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		  Different individuals have different degrees of neuroplasticity due to their different experiences. Neuroplasticity 
may play a role in individual differences among neuropsychiatric disease treatment efficacy. Since the nervous 
system monitors and coordinates internal organ function, neuroplasticity may be associated with other dis-
eases. Cardiovascular disease (CVD) is associated with depression, which is a disorder of disrupted neuroplas-
ticity. MicroRNA-132 (miR-132) has a roles in neuroplasticity and cardiovascular function. Thus, we hypothe-
size that miR-132 may play a role in coexistence of depression and CVD.
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Background

Neuroplasticity is the ability of the nervous system to respond 
to intrinsic or extrinsic stimuli by reorganizing its structure, func-
tion, and connections [1]. Individuals show different degrees of 
neuroplasticity due to their different courses of growth [2]. It 
has been documented that even monozygotic twins may de-
velop differing neural structure and function despite having an 
identical genetic background [2]. For instance, some monozy-
gotic twins are discordant for many diseases, such as bulimia 
nervosa, schizophrenia, and bipolar disorders, and even in sex-
ual orientation [3–6]. Experiences prior to a cerebral injury may 
influence not only spontaneous recovery but also the efficacy 
of post-injury treatment [7]. Thus, we propose that neuroplas-
ticity may play a role in individual differences in the treatment 
response of neuropsychiatric diseases [2]. Since the nervous 
system monitors and coordinates internal organ function, neuro-
plasticity may be associated with other diseases. Cardiovascular 
disease (CVD) is associated with depression, and depression is 
closely related to neuroplasticity. MicroRNA (miR) is receiving 
intense research interest at present and microRNA-132 (miR-
132) has roles in neuroplasticity and cardiovascular function. 
Here, we focus on miR-132 as a common component to dis-
cuss the mechanism of coexistence of depression and CVD.

CVD is Associated  with Depression

Depression significantly increases the risk of incident CVD. 
Many prospective and retrospective studies have investigated 
the association of depression and incident CVD. These stud-
ies showed that depression is independently associated with 
CVD and mortality due to causes such as coronary heart dis-
ease, heart failure, myocardial infarction, ischemic heart dis-
ease, and stroke [8–13]. Lifetime association between major 
depression (MD) and coronary artery disease (CAD) was mod-
est (odds ratio, approximately 1.3). The effect of MD on CAD is 
largely acute, and the longer-term effects are apparently me-
diated via recurrence of depression [14]. Some studies have 
demonstrated a significant positive correlation with a moder-
ate effect size of 1.5–2.7 between depression and CVD [15]. 
Similarly, several studies have investigated the role of depres-
sion status as a prognostic factor in patients with CVD. Meta-
analysis of these studies suggests that depressed patients 
have a 1.6–2.7-fold increased risk for further cardiovascular 
events within 24 months [16,17].

Depression is a Disorder of Disrupted 
Neuroplasticity

It is broadly accepted that stress triggers the activation of the 
HPA axis and causes the brain to be exposed to corticosteroids, 

affecting neurobehavioral functions with a strong down-regu-
lation of hippocampal neurogenesis, and is a major risk factor 
for depression [18–20]. Chronic or severe stress and high-dose 
treatment with glucocorticoids decrease hippocampal syn-
aptic plasticity and morphological neuroplasticity. Prolonged 
stress can negatively affect hippocampal function and its ca-
pacity for neuroplasticity. Additionally, chronic restraint stress 
leads to significant regression of the apical dendrites of py-
ramidal cells in the medial prefrontal cortex (mPFC) and neg-
atively affects mPFC function. Glial loss and neuronal abnor-
malities have been observed in the prefrontal cortex in MD. 
Noradrenergic axons have been found with decreased axonal 
arborization and density after exposure to stress. Increasing 
evidence demonstrates that depression is a disorder of dis-
rupted neuroplasticity [21]. Accumulating evidence shows that 
antidepressant treatment may reverse the atrophy of hippo-
campal neurons, increase cell survival, and increase mono-
amine axonal sprouting [22].

Brain-derived neurotrophic factor (BDNF) signaling, through 
its tyrosine kinase B (TrkB) receptor, plays an important role 
in neuroplasticity. BDNF has also been shown to be expressed 
at high levels in the hippocampus and to play an important 
role in synaptic transmission and in the plasticity of the hip-
pocampus [23,24]. BDNF also mediates some of the injurious 
effects of glucocorticoids on the hippocampus [25,26]. BDNF 
expression is regulated by stress-responsive corticosteroids, 
and increased glucocorticoid exposure induces a reduction in 
BDNF level [27]. Chronic stress has been shown to result in 
alterations in BDNF/TrkB signaling and changes in neuronal 
functions [28]. Serotonergic axon sprouting appears to be de-
pendent on BDNF, which appears to be decreased after stress 
exposure. Thus, stress and depression may increase neuronal 
atrophy degeneration. Furthermore, hippocampal neurons con-
tinue to proliferate well into adulthood. This continued neu-
rogenesis depends on the presence of BDNF and serotonin, 
both of which are altered in depression, and are inhibited by 
glucocorticoids [29,30]. Most circulating BDNF is produced in 
the brain and passes through the blood–brain barrier [31], 
so serum BDNF level can be a biomarker for depression [32].

