anions rather than bromide and are not hydrates. The dihedral angle between the two pyridine rings in each structure is strongly dependent on the length of the bridging tether. These range between 15.78 19.01° for dimethylene, $49.40-53.96^{\circ}$ for trimethylene, and $63.87-67.15^{\circ}$ for tetramethylene $\left[c f .62 .35(4)^{\circ}\right.$ in 1]. In PICGAM, the dihedral angle is 72.64°, presumably as a result of the increased rigidity of the tether.

5. NMR spectroscopic analysis

The low-field NMR spectrum has been well analyzed by Spotswood \& Tanzer (1967), with whose data we agree. However, the instruments available in 1967 were not able to resolve the bridge protons. Thummel et al. (1985) reported data on the bipyridyl analog, that is, without the $4,4^{\prime}$-methyl groups. Our data closely match theirs (see especially Fig. 3 of Thummel et al., 1985), showing an identical complex splitting pattern for the four resolved signals. The protons of the

Figure 3
Analysis of 2-D NMR spectra: (a) HSQC and HMBC resonance assignments, (b) COSY resonance assignments. Peaks marked by an asterisk correspond to water or multiple quantum artifacts. 1-D traces are shown to the left and top of the figure.

Table 3
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data for $\mathbf{1}$ recorded in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .

Assignments	${ }^{13} \mathrm{C}(\mathrm{ppm})$	${ }^{1} \mathrm{H}(\mathrm{ppm})$	Couplings (Hz)
$\mathrm{C}^{1} / \mathrm{H}^{1}$	146.25	8.99	${ }^{3} J\left(\mathrm{H}^{1} \mathrm{H}^{2}\right) 6.4$
$\mathrm{C}^{2} / \mathrm{H}^{2}$	131.70	8.14	${ }^{4} J\left(\mathrm{H}^{2} \mathrm{H}^{4}\right) 1.4$
C^{3}	162.63	8.07	
$\mathrm{C}^{4} / \mathrm{H}^{4}$	131.66		
C^{5}	142.78	$\mathrm{H}^{6 A, 6 B} 4.73,4.03$	
$\mathrm{C}^{6} / \mathrm{H}^{6 A}, \mathrm{H}^{6 B}$	58.26	$\mathrm{H}^{7 A, 7 B} 2.35,2.05$	${ }^{2} J\left(\mathrm{H}^{6 a} \mathrm{H}^{6 B}\right) 14.5,{ }^{3} J\left(\mathrm{H}^{6 A} \mathrm{H}^{7 A}\right) 6.1,{ }^{3} J\left(\mathrm{H}^{6 B} \mathrm{H}^{7 B}\right) 11.3$
$\mathrm{C}^{7} / \mathrm{H}^{7 A}{ }^{7} \mathrm{H}^{7 B}$	26.72	${ }^{2} J\left(\mathrm{H}^{7 A} \mathrm{H}^{7 B}\right) 11.1$	
$\mathrm{C}^{8} / \mathrm{H}^{8}$	21.62		
$\mathrm{~N}^{9}$	208.5		

The errors were estimated to be $\pm 0.02 \mathrm{ppm}, \pm 0.002 \mathrm{ppm}$, and $\pm 0.3 \mathrm{~Hz}$, respectively, for the ${ }^{13} \mathrm{C}$ chemical shifts, ${ }^{1} \mathrm{H}$ chemical shifts, and J coupling constants.
methyl group exchange with deuterons in a base-catalyzed reaction (Zoltewicz \& Jacobson, 1978). Our NMR sample, which also showed exchange, was neutral. Exchange was prevented by adjusting the ' pH ' to ~ 1 with DCl . This exchange with solvent deuterium led to some deuterium couplings with both protons and carbon and hence multiplicities in the NMR spectra, which were initially puzzling. Calder et al. (1967) discuss the effect of the length of the bridging group on the NMR spectra and the mobility of the structures.

