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Abstract

In analysis of the human connectome, the connectivity of the human brain is
collected from multiple imaging modalities and analyzed using graph theoretical
techniques. The dimensionality of human connectivity data is high, and making
sense of the complex networks in connectomics requires sophisticated
visualization and analysis software. The current availability of software packages to
analyze the human connectome is limited. The Connectome Visualization Utility
(CVU) is a new software package designed for the visualization and network
analysis of human brain networks. CVU complements existing software packages
by offering expanded interactive analysis and advanced visualization features,
including the automated visualization of networks in three different complementary
styles and features the special visualization of scalar graph theoretical properties
and modular structure. By decoupling the process of network creation from network
visualization and analysis, we ensure that CVU can visualize networks from any
imaging modality. CVU offers a graphical user interface, interactive scripting, and
represents data uses transparent neuroimaging and matrix-based file types rather
than opaque application-specific file formats.

Introduction

A foremost aspiration in neuroscience is understanding the connectivity of the
human brain. Recent years have seen considerable growth of interest in the human
connectome, the effort to map the entire connectivity of the human brain. The
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analysis of this high-dimensional connectivity data presents a particularly
challenging problem. The emerging field of connectomics has risen to meet this
challenge, leveraging new advances in graph theory to understand human brain
function and leading to the development of multi-institution initiatives such as
the Human Connectome project [1].

The field of connectomics began with work on the C. Elegans, a roundworm
whose neural connectivity was completely characterized, creating a network with
302 neurons [2]. In a seminal discovery about the complex organization of graphs,
the nervous system of C. Elegans as well as other complex networks from
numerous domains were shown to exhibit small-world organization [3]. Graph
theoretical approaches lending new insight to the dynamics of complex networks
began to proliferate, including in the study of social networks, the internet, and
food webs [4].

More recently, the study of complex brain networks by analysis of graph
theoretical properties has become exceptionally popular. In addition to small-
world organization, whole brain networks have shown various nontrivial
properties, including scale-free distribution [5], rich-club organization [6] and the
hierarchical organization of networks on multiple scales [7, 8].

Graph theory has led to insights on clinical populations. In epilepsy, small
world organization is reduced during ictal activity compared to interictal activity
[9], and also reduced at rest compared to healthy controls [10], The default mode
network in epilepsy patients also shows altered structural connectivity compared
to healthy controls [11,12]. Whole brain networks have also demonstrated
applications to schizophrenia [13, 14], Alzheimer’s disease [15], attention-deficit/
hyperactive disorder [16], and personality traits [17].

Mapping the human connectome non-invasively is currently being pursued
using multiple imaging technologies. Connectomics has focused most closely on
resting state fMRI [18] and diffusion MRI [19]. However, network studies of
resting state electrophysiological recordings such as electroencephalography
(EEG) and magnetoencephalography (MEG), which directly measure neural
currents at high temporal resolution [20-22], as well as networks derived from
cortical thickness measurements [23], have also been used. Many different analysis
techniques exist to estimate connectivity in the brain in each of these modalities.

In order to map the human connectome, sophisticated visualization and
analysis tools are required. A wide variety of free and open source software
packages for the analysis of neuroimaging connectivity data are readily available.
Most software packages currently available are integrated brain network tools that
are designed for processing a single imaging modality Such packages include
Camino [24], MNE [25, 26], dipy [27], Brainstorm [28], the Connectome Mapper
[29], the MR Connectome Analysis Pipeline [30] and many other unpublished
packages. As these packages are typically specialized for processing a particular
modality, they have only limited visualization features, and are not necessarily
designed to analyze multi-modal data.

There are a number of software packages designed for the visualization and
analysis of domain-general complex networks, such as Pajek [31] and Gephi [32].
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Notably, there are several software packages specially designed for visualization
and analysis of the human connectome: the Connectome Viewer [33], the
BrainNet Viewer [34], and the VisualConnectome toolbox (http://code.google.
com/p/visualconnectome). Building on visualization features from these packages,
we sought to provide new interactive features for the visualization of structural
and functional connectivity, and make visualization a more interactive process.