MiR-132 is an Activity-Regulated MiR 
Controlling Neuroplasticity

MiRs are short, non-coding, single-stranded RNA molecules 
approximately 19–23 nucleotides in length that regulate gene 
expression by binding to complementary elements in the un-
translated regions of target mRNAs and inhibiting protein syn-
thesis [33–35]. Based on sequence homology, each miR has 
the potential to regulate the translation of hundreds of differ-
ent genes [36], and greater than 30% of all mammalian genes 
may be regulated by miRs [37].
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MiR-132, a highly conserved miR transcribed from an intergen-
ic region on human chromosome 17 by the transcription fac-
tor cAMP response element-binding protein (CREB), is a key 
coordinator of the intracellular pathways that mediate expe-
rience-dependent changes in the brain [38–40]. Using an un-
biased genome-wide screen for CREB-bound transcripts in vi-
tro, Impey et al. [41] identified 16 non-coding miR that are 
induced by CREB-mediated transcription. Further characteriza-
tion of 1 of these, miR-132, has recently revealed that it is in-
duced by BDNF and neuronal activity, being demonstrated to 
affect neuronal characteristics such as neurite outgrowth and 
cell excitability [40,42,43]. miR-132 is able to modulate den-
dritic morphology via suppression of a specific target, p250 
GTPase-activating protein, and regulate cellular excitability via 
regulation of ion channels [40,42,43].

Interestingly, the CREB-dependent miR-132 has been shown 
to control the development of dendrites and spines, and syn-
aptic integration in cultured hippocampal neurons and new-
born hippocampal neurons [40,42,44–48]. For example, it was 
reported that knockout of the miR-212/132 locus using con-
ditional transgenic mice or knockdown of miR-132 using viral 
vectors induced reduced dendritic complexity and spine den-
sity, respectively, in newborn neurons of the adult hippocam-
pal neurogenic zone [47,48]. The dendritic effect was shown 
to be preferentially due to miR-132 loss. A recent study has 
demonstrated that miR-132 is rapidly transcribed in the hip-
pocampus in vivo following enhanced neuronal activity and 
contextual fear conditioning [39]. Based on the document-
ed ability of miR-132 to regulate cellular characteristics in an 
activity-dependent manner, Lambert et al. [49] has provided 
evidence that overexpression of miR-132 in cultured hippo-
campal neurons leads to selective changes in short-term syn-
aptic plasticity.

BDNF is essential for a variety of neuronal aspects, including 
cell differentiation, survival, and synaptic plasticity in the cen-
tral nervous system (CNS). Intriguingly, a recent study suggests 
that BDNF exerts its beneficial effects on CNS neurons via up-
regulation of miR-132 [50]. BDNF increases CREB activation; 
the CREB pathways are among the most critical and are the 
pathways on which BDNF exerts its effects [51]. Therefore, it 
is concluded that BDNF affects CNS by CREB-miR-132 path-
way. Additionally, increased blood levels of glucocorticoids 
cause suppression in BDNF-dependent neuronal function via 
reducing miR-132 expression [52].

The dysfunction of adult hippocampal neurogenesis is proposed 
to be an essential mechanism explaining the etiology of de-
pression. BDNF, CREB, and glucocorticoids are the key compo-
nents for hippocampal neurogenesis, all of which are directly 
related to miR-132. Thus, it is suggested that miR-132 plays 
an important role in the etiology of depression.

MiR-132 has Functions in the Cardiovascular 
System

There is scant literature on the function of miR-132 in the 
cardiovascular system. However, the existing literature sug-
gests that miR-132 has functions in the cardiovascular system.

The cardiovascular system is controlled by the nervous system, 
mainly by the autonomic nervous system; therefore, BDNF can 
influence the cardiovascular system via the autonomic nervous 
system. BDNF is important for autonomic nervous system func-
tion. BDNF is known to play an important role in regulating the 
survival of neurons in the autonomic nervous system and the 
formation of their synaptic connectivity with their peripheral 
targets in the cardiovascular, digestive, and other organ sys-
tems. Emerging evidence suggests that BDNF may also affect 
the function of the autonomic nervous system during adult 
life and may, in part, mediate the effects of environmental fac-
tors, such as exercise and dietary energy intake, on autonomic 
nervous system neurons and target cells [53]. BDNF has also 
been shown to be a modulator of visceral sensory transmis-
sion, suggesting that BDNF is involved in maturation and/or 
plasticity in the arterial baroreceptor pathway [54]. As noted 
above, BDNF influences CNS via the CREB-miR-132 pathway, and 
most of circulating BDNF is produced in the brain and passes 
through the blood-brain barrier. Thus, it is suggested that miR-
132 may play an important role in cardiovascular function via 
the autonomic nervous system. Additionally, BDNF may also 
influence energy homeostasis through its role in neurogene-
sis and in the neuroplasticity of the HPA axis [55–57], and is 
involved in the maintenance of cardiometabolic homeostasis 
[58]. Therefore, it is suggested that miR-132 may also influ-
ence cardiovascular function via the HPA axis.