There are eight resonance signals in the ${ }^{1} \mathrm{H}$ NMR spectrum recorded in $\mathrm{D}_{2} \mathrm{O}$, including one on the downfield shoulder of the residual water resonance. All but one of the signals are of equal intensity and the one at 2.68 ppm is about three times larger. The ${ }^{13} \mathrm{C}$ NMR spectrum shows eight signals ($\mathrm{C} 1-\mathrm{C} 8$), two of which (C2 and C4) are barely separated. Quantitative measurement using inverse-gated decoupling with a long recycle delay (60 s) shows that the carbon signals are of equal intensity. The 1-D ${ }^{13} \mathrm{C}$ DEPT (Distortionless Enhancement by Polarization Transfer) and 2-D multiplicity-edited ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC (Heteronuclear Single Quantum Coherence) establish a ratio of 3:2:1 for $\mathrm{CH}, \mathrm{CH}_{2}$, and CH_{3}, respectively. Further analysis of 2-D ${ }^{1} \mathrm{H}$ COSY (Correlation Spectroscopy) and 2-D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC (Heteronuclear Multiple-Bond Correlation spectroscopy) spectra led to the NMR assignments summarized in Table 3. A selective HMBC focusing on the C2/C4 region was recorded for unambiguous assignments of multiple-bond ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations related to these two carbons. These details together with the 2-D ${ }^{1} \mathrm{H}_{-}{ }^{15} \mathrm{~N}$ HMBC, which reveals stronger $\mathrm{H} 2 / \mathrm{N} 9$ and $\mathrm{H} 4 / \mathrm{N} 9$ cross-peaks than $\mathrm{H} 1 /$ N9, clearly establish a symmetric three-ring molecular structure, as shown in Fig. 3, in full agreement with the crystal structure (Fig. 1).

The stereospecific assignment of the methylene protons was achieved by a systematic recording of 1-D selective NOESY (Nuclear Overhauser Effect Spectroscopy) and COSY spectra. A stronger NOE was observed between the proton at 4.73 ppm and H 1 , and thus this resonance was assigned to $\mathrm{H} 6 A$ while the geminal one at 4.03 ppm to $\mathrm{H} 6 B$. The 1-D selective homonuclear decoupling ${ }^{1} \mathrm{H}$ NMR spectra led to the extraction of J-coupling constants between these methylene protons (Table 3). A large ${ }^{3} J$ coupling exists between $\mathrm{H} 6 B$ and H7 $B(11.3 \mathrm{~Hz})$, followed by a sizable ${ }^{3} J$ coupling between $\mathrm{H} 6 A$
and $\mathrm{H} 7 A(6.1 \mathrm{~Hz})$. As a result of the complexity of the spectra, the ${ }^{3} J\left(\mathrm{H}^{6 A} \mathrm{H}^{7 B}\right)$ and ${ }^{3} J\left(\mathrm{H}^{6 B} \mathrm{H}^{7 A}\right)$ could not be determined, but were estimated to be less than 2 Hz . Also, the 11.1 Hz coupling between $\mathrm{H} 7 A$ and $\mathrm{H} 7 B$ was tentatively assigned to the geminal coupling rather than the one across the $\mathrm{C} 7-\mathrm{C} 7^{\prime}$ bond.

All NMR spectra were recorded on a Bruker Ascend 700 MHz spectrometer equipped with a TXO cryoprobe at 298 K. Spectra were indirectly referenced to the deuterium lock frequency, set to 4.7 ppm .