Here, we introduce a general-purpose, free, and open source software package
written in python specially designed for the visualization of multi-modal human
brain networks: the Connectome Visualization Utility (CVU). CVU is a
standalone application with an intuitive graphical user interface (GUI) that
automatically generates powerful, interactive visualizations of human brain
networks from common matrix and imaging file formats. It is decoupled from the
process of connectivity estimation and network creation, and can therefore be
easily used to visualize networks from any imaging modality. CVU is designed
with the visualization of complex graph theoretical properties in mind and allows
network statistics to be easily incorporated into the visualization.

In this manuscript, we describe the features, usage, implementation and
software dependencies of CVU. We illustrate the power of CVU’s visualizations
with example networks constructed from data from the Human Connectome
Project. In the following section, we will briefly review the practice and findings of
network analysis of human brain networks. As CVU is a visualization tool that
requires a fully formed network as input, we will describe some schemes for
creating brain networks and provide a limited review of other software packages
that perform the network construction and can be used alongside CVU. Finally,
we will review the advantages and limitations of CVU, and describe possible
future directions for research.

Methods and Results

CVU is an integrated application designed for the interactive visualization of

human brain networks. Here we illustrate the features of CVU with sample fMRI,
diffusion MRI, and MEG datasets, show the software dependencies, and suggest
how to integrate CVU into an analysis workflow. The basic workflow is shown in

Figure 1.

1. Implementation

Human brain networks in CVU are represented by two main components: an
adjacency matrix and its accompanying parcellation.

In CVU, complex networks are represented internally as adjacency matrices.
These matrices can be specified as any one of a variety of common matrix formats,
including MATLAB (The Mathworks, Natick MA) and numpy [35] formats, as
well as plain text files. Most work on human brain networks has focused on
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Figure 1. Basic workflow to create visualizations in CVU. The cortical surface is parcellated into ROlIs,
while connectivity matrices can be constructed from a variety of imaging modalities. The parcellation and
matrix are both loaded into CVU via the graphical user interface, shown at the bottom.

doi:10.1371/journal.pone.0113838.9001

undirected (symmetric) connectivity — for simplicity, in current versions of CVU,
all networks are represented as undirected.

Cortical and subcortical parcellations provide the ROIs that are used as network
nodes in CVU. In CVU, parcellations are displayed as nodes located on or near the
cortical surface. It is possible to specify parcellations in three ways: as parcels of
surface vertices, collections of voxels, or ROI coordinate centers described in a
stereotaxic space. Parcellations are specified by specifying a surface file and several
parcellation files depending on the method. Surface files store geometric
information about the morphometry of the cortex, can be created using
FreeSurfer, an open source imaging analysis suite (http://surfer.nmr.mgh.harvard.
edu/), and can be specified in either the native FreeSurfer format or the more
general GIFTI format. In order to display the parcellation on the surface, it is
necessary (but not required to run the program) to additionally provide a 4 x 4
registration matrix in any matrix format between the parcellation volume and the
anatomical surface space.

Because annotation files representing surface parcellations typically only cover
the cortical surface, in order to specify the locations of subcortical structures, a
segmentation file can additionally be specified. The segmentation file is an MRI
volume with specific hard-coded values to indicate the locations of numerous
cortical and subcortical strutures. Segmentation is done using FreeSurfer [36] and
the segmentation file can be provided in native FreeSurfer or other imaging
formats such as NIFTL
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The identity of the ROIs in the matrices is determined by plaintext ordering files
which accompany data in CVU. Ordering files are text files with one ROI name on
each line. The first row and column of the matrix correspond to the region listed
on line 1 of the corresponding ordering file, and so on. The location of the ROI in
anatomical space is then determined by identifying the same node as specified in
the parcellation. If the ROI name corresponds to a predefined set of subcortical
structures, its location is determined by examining the segmentation file instead.

As CVU is a tool for visualization of abstract networks, visualization of
individual subject morphology is not always a priority. CVU is designed so that
subject specific morphology can be used if necessary; however, for most use cases,
an average brain is preferred due to its lower speed and memory requirements,
and simpler visualization. For convenience, CVU provides surface and
segmentation files for the fsaverage5 brain, as well as a number of parcellation
schemes. Specifically, annotations are provided for the multi-resolution surface
parcellations described in [37], as well as the Destrieux and Desikan
reconstructions automatically generated by FreeSurfer reconstruction [38,39].

