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Nuclear factor- (erythroid-derived 2) like 2 (Nrf2) is a transcription factor that regulates the expression of a battery of antioxidant,
anti-inflammatory, and cytoprotective enzymes including heme oxygenase-1 (Hmox1, Ho-1) and NADPH:quinone
oxidoreductase-1 (Nqo1). The isothiocyanate sulforaphane (SF) is widely understood to be the most effective natural activator of
the Nrf2 pathway. Falcarinol (FA) is a lesser studied natural compound abundant in medicinal plants as well as dietary plants
from the Apiaceae family such as carrot. We evaluated the protective effects of FA and SF (5mg/kg twice per day in CB57BL/6
mice) pretreatment for one week against acute intestinal and systemic inflammation. The phytochemical pretreatment effectively
reduced the magnitude of intestinal proinflammatory gene expression (IL-6, Tnfα/Tnfαr, Infγ, STAT3, and IL-10/IL-10r) with
FA showing more potency than SF. FA was also more effective in upregulating Ho-1 at mRNA and protein levels in both the
mouse liver and the intestine. FA but not SF attenuated plasma chemokine eotaxin and white blood cell growth factor GM-CSF,
which are involved in the recruitment and stabilization of first-responder immune cells. Phytochemicals generally did not
attenuate plasma proinflammatory cytokines. Plasma and intestinal lipid peroxidation was also not significantly changed 4 h after
LPS injection; however, FA did reduce basal lipid peroxidation in the mesentery. Both phytochemical pretreatments protected
against LPS-induced reduction in intestinal barrier integrity, but FA additionally reduced inflammatory cell infiltration even
below negative control.

1. Introduction

The gastrointestinal (GI) tract is the largest interface between
the body and the environment, followed by the lung and the
integument, with ratios of an estimated surface area approx-
imately 150 : 50 : 1. The small intestine is the majority compo-
nent of the GI tract; its surface was composed of a single
monolayer of intestinal epithelial cells which secrete a glyco-
calyx matrix and a layer of mucous. This delicate barrier per-
forms the diametric roles of digestion and absorption of
nutrients and protection against pathogenic microorganisms
and innumerable xenobiotic compounds from the environ-
ment [1]. In addition, the small intestine is the organ of first
pass detoxification [2] and provides the milieu for a large
proportion of the immune system [1, 3]. Likely due to this

challenging physiological role, small intestinal epithelial cells
have the highest turnover rates and are replaced every 2–6
days [4]. It is recognized that chronic and degenerative dis-
ease is rooted in early deviations from normal homeostasis
that underpin the development of a wide variety of disparate
disease pathologies. For example, unresolved inflammation
contributes to cardiovascular disease, type 2 diabetes, meta-
bolic syndrome, and neurodegenerative disease to name only
a few. Intestinal barrier integrity is a lesser appreciated early
deviation from homeostasis that contributes to many intes-
tinal diseases (IBD, IBS, and celiac disease to name a few
[5–7]) but also many other widely divergent pathologies.
Barrier integrity has been implicated in autoimmune diseases,
food allergies, obesity, endotoxemia, and chronic inflamma-
tion [5, 8, 9]. In fact, intestinal barrier function is very
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sensitive to seemingly unrelated traumas such as burn injury
[10–12], hemorrhagic shock [13, 14], and even intense
exercise [15–19].

Intraperitoneal lipopolysaccharide (LPS) is absorbed in
the tissues of the peritoneal space, making its way into
systemic circulation, where it is rapidly cleared from the
bloodstream (minutes to hours [20, 21]) and slowly (over
days [22, 23]) excreted from the organism in bile through
liver metabolism, in the urine through kidney filtration, but
also through the shedding of epithelial cells at the villus tip
in the small intestine. The liver clears two thirds of circulat-
ing LPS via sinusoidal endothelial cells and Kuppfer cells
[21], which is then secreted into the intestine via the bile
[24]; in the lumenal environment of the intestine, there is a
high tolerance for LPS due to the constant interaction with
gram-negative bacteria in the microbiome [25, 26] and it
does not trigger inflammation [27, 28]. LPS is ultimately
excreted in feces [29, 30]. Some LPS loses occur via urinary
excretion [30]. But another route of excretion is via the small
intestine, where LPS appears first in the crypts and then con-
centrates in the small intestinal epithelial cells of the villus
tips [31, 32], which are ultimately shed contributing another
pool of LPS to fecal excretion. Intraperitoneal LPS causes
shedding of small intestinal epithelial cells in a Tnf receptor-
(Tnfr-) dependent manner within 1.5 hours at doses as low as
0.125mg/kg [27]. The rapid manifestation of epithelial shed-
ding, preceded by the crypt appearance of LPS, suggests
transmigration of intraperitoneal LPS across the visceral
peritoneum and not only derived from circulation. The ame-
lioration of splenic injury from the introduction of normal
mesenteric lymph into LPS-treated mice indicates a role for
mesenteric fluids in systemic inflammation [33]. Intestinal