6. Synthesis and crystallization

The starting materials were standard commercial samples of $95-98 \%$ purity. 4,4'-Dimethyl-2,2'-dipyridyl ($0.92 \mathrm{~g}, 5 \mathrm{mmol}$) and 1,4-dibromobutane ($0.6 \mathrm{~mL}, 1.08 \mathrm{~g}, 5 \mathrm{mmol}$) were added to a mixture of 5 mL each of xylene (mixed isomers, b.p. ca 413 K) and nitrobenzene (b.p. 483 K). The mixture was refluxed for about 5 h , during which time a heavy precipitate formed. After cooling, the crude material was filtered and washed with acetone to yield 1.1 g of a tan-colored powder. Paper electrophoresis of this material at pH 7.5 showed (via UV) a small amount of starting material at $R_{p} c a$ zero and product at $R_{p}-2.2$ (R_{p} is movement relative to picric acid). Crystallization from methanol-acetone gave $0.5-0.6 \mathrm{~g}$ (ca $50 \%)$ of reddish crystals, m.p. $528-530 \mathrm{~K}$ [lit. $528-533 \mathrm{~K}$; Spotswood \& Tanzer (1967)], UV $\max ^{(w a t e r)} 271 \mathrm{~nm}$. IR(Nujol): 3456, 3414, 3372, 1632, 1582, 1566, 1514 1312, 1159, $1032,853 \mathrm{~cm}^{-1}$.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All hydrogen atoms were found in difference-Fourier maps. Those attached to carbon were subsequently included in the refinement using riding models, with constrained distances set to $0.95 \AA\left(\mathrm{Csp}^{2} \mathrm{H}\right), 0.98 \AA$ $\left(R \mathrm{CH}_{3}\right)$, and $0.99 \AA\left(R_{2} \mathrm{CH}_{2}\right)$. Water hydrogen coordinates were refined, but subject to a restraint on the $\mathrm{O}-\mathrm{H}$ distances (SHELXL command SADI). $U_{\text {iso }}(\mathrm{H})$ parameters were set to values of either $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}\left(R \mathrm{CH}_{3}\right.$ only $)$ of the attached atom.

Table 4
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{2+} \cdot 2\left(\mathrm{Br}^{-}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
M_{r}	418.17
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	90
$a, b, c(\AA)$	$7.6402(2), 13.7578(3), 16.7691(3)$
$\beta\left({ }^{\circ}\right)$	$101.162(1)$
$V\left(\mathrm{~A}^{3}\right)$	$1729.30(7)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.69
Crystal size (mm)	$0.16 \times 0.12 \times 0.07$
Data collection	Bruker D8 Venture dual source
Diffractometer	Multi-scan $(S A D A B S ;$ Krause $e t$
Absorption correction	$a l ., 2015)$
	$0.562,0.746$
$T_{\text {min }}, T_{\text {max }}$	$26025,3959,3527$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.029
$R_{\text {int }}$	0.650
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.020,0.043,1.06$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	3959
No. of reflections	198
No. of parameters	1
No. of restraints	H atoms treated by a mixture of
H-atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.38,-0.38$

Computer programs: APEX3 (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008), SHELX (Sheldrick, 2008), CIFFIX (Parkin, 2013), and publCIF (Westrip, 2010).

Acknowledgements

The D8 Venture diffractometer was funded by the NSF (MRI CHE1625732), and by the University of Kentucky.

Funding information

Funding for this research was provided by: NSF (grant No. CHE1625732 to Sean Parkin).

References

Abraham, M. H. \& Grellier, P. L. (1976). J. Chem. Soc. Perkin II 1735-1741.

Alkorta, I., Elguero, J., Roussel, C., Vanthunyne, N. \& Piras, P. (2012). Adv. Heterocycl. Chem., 105, 1-188.
Anderson, R. F. \& Patel, K. B. (1984). J. Chem. Soc. Faraday Trans. 1, 80, 2693-2702.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2016). APEX3 Bruker AXS Inc., Madison, Wisconsin, USA.
Calder, I. C., Spotswood, M. \& Tanzer, C. I. (1967). Aust. J. Chem. 20, 1195-1212.
Derry, J. E. \& Hamor, T. A. (1969). Nature, 221, 464-465.
Derry, J. E. \& Hamor, T. A. (1970). J. Chem. Soc. D, pp. 12841286.

Eliel, E. L., Wilen, S. H. \& Mander, L. N. (1994). Stereochemistry of Organic Compounds. New York: Wiley.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hofbauer, M., Möbius, M., Knoch, F. \& Benedix, R. (1996). Inorg. Chim. Acta, 247, 147-154.
Homer, R. F. \& Tomlinson, T. E. (1960). J. Chem. Soc. pp. 24982503.