For parcellations of more than a few nodes, visualization of the entire network
with many connections does not produce an easily interpretable result.
Furthermore, at very high network resolution visualization can become quite
slow, though this depends on the hardware. For these reasons, CVU automatically
cuts off all but the strongest 500 connections in order to balance visualization and
performance, while still offering control of these parameters to the user so that
more connections can be shown if desired.

While CVU contains a graphical user interface through which users can interact
with and load data, it also contains a scripting window and a scripting mode so
that advanced users can leverage the power of python and interact with the
underlying data structures and visualizations directly.

2. Visualization

Determining the best visualization for a complex network may be difficult due to
the high dimensionality of the data. In graph theory, the two most common types
of visualizations are node link diagrams, which display links between nodes as lines
of arbitrary orientations, and matrices, in which nodes comprise the rows and
columns while the matrix entries correspond to links. The best visualization
depends on the structure of the dataset and the desired task — it has been argued
that node link diagrams are more intuitive for graphs with few nodes, but are
inferior to matrix representations when the number of nodes is large [40].

To reduce the complexity of visualizing high-dimensionality data, CVU
provides three types of interactive, integrated visualizations: the 3D Brain view,
the Matrix view, and the Circle view. These three visualizations are designed to
offer complementary overviews of the same data, so as to maximize the amount of
information that can be accrued at a glance. The views are linked, and update
simultaneously when the data changes. The complexity of the data is further
reduced by a number of interactive features, which can further expand the
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Figure 2. Visualizing networks in CVU. A) Clicking on a node in the network will show only isolated
connections to that node. Thresholded connectivity to a rostral middle frontal ROI is displayed. B) Networks
from a single subject and constructed from three different imaging modalities are shown. Topological
differences in the three networks are immediately apparent upon visualization. Stronger connections are
shown in red while weaker connections are shown in yellow.

doi:10.1371/journal.pone.0113838.9002

number of possible views by isolating certain connections or by rotating the 3D
brain. The three main views are presented directly to the user when the program is
launched or when new connectivity data is supplied, with no intermediate
scripting necessary. If the user launches the program without specifying any data,
a sample dataset showing MEG synchronization likelihood connectivity [41] from
one subject is loaded automatically. The GUI, as it appears immediately upon
launching the program with no data, is shown in Figure 1.

In the 3D Brain view, a transparent cortical surface is displayed along with a
node link representation, in which nodes are located in a realistic spatial scale
inside the brain. This view is similar to visualizations found in the Connectome
Viewer toolbox [33] and the UCLA Multimodal Connectivity Database [42], and
has novel interactive features including the ability to interactively isolate
connections — for instance, left clicking on a node will show only the connections
to that node (see Figure 2a) and the node’s label will be displayed.

In some cases the visualization of networks alone can lend insight into complex
topological properties. Example multi-modal networks for a single subject from
the Human Connectome Project are shown in Figure 2b. Networks were
constructed from high b-value generalized Q-space diffusion imaging [43] using
fiber counts, fMRI using correlation, and MEG using synchronization likelihood
[41]. The fMRI network is characterized by the predominance of lateral
connections between homologous regions. By contrast, the diffusion and MEG
networks have less lateral connectivity, instead consisting mostly of short range

PLOS ONE | DOI:10.1371/journal.pone.0113838 December 1, 2014 6/18



@'PLOS | ONE

Connectome Visualization Utility Software for Human Brain Networks

A alphabetical order

left

. right
hemisphere

hemisphere

REVER B ELE A A0 EEULEE CEEE
T T T T

B anatomically principled order
left frontal right
hemisphere hemisphere

parietal

occipital

temporal

T L T

Figure 3. Effect of ROI order on visualization. A) Matrix and circle views for a single subject matrix
constructed from correlations between BOLD signals, using an unprincipled ordering with ROls ordered
alphabetically by region name. Stronger connections are shown in orange while weaker connections are
shown in blue. The node’s anatomical grouping is given by the colors on the sides on the matrix. B) The same
network shown using a principled anatomical ordering, beginning in medial frontal cortex, wrapping around
parietal and occipital cortex, and ending at temporal pole. When the principled ordering is used, gains are
especially seen in the circle view as short-range connections are grouped together to produce less visual
clutter. Stronger connections are shown in dark red while weaker connections are shown in yellow. The colors
on the circumference represent the same node identities as in the matrices.