clearance of LPS causes intestinal permeability, oxidative
stress, and intestinal mitochondrial damage and increases
lipid peroxidation [34].

As shown in Figure 1, LPS initiates inflammation
through toll-like receptor (TLR4) signaling that activates
NFκB-mediated cytokine production including Tnfα, IL-6
and IL-1β [35]. Keap1 is a redox-sensing cytosolic inhibitor
protein for the transcription factor Nrf2 that upregulates
the expression a battery of antioxidant, anti-inflammatory,
and DNA repair genes including heme oxygenase-1 (Ho-1)
[36, 37]. In response to increasing intracellular oxidation
status or the binding of other electrophiles, the conformation
of Keap1 is altered, releasing Nrf2 to translocate to the
nucleus, binding the antioxidant response element (ARE) in
the promoter regions of target genes (Figure 2) [38]. Priming
the Keap1-Nrf2-ARE pathway with dietary electrophilic
phytochemicals increases the threshold to the initiation of
inflammation and delays the activation of proinflammatory
transcription factor NFκB [39–41]. The inhibitory role of
Nrf2 has also been demonstrated in macrophages where it
can bind ARE-independent DNA sequences in the promoter
region of IL-6 and IL-1β, suppressing their transcription
[42]. Additionally, LPS can physically disrupt red blood cell
membranes releasing free heme with prooxidant potential
[43]. In its enzyme role, inducible heme oxygenase-1 (Ho-1)
degrades free heme to equimolar amounts of carbon monox-
ide (CO), free iron, and biliverdin. Biliverdin is enzymatically
converted to bilirubin which forms an antioxidant redox
couple, while CO is independently anti-inflammatory [44].
Upregulating Ho-1 is protective against intestinal inflamma-
tion and loss of barrier integrity [45–47] and maintains
alternatively activated/M2 macrophage polarization [48–50],
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Figure 1: Effects of LPS. (1) LPS binding to the toll-like receptor-4 (TLR4) receptor initiates signaling to disrupt the inhibitor protein IKK
association with proinflammation transcription factor NFκB. (2) Free NFκB translocates to the nucleus to increase the transcription of
proinflammatory cytokines Tnfα, IL-6, IL-1β, etc. (3) LPS causes plasma membrane disruption in red blood cells releasing free heme.
(4) Ho-1 breaks down free heme to equimolar amounts of CO, Fe, and biliverdin which is enzymatically converted to bilirubin, forming a
redox couple.
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shifting the polarization of intestinal T cells towards a regula-
tory phenotype [51–53].

Polyacetylenes are bioactive bisacetylenic phytooxylipins
abundant not only in medicinal plants such as Notoptery-
gium incisum (Qiang Huo) [54], Angelica sinensis (Dong
Quai) [55, 56], and ginseng [57] but also in agricultural crops
from the Apiaceae family [58], the most widely consumed of
which is carrot [59, 60]. Falcarinol (FA) and falcarindiol (FD)
are the most abundant carrot-derived polyacetylenes and
have a demonstrated anti-inflammatory effect [60–62], in
part by the suppression of NFκB [63]. FD has been shown
to activate Nrf2 by S-alkylation of its inhibitor protein Keap1
[64]. FD pretreatment upregulated the antioxidant enzymes
NADPH:quinone oxidoreductase (Nqo1) and glutathione-
S-transferase (GST), protecting against a later oxidative chal-
lenge in both normal liver cells [65] and an in vivo mouse
model examining the activity of these enzymes in the liver,
small intestine, kidney, and lung, in part by reducing lipid
peroxidation [66]. Ginseng-derived panaxynol, structurally
identical to carrot-derived falcarinol, is an anti-inflammatory
compound and potent activator of cardiac Nrf2 [57]. In
humans, panaxynol reduces oxidative stress-induced plasma
lipid peroxidation [67]. We set out to evaluate for the first
time the protective effect of diet-achievable levels of FA
against intestinal inflammation in comparison to sulforaph-
ane (SF)—widely recognized as the most potent natural
compound activator of the Nrf2/ARE pathway.