Knoch, F., Schmauch, G. \& Kisch, H. (1995). Z. Kristallogr., 210, 7677.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Mancinelli, M., Bencivenni, G., Pecorari, D. \& Mazzanti, A. (2020). Eur. J. Org. Chem. 2020, 4070-4086.
McKinnon, J. J., Spackman, M. A. \& Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.
Menschutkin, N. (1890). Z. Physik. Chem. 5, 589-600.
Parkin, S. (2013). CIFFIX, https://xray.uky.edu/Resources/scripts/ ciffix
Sanchez, M. L. K., Wu, C. H., Adams, M. W. W. \& Dyer, R. B. (2019). Chem. Commun. 55, 5579-5582.
Schmauch, G., Knoch, F. \& Kisch, H. (1995). Chem. Ber. 128, 303-307.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& McKinnon, J. J. (2002). CrystEngComm, 4, 378392.

Spotswood, T. M. \& Tanzer, C. I. (1967). Aust. J. Chem. 20, 1213-1225.
Sullivan, P. D. \& Williams, M. L. (1976). J. Am. Chem. Soc. 98, 17111716.

Talele, H. R., Koval, D., Severa, L., Reyes-Gutiérrez, P. E., Císařová, I., Sázelová, P., Šaman, D., Bednárová, L., Kašička, V. \& Teplý, F. (2018). Chem. Eur. J. 24, 7601-7604.

Thummel, R. P., Lefoulon, F. \& Mahadevan, R. (1985). J. Org. Chem. 50, 3824-3828.
Turner, M.J., Mckinnon, J.J., Wolff, S.K., Grimwood, D.J., Spackman, P.R., Jayatilaka, D. \& Spackman, M.A. (2017). Crystal Explorer 17.5. The University of Western Australia.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zoltewicz, J. A. \& Jacobson, H. L. (1978). J. Org. Chem. 43, 19-23.

supporting information

Acta Cryst. (2020). E76, 1467-1471 [https://doi.org/10.1107/S2056989020011147]

4,15-Dimethyl-7,12-diazoniatricyclo[10.4.0.0 ${ }^{2,7}$]hexadeca-1 (12),2,4,6,13,15hexaene dibromide monohydrate

Edward J. Behrman, Alexandar L. Hansen, Chunhua Yuan and Sean Parkin

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008), CIFFIX (Parkin, 2013), and publCIF (Westrip, 2010).

4,15-Dimethyl-7,12-diazoniatricyclo[10.4.0.0 ${ }^{2,7}$]hexadeca-1(12),2,4,6,13,15-hexaene dibromide monohydrate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{2+} \cdot 2\left(\mathrm{Br}^{-}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=418.17$
Monoclinic, $P 2{ }_{1} / n$
$a=7.6402$ (2) A
$b=13.7578$ (3) \AA
$c=16.7691(3) \AA$
$\beta=101.162(1)^{\circ}$
$V=1729.30(7) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Venture dual source diffractometer
Radiation source: microsource
Detector resolution: 7.41 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.562, T_{\text {max }}=0.746$
$F(000)=840$
$D_{\mathrm{x}}=1.606 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9914 reflections
$\theta=2.8-27.5^{\circ}$
$\mu=4.69 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Irregular shard, pink
$0.16 \times 0.12 \times 0.07 \mathrm{~mm}$

26025 measured reflections
3959 independent reflections
3527 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-17 \rightarrow 17$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.043$
$S=1.06$
3959 reflections
198 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0121 P)^{2}+1.4994 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