doi:10.1371/journal.pone.0113838.9003

connections. Depending on the analysis constraints, with visualization it is
sometimes possible to determine some properties of the data, such as the modality
of acquisition, solely by inspection. Accordingly, visualization of the network can
serve as an important quality control before performing further statistical analysis.

In the matrix and circle views, nodes are positioned along the sides of a square
matrix, or on the circumference of a circle, respectively (see Figure 3). Matrix
entries and arcs between circle nodes are used to represent connections. Circular
ideograms similar to the circle view exist in the open source software packages
MNE python [25] and Circos [44]. Both the matrix and circle views are affected
by the order in which the nodes are positioned. Figure 3 shows different
visualizations of the fMRI network from figure 2 with two different node
orderings. The first ordering is an unprincipled organization in which nodes are
ordered alphabetically by region name; the second shows nodes ordered by
anatomy, beginning in the frontal lobe, wrapping around the parietal and
occipital lobes, and ending at the temporal pole. The anatomically principled
ordering shows the structure of the dataset — primarily comprised of connections
with strong lateral connectivity — much more clearly.

Each of the three views — the 3D brain, connectivity matrix, and connectivity
circle, is updated simultaneously whenever parameters of the visualization change.
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Figure 4. Visualizing scalar data in CVU. Node strength (weighted degree) is shown for the thresholded
networks shown in Figure 2. The node strength corresponds to the size and color of the node. Nodes marked
by large dark green spheres have high strength, and small light green spheres represent lower strength.

doi:10.1371/journal.pone.0113838.g004

Any of the three views can be exported to high resolution images for figure
generation. In addition, the 3D brain can also record movies which capture user-
defined interactive camera movements and can also optionally include a simple
animation to rotate the displayed brain.

3. Network statistics

Complex networks are described by quantitative graph theoretical properties. To
characterize these networks, various network statistics are computed, such as the
clustering coefficient [3], local efficiency [45], centrality [46,47], and modularity
[4,48]. CVU natively calculates and displays a range of weighted and binary,
nodal and global network statistics. These measures can then be displayed
topographically on the network, affording an overview of statistical patterns
throughout the whole brain at a glance. Statistics computed by CVU can also be
saved to disk as common matrix file formats. Any scalar metrics which CVU does
not calculate natively can additionally be imported and displayed inside the
program.

An example of network statistics calculated for multi-modal networks is shown
in Figure 4, using the same networks from Figure 2. Networks for a single subject
were constructed from resting state fMRI, high b-value Q-space diffusion
imaging, and resting state MEG. The weighted degree of each node is displayed as
the size and color of the sphere in the node, although it is also possible to use the
size and color to represent two unrelated variables. Networks constructed from
these different modalities show highly different topology: the most important
nodes in the diffusion network are clustered around the white matter tracts in
cingulate cortex, while in the resting state fMRI and MEG networks the strongest
nodes are distributed widely throughout different areas of the neocortex.

One statistic of particular interest in visualization is the modular structure of
brain networks. In order to calculate modular structure, CVU utilizes an
algorithm to automatically identify the optimal modular structure by iteratively
maximizing modularity [49], which is effective even when the optimal number
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determined using a spectral modularity maximization algorithm. The resulting modules are displayed in different randomly selected colors. The order of

modules is randomized. B) The module corresponding most closely to the default mode network is isolated in each network and shown in both the 3D brain
and circle views. Only connections with both ends in the module are displayed. Stronger connections are shown in red while weaker connections are shown
in yellow. Nodes inside the default mode module are shown in purple while other nodes are shown in blue.

doi:10.1371/journal.pone.0113838.9005

and size of communities is not known. A fine-tuning algorithm to further
optimize the modularity is then applied [50].