Endothelial dysfunction is a critical step in development of 
CVD pathology, such as hypertension, atherosclerosis, and 
thrombosis [59–61]. The action of vascular endothelial growth 
factor (VEGF) is essential to maintain proper endothelial and 
vascular function [62]. The major function of VEGF is angio-
genesis [63]. VEGF stimulates virtually all aspects of endothe-
lial function: proliferation, migration, permeability, and nitric 
oxide production and release. In addition, the action of VEGF 
makes the endothelium anti-apoptotic. In turn, the inhibition 
of VEGF action is associated with endothelial dysfunction [62].

The effect of VEGF on the endothelium is related to miR. 
Research on effects of miR on the endothelium has been con-
ducted, showing that miR-132 is an angiogenic growth factor 
inducible miR in the endothelium [64,65]. VEGF triggers phos-
phorylation of CREB and subsequent transcription of miR-132. 
MiR-132 downregulates p120 Ras GTPase-activating protein, 
thereby removing the endogenous brake on Ras activity and 
activating quiescent endothelium [65].
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MiR-132 mediates the deleterious effect of angiotensin II in 
vascular smooth muscle cells [66]. However, endothelial dys-
function is the first step to CVD and plays a central role in its 
pathogenesis [67]. Additionally, miR-132 may have an impor-
tant role in cardiovascular function via the autonomic nervous 
system and the HPA axis. BDNF also maintains vessel stabil-
ity in the heart through direct angiogenic actions on endo-
thelial cells [68]. Although at present there is no literature on 
the role of miR-132 in BDNF-induced angiogenesis, it is likely 
that CREB and miR-132, which are the common components 
in BDNF-induced neuroplasticity and VEGF-induced angiogen-
esis, are involved in the mechanism. Thus, the positive effect 
of miR-132 on the cardiovascular system may be greater than 
the negative one. For example, Katare et al. [69] investigat-
ed the therapeutic activity and mechanistic targets of saphe-
nous vein-derived pericyte progenitor cells (SVPs) in a mouse 
myocardial infarction model and concluded that SVP trans-
plantation produces long-term improvement of cardiac func-
tion by a novel paracrine mechanism involving the secretion 
of miR-132 and inhibition of its target genes. Furthermore, a 
study of long-term b-adrenergic administration on the expres-
sion levels of the cardiac L-type Ca channel b2 subunit, which 
regulates channel trafficking and function, showed that car-
diac L-type Ca channel b2 subunit protein expression may be 
down-regulated by miRs, including miR-132, in response to 
long-term activation of b-adrenergic signaling, possibly as an 
adaptive response in cardiac hypertrophy and sustained b-ad-
renergic states [70].

Hypothesis

MiR-132 has functions in both the nervous and cardiovascular 
system. Stress decreases BDNF level. Low BDNF level reduces 
CREB activation, resulting in down-regulation of miR-132, and 
then disrupts neuroplasticity and leads to depression. Stress 

also increases the level of glucocorticoid, and increased glu-
cocorticoid level also down-regulates miR-132. MiR-132 may 
affect cardiovascular function by the autonomic nervous sys-
tem and the HPA axis. Circulating BDNF, most of which is pro-
duced in the brain and passes through the blood–brain barrier 
[31], may also influence cardiovascular function involving miR-
132. In addition, miRs are also found in microvesicles, which 
are plasma membrane fragments shed from virtually all cells 
[71]. Microvesicles circulate in peripheral blood, where they 
transport mRNA and proteins between cells and play a pivot-
al role in cell-to-cell communication. They are also implicated 
in the process of angiogenesis [72]. Recent studies also raise 
the possibility that CNS-derived vesicles may enter the blood-
stream and interact with endothelial cells in the peripheral cir-
culation [73], suggesting that the synthesis of miR-132 in the 
brain may be related to miR-132 level in the cardiovascular 
system. Thus, we hypothesize that miR-132 may play a role in 
coexistence of depression and CVD. Figure 1 presents an inte-
grative model that shows the possible role of miR-132 in coex-
istence of depression and CVD. This model is not intended to be 
complete or all-encompassing, but rather to highlight and con-
nect certain interesting evidence pointing to this miR-132 role.

Based on this hypothesis, miR-132 may be a potential target 
for treating depression and CVD. Both depression and CVD 
may benefit from up-regulated miR-132, and more research 
should be conducted in this field.
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Stress

Glucocorticoids ↑

Brain miR-132 ↓ Autonomic nervous system

Hippocampus Cardiovascular system

CVDDepression

BDNF ↓ Peripheral miR-132 ↓

HPA axis

Figure 1. �An integrative model that shows 
the possible role of miR-132 in 
coexistence of depression and 
CVD. miR-132 may play a role in 
pathogenesis of coexistence between 
depression and CVD. Abbreviations: 
HPA, hypothalamus-pituitary-adrenal; 
BDNF, brain-derived neurotrophic 
factor; miR-132, microRNA-132; CVD, 
cardiovascular disease.
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