Special details

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin \& Hope, 1998).
Diffraction data were collected with the crystal at 90 K , which is standard practice in this laboratory for the majority of flash-cooled crystals.
Geometry. All s.u.s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.s are taken into account individually in the estimation of s.u.s in distances, angles and torsion angles; correlations between s.u.s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.s is used for estimating s.u.s involving 1.s. planes.
Refinement. Refinement progress was checked using Platon (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	0.38758 (2)	0.69802 (2)	0.11426 (2)	0.01809 (5)
Br2	0.09621 (2)	0.58825 (2)	0.34885 (2)	0.01872 (5)
N1	0.54040 (19)	0.38619 (10)	0.23392 (9)	0.0157 (3)
C1	0.5310 (2)	0.34004 (13)	0.16231 (11)	0.0193 (4)
H1	0.470042	0.279632	0.153665	0.023*
C2	0.6074 (2)	0.37819 (13)	0.10161 (11)	0.0190 (4)
H2	0.598713	0.344145	0.051717	0.023*
C3	0.6973 (2)	0.46646 (13)	0.1128 (1)	0.0164 (3)
C4	0.7082 (2)	0.51161 (13)	0.18795 (10)	0.0159 (3)
H4	0.771186	0.571265	0.198231	0.019*
C5	0.6300 (2)	0.47175 (12)	0.24753 (10)	0.0140 (3)
C6	0.4467 (2)	0.34092 (13)	0.29478 (11)	0.0188 (4)
H6A	0.337285	0.307919	0.266189	0.023*
H6B	0.410854	0.392247	0.329762	0.023*
C7	0.5666 (2)	0.26732 (13)	0.34768 (12)	0.0215 (4)
H7B	0.489315	0.219545	0.368381	0.026*
H7A	0.635324	0.231572	0.312750	0.026*
C8	0.7795 (3)	0.51217 (14)	0.04805 (11)	0.0232 (4)
H8A	0.750594	0.473388	-0.001783	0.035*
H8B	0.909326	0.514930	0.066178	0.035*
H8C	0.732611	0.578163	0.037298	0.035*
N1'	0.72247 (18)	0.4864 (1)	0.39609 (8)	0.0136 (3)
C1'	0.7337 (2)	0.53707 (13)	0.46545 (10)	0.0172 (4)
H1 ${ }^{\prime}$	0.792782	0.508916	0.515149	0.021*
C2 ${ }^{\prime}$	0.6619 (2)	0.62861 (13)	0.46625 (10)	0.0170 (3)
H2 ${ }^{\prime}$	0.673762	0.663389	0.515955	0.020*
C3'	0.5719 (2)	0.67031 (13)	0.39448 (11)	0.0161 (3)
C4'	0.5608 (2)	0.61627 (12)	0.32318 (10)	0.0154 (3)
H4'	0.500590	0.642672	0.272967	0.018*
C5'	0.6360 (2)	0.52515 (12)	0.32479 (10)	0.0135 (3)
C6'	0.8162 (2)	0.39082 (12)	0.40077 (11)	0.0169 (4)
H6A ${ }^{\prime}$	0.925433	0.393784	0.443492	0.020*
H6B'	0.852567	0.377516	0.348290	0.020*