2. Methods

2.1. Animal Treatment. Three-month-old male CB57BL/6
mice (Charles River, St. Constant, QC, Canada) were

individually housed in a temperature-controlled room on a
reverse (12 : 12) light-dark cycle, fed a standard chow diet
(Harlan Teklad, Mississauga, ON, Canada), with access to
water ad libitum. Phytochemicals were prepared in 100%
ethanol immediately before individual doses were prepared
in peanut butter and allowed to evaporate overnight, refriger-
ated in a light-proof container. Twice per day for 7 days, 4
groups of mice received peanut butter (166mg± 0.01) with
5mg/kg FA (CAS# 21852-80-2, Quality Phytochemicals
LLC, East Brunswick, NJ, USA) (FA group), 5mg/kg SF
(CAS# 142825-10-3, Cayman Chemical, Ann Arbour, MI,
USA) (SF group), or ethanol vehicle for the two control
groups: a negative control (NC group) that was saline-
treated and a positive control (PC group) that was lipopoly-
saccharide- (LPS-) treated. The chemical structures of FA
and SF are shown in Figure 3. To elicit an immune response,
the FA, SF, and PC groups of fasted animals (n = 3 per group)
received an intraperitoneal injection of 5mg/kg LPS on the
eighthday andwere sacrificed after 4hours—a timepoint cho-
sen for maximal intestinal inflammatory response [68, 69].
Plasma was collected by cardiac puncture, and tissues were
removed and snap frozen in liquid nitrogen. All of the proce-
dures conducted were approved by the University of Guelph
Animal Care Committee and were in accordance with the
guidelines of the Canadian Council on Animal Care.

2.2. Histological Analysis. Upper duodenal sections were
flushed with saline and fixed in phosphate-buffered 10%
formalin solution for 24 hours. Paraffin blocks were
embedded, and 5 μm sections in longitudinal orientation
were slide-mounted, and haematoxylin and eosin (H&E)
staining was performed by the Animal Health Laboratory
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at the University of Guelph. Histomorphological evaluation
of H&E-stained slides was scored by a professional veterinary
pathologist (Animal Health Laboratory-Kempville) in a
blinded fashion using the methods outlined by Erben et al.
[70]. Slides were evaluated for the inflammatory cell infiltrate
score (as per Table 8, Erben et al.), and a number of mitotic
cells were counted in 10 contiguous 400x fields [70].

2.3. Plasma Cytokines. Plasma cytokines were measured
using a magnetic bead-based sandwich immunoassay
according to the manufacturer’s instructions (Bio-Plex
Pro™ Mouse Cytokine 23-plex Assay, Bio-Rad Laboratories,
Mississauga, Ontario). Antibody-coupled beads were incu-
bated with plasma samples (1 : 3 dilution) in duplicate and
incubated with biotinylated detection antibody to create a
sandwichcomplex. Sampleswere subsequently incubatedwith
streptavidin-phycoerythrin conjugate to serve as a fluorescent
reporter. Beads were washed, and bound molecules were
detected using a Bio-Plex 200 System (Bio-Rad Laboratories,
Mississauga, Ontario).

2.4. PCR. mRNA was extracted from tissues using TRIzol
according to the manufacturer’s instructions (Thermo Fisher
Scientific). mRNA concentration was evaluated by measur-
ing absorbance using a Nanodrop spectrophotometer
(Nanodrop 2000, Thermo Fisher Scientific). For each sample,
1 μg of mRNAwas incubated with DNase to remove genomic
DNA and used for subsequent cDNA synthesis according to
the manufacturer’s instructions (iScript gDNA Clear cDNA
synthesis kit, Bio-Rad Laboratories, Mississauga, Ontario).
Resulting cDNA was amplified by real-time RT-PCR (CFX
Connect, Bio-Rad Laboratories, Mississauga, Ontario) with
select primers using PCR reagents according to the manufac-
turer’s instructions (SsoAdvanced Universal SYBR Green
Supermix, Bio-Rad Laboratories, Mississauga, Ontario). For
each tissue, the geometric mean of 3 reference genes
(Rps29, 18s, and Tbp) was used to calculate the delta Ct for
each gene of interest.