PLOS ONE | DOI:10.1371/journal.pone.0113838 December 1, 2014
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Modular structures for the multi-modal networks shown in Figures 2 and 4 is
displayed in Figure 5. In figure 5A, all modules found by a modularity
maximization algorithm are displayed. In 5B, nodes in each modality from a single,
automatically generated module corresponding closely to the default mode network
[51] are isolated. Notably, the modules from Q-space diffusion imaging and MEG
do not show perfect overlap with the classic default mode network, and especially so
in the MEG network where the module contains sensory and motor regions.
However, this result is not unexpected. Although previous attempts to isolate the
default mode network using resting state MEG have been variously successful, they
show that in MEG the default mode network is transient and that cross-hemispheric
connectivity in homologous regions is sparse at frequencies above 1-2 Hz [52, 53].

To calculate network measures, CVU uses bctpy, the Brain Connectivity
Toolbox for python. Betpy is our group’s translation of the Brain Connectivity
Toolbox [54], a rich open-source library written in MATLAB for the analysis of
brain networks. In contrast to the Brain Connectivity Toolbox, bctpy is written in
pure python, alleviating the need for a nonfree MATLAB license and allowing the
easy integration of network analysis into a python workflow without introducing
additional dependencies.

4. Technical details

CVU depends extensively on other tools written in python. For interactive 3D
visualization, CVU depends on the Mayavi library [55]. For 2D interactive
plotting, CVU uses the chaco (http://code.enthought.com/projects/chaco) and
matplotlib [56] libraries. The GUI is written using the traitsui framework (http://
code.enthought.com/projects/traits_ui/) and supports both the Qt and wxwidgets
toolkits.

Installation of CVU requires the installation of a scientific python distribution
such as Enthought Canopy (http://www.enthought.com) or Anaconda (https://
store.continuum.io/cshop/anaconda/) which satisfies most of CVU’s dependen-
cies. CVU has been tested with both Anaconda and Enthought Canopy and works
fully in both python environments. After installing the scientific python
distribution, it is necessary to install CVU as well as three additional
dependencies: bctpy, MNE-python [26], and nibabel (http://www.nipy.org). Use
of an installer such as ‘easy-install’ from python’s setuptools modules is
recommended to install CVU and its dependencies. A launcher script is provided
alongside the source code to run the program.

CVU additionally has two optional dependencies. First, the cross-platform
audio/video transcoding program FFmpeg (http://www.ffmpeg.org) is needed for
creating movies from the 3D brain. Second, FreeSurfer is needed to define surface
parcellations and create subject-specific surfaces, but is not needed to run CVU.

CVU is cross-platform software. CVU has been tested and runs on Linux, Mac
OS X, and Windows. Almost all features in CVU are fully functional across
platforms; however, creating movies from the 3D brain is only possible on Linux
and Mac OS X systems running the X window system.
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CVU can be scripted interactively, either by entering valid python code into the
interactive shell, or by providing standalone scripts written in valid python.
Standalone scripts are run by providing the script as an argument to CVU’s
launcher script. In addition, standalone scripts can be called interactively from the
shell. These scripting features operate on the internal data structures directly, with
several scripting helper functions additionally available for common operations,
(e.g. loading a new adjacency matrix). Instructions on how to perform many
useful operations in scripting mode are included in the documentation.

5. Software License

CVU is licensed under the GNU General Public License version 3, or optionally
any later version. This is a free software license, such that CVU may be freely
redistributed and modified by any party, and may also be used in commercial
applications. However, when distributing the software, the imposition of any
restrictions on any further redistribution is prohibited.

6. Ethics statement

The sample data shown in this manuscript was collected with the approval of the
Massachusetts General Hospital IRB. Subjects gave written informed consent, and
the Massachusetts General Hospital IRB approved the consent procedure.

Discussion

In this paper we have described the Connectome Visualization Utility, a free and
open-source software package dedicated to the visualization of the human
connectome. CVU offers three different complementary interactive visualizations
that efficiently depict complex brain networks of any scale and modality, as well as
an easy-to-use GUI, a host of well-documented visual customizations for
interactive data exploration using graph statistics and modular structure, and
interactive scripting that allows direct access to the data and can leverage the tools
available in a scientific python environment. CVU uses transparent data formats,
representing data as the user’s choice of common file types such as MATLAB
matrices, text files with matrix data, and FreeSurfer or GIFTI surfaces.