C7' $^{\prime}$	$0.6976(2)$	$0.30844(13)$	$0.41992(11)$	$0.0198(4)$
H7A $^{\prime}$	0.629120	0.332138	0.460449	0.024^{*}
H7B $^{\prime}$	0.775237	0.254877	0.445511	0.024^{*}
C8 $^{\prime}$	$0.4859(2)$	$0.76805(13)$	$0.39343(12)$	$0.0210(4)$
H8A $^{\prime}$	0.500384	0.803271	0.344334	0.031^{*}
H8B $^{\prime}$	0.542276	0.804908	0.441597	0.031^{*}
H8C	0.358509	0.760037	0.393689	0.031^{*}
O1W	$0.1964(2)$	$0.49717(11)$	$0.17678(9)$	$0.0297(3)$
H1W	$0.240(3)$	$0.5445(16)$	$0.1598(16)$	0.044^{*}
H2W	$0.168(3)$	$0.5155(19)$	$0.2183(13)$	0.044^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.01962(9)$	$0.02036(9)$	$0.01455(8)$	$0.00295(7)$	$0.00397(6)$	$0.00357(7)$
Br 2	$0.01603(9)$	$0.01993(9)$	$0.01935(9)$	$-0.00218(7)$	$0.00129(6)$	$0.00533(7)$
N 1	$0.0134(7)$	$0.0157(7)$	$0.0178(7)$	$-0.0010(6)$	$0.0022(6)$	$-0.0013(6)$
C 1	$0.0155(8)$	$0.0185(9)$	$0.0229(9)$	$-0.0014(7)$	$0.0012(7)$	$-0.0065(7)$
C 2	$0.0166(8)$	$0.0215(9)$	$0.0181(8)$	$0.0020(7)$	$0.0012(7)$	$-0.0056(7)$
C 3	$0.0146(8)$	$0.0189(9)$	$0.0153(8)$	$0.0046(7)$	$0.0020(6)$	$0.0001(7)$
C 4	$0.0158(8)$	$0.0140(8)$	$0.0173(8)$	$0.0006(6)$	$0.0017(6)$	$0.0005(7)$
C 5	$0.0110(7)$	$0.0144(8)$	$0.0157(8)$	$0.0020(6)$	$0.0004(6)$	$-0.0005(7)$
C 6	$0.0147(8)$	$0.0205(9)$	$0.0220(9)$	$-0.0043(7)$	$0.0054(7)$	$0.0003(7)$
C 7	$0.0199(9)$	$0.0166(9)$	$0.0288(10)$	$-0.0027(7)$	$0.0064(8)$	$0.0033(8)$
C^{2}	$0.028(1)$	$0.0254(10)$	$0.0170(8)$	$0.0006(8)$	$0.0064(7)$	$0.0000(8)$
N1'	$0.0117(7)$	$0.0138(7)$	$0.0148(7)$	$0.0000(5)$	$0.0018(5)$	$0.0018(6)$
C1 $^{\prime}$	$0.0135(8)$	$0.0234(9)$	$0.0138(8)$	$-0.0030(7)$	$0.0005(6)$	$0.0008(7)$
C2 $^{\prime}$	$0.0153(8)$	$0.0218(9)$	$0.0142(8)$	$-0.0034(7)$	$0.0037(6)$	$-0.0048(7)$
C3 $^{\prime}$	$0.0111(8)$	$0.0164(8)$	$0.0213(9)$	$-0.0035(6)$	$0.0045(7)$	$-0.0017(7)$
C4 $^{\prime}$	$0.0130(8)$	$0.0175(8)$	$0.0153(8)$	$-0.0009(6)$	$0.0017(6)$	$0.0013(7)$
C5 $^{\prime}$	$0.0110(7)$	$0.0151(8)$	$0.0143(8)$	$-0.0025(6)$	$0.0021(6)$	$0.0002(7)$
C6 $^{\prime}$	$0.0125(8)$	$0.0157(8)$	$0.0213(9)$	$0.0027(6)$	$0.0006(7)$	$0.0032(7)$
C7 $^{\prime}$	$0.0164(8)$	$0.0184(9)$	$0.0246(9)$	$0.0016(7)$	$0.0044(7)$	$0.0068(7)$
C8 $^{\prime}$	$0.0194(9)$	$0.0172(9)$	$0.0266(9)$	$-0.0003(7)$	$0.0053(7)$	$-0.0036(8)$
O1W $^{\prime}$	$0.0309(8)$	$0.0252(8)$	$0.0342(8)$	$-0.0016(6)$	$0.0096(6)$	$-0.0014(7)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 1$	$1.348(2)$	$\mathrm{N} 1^{\prime}-\mathrm{C} 1^{\prime}$	$1.344(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.359(2)$	$\mathrm{N} 1^{\prime}-\mathrm{C} 5^{\prime}$	$1.358(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.491(2)$	$\mathrm{N} 1^{\prime}-\mathrm{C}^{\prime}$	$1.492(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.372(3)$	$\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}$	$1.375(2)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{C} 1^{\prime}-\mathrm{H} 1^{\prime}$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.390(2)$	$\mathrm{C}^{\prime}-\mathrm{C} 3^{\prime}$	$1.389(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.393(2)$	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	$1.396(2)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.494(2)$	$\mathrm{C} 3^{\prime}-\mathrm{C} 8^{\prime}$	$1.495(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.374(2)$	$\mathrm{C} 4^{\prime}-\mathrm{C}^{\prime}$	$1.377(2)$