2.5. Immunoblotting. Tissue samples were homogenized in
cell lysis buffer (liver) or RIPA buffer (intestine) and centri-
fuged at 15,000 g for 10 minutes at 4° C. Lysate supernatant
was collected, and protein was quantified by bicinchoninic
acid protein assay (Pierce Thermo Fisher Scientific) and
measured with a plate reader (Molecular Devices, San Jose,
USA). Protein concentration was standardized, and samples
were separated in a 10% gel and transferred to PVDF
membrane with a semidry electrophoretic transfer system
(Bio-Rad Laboratories, Mississauga, Ontario). Membranes

were incubated overnight with a 1 : 1000 dilution of primary
antibody (Ho-1 and Nqo1, Abcam, Toronto, Canada),
followed by a 1 : 3000 dilution of horseradish peroxidase-link
secondary anti-mouse antibody (Cell Signaling Technology,
Whitby, Canada). Blots were visualized with electrochemilu-
minescence reagent (Clarity Max, Bio-Rad Laboratories,
Mississauga, Ontario), and images were captured with either
FluorChem HD2 System (Cell Biosciences, San Jose, USA)
or Gel Logic 6000 Pro (Carestream, Rochester, USA). Mem-
branes were quantified using Image Studio™ Lite software
(LI-CORBiosciences, Lincoln, USA) and normalized to either
β-tubulin (liver) or total protein (intestine).

2.6. Lipid Peroxidation. Tissues were homogenized with 10
volumes of RIPA buffer containing protease and phosphatase
inhibitors (Sigma-Aldrich P2714 and P5726, respectively)
and centrifuged at 1600 g for 10 minutes at 4°C. The super-
natant was used undiluted in the TBARS assay (Cayman
Chemical, Ann Arbor, USA) according to the manufacturer’s
instructions. Briefly, the sample supernatant was combined
with thiobarbituric acid assay reagents and boiled for 1 hour.
Cooled sample preparations were loaded onto a 96-well plate
and the absorbance read at 535nm in a microplate reader
(Molecular Devices, San Jose, USA), and lipid peroxides were
interpolated from a malondialdehyde standard curve.

2.7. Statistical Analysis. Data were analyzed by one-way anal-
ysis of variance (ANOVA) followed by Tukey’s posttest
method to compare group means (“P” for ANOVA-derived
p values and “p” for those derived from the posttest). All
results with α < 0 05 were accepted as statistically significant;
marginally significant results (p < 0 1; i.e., α < 0 10) are also
mentioned. Qualitative scoring for intestinal inflammation
was analyzed by Kruskal-Wallis one way analysis of variance,
and Dunn’s test was used to evaluate the pairwise mean rank
difference. All data were analyzed with GraphPad Prism
software (version 7).

3. Results

3.1. Falcarinol Was a Potent Reducer of Intestinal
Inflammation. Intestinal proinflammatory gene expression
peaks between 4 and 6hours after LPS injection [71], and
maximal circulating proinflammatory cytokines Tnfα, IL-6,
and IL-1 occur closer to 4 hours of postinjection [68, 72],
so we chose the time point of 4 hours to best capture the
acute intestinal and systemic inflammatory response. As
shown in Figure 4(a), in the jejunum, both phytochemicals
falcarinol (FA) and sulforaphane (SF) reduced the expression
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Figure 3: Structure of carrot-derived falcarinol and R-sulforaphane.
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of LPS-induced proinflammatory genes, but FA was consis-
tently more effective than SF. IL-6 showed the greatest mag-
nitude of change among the inflammatory genes, increasing
103.6-fold for LPS treatment alone (positive control (PC))
and 85.2-fold for SF (p < 0 01 for both), whereas for FA, the
increase was prevented and the expression was not signifi-
cantly different from the LPS-untreated negative control
(NC). This pattern repeated for Tnfα, its receptor (Tnfr),
and Ifnγ. Tnfα expression increased by 48.8-fold for PC
(p < 0 0001) and 24.6-fold for SF (p < 0 01), and Tnfr was
increased by 5.1-fold in PC (p < 0 001) and 2.6-fold in SF
(p < 0 01), but for FA-treated mice, the increases were
prevented and not significantly different from the negative
control group. Ifnγ mRNA increased by 22.3-fold in PC
(p < 0 001), but there was no significant increase for either
phytochemical-treated groups. Stat3 increased in all LPS-
treated groups, increasing by 3.6-fold in PC, 2.8-fold in SF
(both p < 0 0001), and 2-fold in FA (p = 0 0051). Stat3 was
significantly lower for FA than both PC and SF (p = 0 0002
and p = 0 0208, respectively). As shown in Figure 5, IL-10
and its receptor (IL-10R) were also significantly increased
by LPS treatment and the LPS response was reduced by both
phytochemical treatments. IL-10 expression was increased by
17.7-, 13.1-, and 9.5-fold in PC, SF, and FA, respectively
(P < 0 0001), whereas its receptor increased only for PC
(by 1.6-fold) and decreased with phytochemical treatment
(both to 0.7-fold, P = 0 0176). Altogether, the phytochemical
pretreatment effectively reduced the magnitude of intestinal