1. Strategies for data collection

CVU is a software package for the visualization and network analysis of human
brain connectivity data, but does not itself perform the connectivity estimation.
To use CVU, it is necessary to first have some connectivity data. In this section, we
describe some strategies for creating connectomes, and describe some other
software packages which perform the connectivity estimation which can
subsequently be used by CVU.

PLOS ONE | DOI:10.1371/journal.pone.0113838 December 1, 2014 11/18
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1.1 Strategies for cortical and subcortical parcellation

Optimal parcellation of the brain for the construction of connectivity estimates is
a difficult problem. However, several innovative solutions exist. The Destrieux
and Desikan reconstructions [38,39] can be generated automatically using
FreeSurfer and divide the cortical surface into parcels based on macroscopic
cytoarchitectonic and gyral profiles. These parcellations have been further
subdivided into finer regions in order to generate 998 regions of roughly equal size
[37]. As the spatial scale of parcellation is thought to affect the topology of the
network, [57-60], these 998 regions were subsequently reassembled into several
parcellations of varying scale, containing 998, 483, 241, 133, and 66 nodes
respectively [61], which are available from the open source Connectome mapper
[29]. These parcellations, registered to the FreeSurfer average brain “fsaverage5,”
are included with CVU for convenience.

Other parcellation schemes are also possible. Some alternatives to anatomical
parcellation include the clustering of functional activations [62-64] and clustering
of white-matter bundles from diffusion tractography [65,66]. While these
schemes may overcome the ad hoc nature of anatomically parcellating functional
data, the limitations of the choice of parcellation are not fully known [67, 68].

CVU is decoupled from any choice of parcellation, and thus is easily adaptable
to a variety of parcellation schemes. CVU is able to represent parcellations defined
as a collection of surface labels or as structures defined in a volume. It is also
possible to represent the parcellation simply as a matrix file specifying 3-
dimensional coordinates (e.g., EEG electrodes), optionally providing an additional
registration matrix to orient these coordinates to the surface. Parcellations can be
specified as any of multiple common file formats — surface-based parcellations
may be represented with FreeSurfer or GIFTI annotation files, while volumetric
parcellations can be specified with virtually any image format.

1.2 Estimation of Structural Connectivity
Much work on the human connectome has focused on structural connectivity,
using diffusion MRI to characterize the white matter connections [19,69-71].

Matrix creation from white matter reconstruction typically employs a fiber
counting strategy, where connectivity values consist of counts of tracts between
finely parcellated regions of interest, normalized for differences in ROI size and
distance [37]. Another technique is to estimate connectivity as the average or
integral of a metric over the course of white matter tracts — for instance, the
average magnetization transfer values over the streamline tracts connecting ROIs
[72].

There are numerous open source software packages available for the processing
and construction of diffusion data and the construction of diffusion brain
networks using fiber counting algorithms, including Camino [24], the
Connectome Mapper [29], DSI Studio (http://dsi-studio.labsolver.org/) and the
dipy project [27].
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1.3 Estimation of Functional Connectivity
The functional connectome is characterized by statistical regularities between
spontaneous neural activity in different regions, typically collecting in the resting
state. Resting state fMRI is a common choice to examine functional connectivity
because resting state fMRI networks are robust across subjects, such as the default
mode network which disappears during task activity, as well as other networks
including the ventral and dorsal attentional networks, the somatosensory
networks, and others [51,73,74]. Resting functional connectivity can easily be
calculated by correlating ROI timeseries produced by open-source software
packages such as AFNI [75], FSL [76], and the FS-FAST toolbox in FreeSurfer.
Resting state from direct bioelectric signals, EEG and MEG, has gained a
renewed interest, in part due to the analysis techniques from BOLD fMRI. The
high temporal sensitivity of electrophysiological data allows the direct exploration
of connectivity as cortical oscillations [77]. Common metrics used to capture
spectral regularities between signals include phase-locking value [78], imaginary
coherence [79], phase-lag index [80, 81], as well as many others [82]. In order to
more closely approximate resting networks found in fMRI, novel techniques for
network construction from EEG and MEG data using correlations and statistical
analyses of power envelopes have additionally been developed [83-86]. MNE
python [25], Brainstorm [28], and Brainwave (http://home.kpn.nl/stam7883/
brainwave.html) are open-source software packages with the ability to calculate
many spectral connectivity metrics from EEG and MEG data.