C4-H4	0.9500
C5-C5'	1.482 (2)
C6-C7	1.528 (3)
C6-H6A	0.9900
C6-H6B	0.9900
C7-C7'	1.523 (3)
C7-H7B	0.9900
C7-H7A	0.9900
C8-H8A	0.9800
С8-Н8B	0.9800
C8-H8C	0.9800
C1-N1-C5	119.74 (15)
C1-N1-C6	117.59 (15)
C5-N1-C6	122.66 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.59 (17)
N1-C1-H1	119.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.29 (16)
C1-C2-H2	119.9
C3-C2-H2	119.9
C2-C3-C4	116.94 (16)
C2-C3-C8	122.41 (16)
C4-C3-C8	120.65 (16)
C5-C4-C3	121.45 (16)
C5-C4-H4	119.3
C3-C4-H4	119.3
N1-C5-C4	119.97 (15)
N1-C5-C5'	120.37 (15)
C4-C5-C5'	119.58 (15)
N1-C6-C7	111.16 (14)
N1-C6-H6A	109.4
C7-C6-H6A	109.4
N1-C6-H6B	109.4
C7-C6-H6B	109.4
H6A-C6-H6B	108.0
C7'-C7-C6	116.31 (15)
C7'-C7-H7B	108.2
C6-C7-H7B	108.2
C7'-C7-H7A	108.2
C6-C7-H7A	108.2
H7B-C7-H7A	107.4
C3-C8-H8A	109.5
C3-C8-H8B	109.5
H8A-C8-H8B	109.5
C3-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5

C4'-H4'	0.9500
C6'- ${ }^{\prime} 7^{\prime}$	1.523 (2)
C6'- ${ }^{\prime} 6{ }^{\prime}$	0.9900
C6'-H6B'	0.9900
C7'-H7A ${ }^{\prime}$	0.9900
C7'-H7B'	0.9900
C8'-H8A ${ }^{\prime}$	0.9800
C8'-H8B ${ }^{\prime}$	0.9800
C8'-H8C'	0.9800
O1W-H1W	0.809 (19)
O1W-H2W	0.807 (19)
C1'-N1'- ${ }^{\prime} 6^{\prime}$	117.50 (14)
$\mathrm{C} 5^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C}^{\prime}$	122.62 (14)
N1'- Cl^{\prime} - $\mathrm{C} 2^{\prime}$	121.64 (16)
$\mathrm{N} 1^{\prime}-\mathrm{C1}{ }^{\prime}-\mathrm{H} 1^{\prime}$	119.2
$\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{H} 1^{\prime}$	119.2
$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	120.09 (16)
$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	120.0
$\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	120.0
$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	117.37 (16)
$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 8^{\prime}$	121.61 (16)
$\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 8^{\prime}$	121.00 (16)
$\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}$	120.79 (16)
C5'- $\mathrm{C} 4^{\prime}-\mathrm{H} 4^{\prime}$	119.6
C3'- ${ }^{\prime} 4^{\prime}-\mathrm{H} 4^{\prime}$	119.6
N1'-C5'-C4'	120.31 (15)
N1'- ${ }^{\prime} 5^{\prime}-\mathrm{C} 5$	120.15 (15)
C4'- ${ }^{\prime} 5^{\prime}-\mathrm{C} 5$	119.46 (15)
N1'- ${ }^{\prime} 6^{\prime}-\mathrm{C}^{\prime}$	111.60 (14)
N1'- ${ }^{\prime} 6^{\prime}-\mathrm{H}^{\prime} \mathrm{A}^{\prime}$	109.3
C7'-C6'-H6A ${ }^{\prime}$	109.3
$\mathrm{N} 1^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{H} 6 \mathrm{~B}^{\prime}$	109.3
C7'-C6'- ${ }^{\prime} 6 \mathrm{~B}^{\prime}$	109.3
H6A'- C^{\prime} - - $\mathrm{H}^{\prime} \mathrm{B}^{\prime}$	108.0
C6'-C7'-C7	115.78 (15)
C6'- ${ }^{\prime} 7^{\prime}-\mathrm{H}^{\prime} \mathrm{A}^{\prime}$	108.3
C7-C7'-H7A	108.3
C6'-C7'-H7B'	108.3
C7-C7'-H7B'	108.3
H7A'-C7'-H7B'	107.4
C3'- ${ }^{\prime} 8^{\prime}-\mathrm{H} 8 \mathrm{~A}^{\prime}$	109.5
C3'-C $8^{\prime}-\mathrm{H} 8 \mathrm{~B}^{\prime}$	109.5
H8A'- C^{\prime} '- $\mathrm{H}^{\prime} \mathrm{B}^{\prime}$	109.5
C3'- ${ }^{\prime} 8^{\prime}-\mathrm{H} 8 \mathrm{C}^{\prime}$	109.5
H8A'- $\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{H} 8 \mathrm{C}^{\prime}$	109.5
H8B'- C^{\prime} - $-\mathrm{H} 8 \mathrm{C}^{\prime}$	109.5
H1W-O1W-H2W	104 (3)