proinflammatory gene expression with FA showing more
potency than SF.

3.2. Phytochemicals Had a Minor Effect on Hepatic
Inflammation. At 4 hours of post LPS injection, the effect
on hepatic inflammatory gene expression was more subdued
than in the intestine. As shown in Figure 4(b), the main
inflammatory genes (IL-6, Tnfα, and Ifnγ) were all increased
by LPS treatment and the phytochemical pretreatments
showed no reductions in their expression. In fact, IL-6 had
the greatest magnitude of increase for all LPS groups with
the highest increase for SF (p = 0 0172). Tnfr mRNA was
upregulated by 2.4-fold and 2.5-fold for SF and PC, respec-
tively (both p < 0 01), that was presented in the FA group.
Stat3 was significantly upregulated in all LPS-treated groups
(P = 0 0002). SF and PC both increased by 4.8-fold (both
p = 0 0003). Differently from SF, FA caused the most con-
servative increase in Stat3 (3.8-fold, p = 0 0022), showing
some reducing effects.

3.3. Downregulated Expression of Intestinal Nrf2 Pathway
Genes Was Not Rescued with Pretreatments. We also evalu-
ated the effect of phytochemicals on the expression of Nrf2,
Keap1, and their responsive genes Hmox1 and Nqo1 in
both the intestine and the liver (Figure 6). In the intestine,
the expression of Nrf2 was 3-fold downregulated by LPS
(p < 0 0001) and not rescued by phytochemical pretreat-
ment at 4 hours of postinjection. Keap1 was significantly
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Figure 4: Intestinal and hepatic inflammatory gene expressions. Gene expression is expressed as mRNA fold change relative to negative
control (NC). (a) Intestinal gene expression and (b) hepatic gene expression. Statistical significance is expressed as follows: ∗p < 0 05,
∗∗p < 0 01, ∗∗∗p < 0 001, and ∗∗∗∗p < 0 0001.
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upregulated only in PC by 1.6-fold (p = 0 045). We antici-
pated an increased expression of Nrf2 target genes by both
phytochemical pretreatments but observed that only heme
oxygenase-1 (Hmox1) was significantly increased only for
FA by 8.9-fold above control (p = 0 0184). Nqo1 (Figure 6)
and Muc-2 (not shown) gene expression also were not
significantly changed by LPS with or without phytochemical
pretreatments.

3.4. Falcarinol but Not Sulforaphane Stimulated Expression of
Hepatic Nrf2 Pathway. In contrast, in the liver, LPS had no
impact on theNrf2 pathway (Figure 6(b)). In fact, the FA pre-
treatment resulted in a significant increase of Nrf2 mRNA
(p < 0 05), and Keap1 was significantly upregulated only in
the SF and PC groups (2.0- and 2.1-fold, respectively; both
p < 0 05). Similarly, Hmox1 was significantly increased only

in the FA-treated group (by 6.5-fold, p < 0 05), and there
was no difference in expression between the SF and PC
groups. Nqo1 expression was not significantly affected by
either LPS or phytochemicals in the liver.