1.4 Overview

CVU has been tested with networks generated with all of the software packages
described above. By separating the process of network construction from the
visualization, we ensure that CVU is able to work with networks constructed from
any modality of data, generated from any software package, and using any
algorithm.

2. Features, future directions and limitations

Interactive and flexible visualization is an important part of scientific discovery.
Visualization can stimulate new hypotheses, allow researchers to quickly assess
their findings at a glance, and serve as important quality control. As a network
visualization tool, CVU performs all of these functions. In addition, CVU has
novel interactive visualization features not available in existing software packages
for visualization of the connectome such as the Connectome Viewer [33], such as
the ability to interactively isolate connections to explore the network topology.
CVU offers the ability to easily visualize network statistics. CVU can visualize
modular partitions of brain networks, allowing comparisons to well-studied brain
networks (e.g., default mode network, ventral attention network, etc.).

Further directions for research and software development may involve the use
of new visualization strategies or improvements to existing visualizations.
Incorporating useful visualization features from other software packages, such as
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interactive annotations, into one single software package is a possible direction of
future software development. The development of novel visualization methods for
interpreting complex networks is an important direction of future work.
Development of new software that makes use of existing algorithms in scientific
visualization is also important. For instance, some representations of circular
ideograms similar to the circle view in CVU utilize a hierarchical bundling
strategy, in which similar edge splines are clustered together, reducing visual
clutter [87]. However, we are only aware of one software implementation of this
technique — in the Functional Brain Connectivity Explorer [88], a tool with many
similarities to CVU. The Functional Brain Connectivity Explorer, however, is only
intended for the analysis of resting state fMRI data and requires volume-based
brain atlases.

CVU is limited in the character of the networks that can be visualized. Only
single-edged, undirected networks can be visualized. Methods of effective
connectivity, corresponding to visualizations of directed graphs, are not currently
supported. Likewise, multigraph networks which have multiple values per edge
(e.g., EEG/MEG networks with separate edges for each frequency band) are not
supported. Moreover, CVU’s networks are static; no visualizations exist to depict
the robustness or dynamic natures of networks collected from modalities such as
EEG/MEG. The development of new easily interpretable visualizations for directed
networks, multigraphs, and dynamically changing network structures is an
important direction of future work.

Another limitation of CVU and a potential direction of future work is the
inability to represent networks from multiple modalities or include network
attributes in a single file, as in the Connectome Toolkit where data is stored in the
XML-based Connectome File Format [33]. Other file formats such as the recent
CIFTI-2 specification utilize similar flexibility. However, the choice to use regular
matrix file formats instead possesses several benefits: use of more general file
formats reduces software dependencies and ensures data transparency. Data
transparency facilitates understanding of the software design and ensures that it is
easy for users to create connectivity data using any methods, and additionally
simplifies the identification of software bugs. CVU can natively and quickly
calculate many common network metrics that might be stored in larger
connectome files, and any attributes that CVU cannot generate natively could be
saved individually in multiple files. The inclusion of whole-connectome inputs in
future versions of CVU is a potential direction of future development, as more
analysis tools are developed to make use of formats such as CIFTI-2.

3. Conclusion

In summary, CVU is a powerful free and open source visualization tool for the
exploration and analysis of the human connectome that expands upon
visualization features available in other software packages. It is able to leverage
powerful tools available for neuroscientific analysis in a scientific python
environment, to which it also represents an important contribution.

PLOS ONE | DOI:10.1371/journal.pone.0113838 December 1, 2014 14 /18



@'PLOS | ONE

Connectome Visualization Utility Software for Human Brain Networks

CVU can be downloaded at https://pypi.python.org/pypi/cvu. Extensive

documentation is available at https://github.com/aestrivex/cvu/wiki.
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