$\mathrm{C} 1^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 5^{\prime}$	$119.79(15)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-1.2(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$177.51(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.3(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-178.70(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.5(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.50(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$1.0(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-177.65(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5^{\prime}$	$177.79(15)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5^{\prime}$	$-0.8(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-176.45(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\prime}$	$87.25(19)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$-94.09(19)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$83.16(19)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7^{\prime}$	$-1.0(2)$
$\mathrm{C} 5{ }^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}$	
$\mathrm{C} 6^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}$	$175.61(15)$
$\mathrm{N} 1^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}$	

$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	-0.8 (2)
C1'- ${ }^{\prime} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 8^{\prime}$	177.56 (16)
$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	0.2 (2)
C $8^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	-178.18 (16)
C1'-N1'-C5'- ${ }^{\prime} 4^{\prime}$	0.4 (2)
$\mathrm{C} 6^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}$	-176.07 (15)
C1'-N1'-C5'- ${ }^{\prime} 5$	177.22 (15)
C6'-N1'-C5'-C5	0.8 (2)
$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{N} 1^{\prime}$	0.0 (2)
C3'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 5$	-176.85 (15)
N1-C5-C5'-N1'	66.1 (2)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\prime}-\mathrm{N} 1^{\prime}$	-117.12 (18)
N1-C5-C5'- 4^{\prime}	-117.09 (18)
C4-C5-C5'- 4^{\prime}	59.7 (2)
$\mathrm{C} 1^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}$	88.23 (18)
C5'-N1'- ${ }^{\prime} 6^{\prime}-\mathrm{C} 7{ }^{\prime}$	-95.23 (19)
N1'-C6'-C7'-C7	82.48 (19)
C6-C7-C7'- 6^{\prime}	-52.2 (2)

Hydrogen-bond geometry $\left({ }_{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{i}}$	0.95	2.68	$3.5929(18)$	161
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	2.86	$3.7762(18)$	161
$\mathrm{C} 7 — \mathrm{H} 7 B^{\cdots} \cdots \mathrm{Br}^{\mathrm{i}}$	0.99	2.96	$3.7700(19)$	139
$\mathrm{C} 1^{\prime}-\mathrm{H} 1^{\prime} \cdots \mathrm{Br}^{\mathrm{iii}}$	0.95	2.64	$3.5765(17)$	170
$\mathrm{C}^{\prime}-\mathrm{H} 2^{\prime} \cdots \mathrm{Br}^{\mathrm{iv}}$	0.95	2.82	$3.6285(17)$	143
$\mathrm{C} 4^{\prime}-\mathrm{H} 4^{\prime} \cdots \mathrm{Br} 1$	0.95	2.74	$3.6735(17)$	167
$\mathrm{C} 7^{\prime} — \mathrm{H} 7 B^{\prime} \cdots \mathrm{Br} 1^{\mathrm{v}}$	0.99	3.04	$3.6581(18)$	122
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{Br} 1$	$0.81(2)$	$2.58(2)$	$3.3856(15)$	$177(3)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Br} 2$	$0.81(2)$	$2.56(2)$	$3.3670(15)$	$175(3)$

Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (ii) $-x+1,-y+1,-z$; (iii) $-x+1,-y+1,-z+1$; (iv) $x+1 / 2,-y+3 / 2, z+1 / 2$; (v) $-x+3 / 2, y-1 / 2,-z+1 / 2$.