3.5. Falcarinol but Not Sulforaphane Increased Intestinal and
Liver Heme Oxygenase-1 Protein. Interestingly, Ho-1 and
Nqo1 proteins followed a similar expression pattern with
respect to mRNA in both the intestine and the liver
(Figure 7). The intestinal Ho-1 protein was significantly
increased with FA (1.83-fold, p < 0 05), while there was no
effect of SF or PC on Ho-1 protein. Similarly, the largest
increase in hepatic Ho-1 protein was obtained only with FA
(16.4-fold; p = 0 0806). On the other hand, the intestinal
Nqo1 protein was increased with all treatments but was sig-
nificant only in the LPS PC group (2.18-fold, p < 0 05). There
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Figure 5: Intestinal and hepatic regulatory gene expressions. Gene expression is expressed as mRNA fold change relative to negative control
(NC). (a) Intestinal gene expression and (b) hepatic gene expression. Statistical significance is expressed as follows: ∗p < 0 05, ∗∗p < 0 01,
∗∗∗p < 0 001, and ∗∗∗∗p < 0 0001.
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Figure 6: Intestinal and hepatic gene expressions of the Nrf2 pathway. Gene expression is expressed as mRNA fold change relative to negative
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was no effect of either phytochemical or LPS treatment on the
liver Nqo1 protein.

3.6. Falcarinol Pretreatment Specifically Reduced Initial-
Phase Plasma Cytokines. Eosinophils are the first immune
cells to be recruited to the site of injury in response to locally
produced eotaxin, and are followed by more numerous neu-
trophils and macrophages [73]. As shown in Figure 8, eotaxin
increased 5.4-fold for LPS alone (p < 0 001, PC) and it was
attenuated with FA, which only showed a 4.1-fold increase
(p < 0 01), but not with SF (5.0-fold, p < 0 001) demonstrat-
ing that FA was able to show some protective effects in the
initial phases of the LPS response. Granulocyte-macrophage
colony-stimulating factor (GM-CSF) acts to recruit eosino-
phils and macrophages but is inhibitory to neutrophils [74];
GM-CSF was significantly increased only for SF and PC, by
5.6-fold and 6.7-fold, respectively (p < 0 05). IL-12p40 was
significantly upregulated only for SF (by 90.2-fold, p < 0 05).

The plasma inflammatory cytokines (IL-1α, IL-1β, IL-6,
and Ifnγ) were all significantly upregulated by LPS treatment,
but there was no effect of phytochemical pretreatment on the
magnitude of the response seen at the 4-hour time point.
Tnfα was significantly increased only in the FA group (by

8.4-fold, p < 0 05). Other inflammatory factors IL-13,
MIP-1α, and MIP-1β were significantly increased but with-
out a protective effect of phytochemical treatment; similarly,
the regulatory cytokines IL-3, IL-4, and IL-10 were all signif-
icantly upregulated by LPS with no effect of phytochemical
pretreatment. All cytokines were increased in the plasma
after LPS injection, with the exception of IL-9 which was
not detectable in all samples. Changes were not significant
for IL-2, IL-5, IL-17, KC, MCP-1, RANTES, or IL-12p70.

3.7. Falcarinol Specifically Reduced Lipid Peroxidation in the
Mesentery. As shown in Figure 8, LPS had no significant
effect on lipid peroxidation in the plasma, jejunum, or
mesentery at 4 hours of postinjection; however, TBARS was
significantly lower in the mesentery of the FA-treated mice
(p < 0 05).

3.8. Falcarinol Completely Attenuated Inflammatory Cell
Infiltration and Reduced Epithelial Turnover in the Intestine.
Qualitative scores for inflammatory cell infiltrate and epithe-
lial damage were moderate 4 h after LPS treatment, ranging
from 0 to 3 on a scale of 8. FA however completely attenuated
LPS-induced inflammatory cell infiltration in the duodenum
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(Figure 9). Remarkably, despite LPS treatment, the score for
FA was lower even than saline-treated NC. Both SF and PC
scored similarly to NC; differences were only significant
between FA and SF (mean ranks: 2.5 and 9.0, respectively,
p < 0 05). The number of mitotic cells in the intestinal
epithelium is a marker for the epithelial cell turnover rate
[32, 75]. Results only approached significance between NC
and PC (p = 0 0522). The mean numbers of mitotic cells
counted in 10 contiguous 400x fields were 24, 33, 45, and
63 for NC, FA, SF, and PC, respectively (Figure 9). This study
did not observe shedding directly, but histology revealed the
architecture of PC duodenum to be so poor due to shortened
villi (crypt : villus ratio is ~1 : 3 for PC as compared to 7–12
for the other groups) in which further morphological study
was not possible. This effect was not seen in the LPS-
treated groups that received phytochemical pretreatment.

4. Discussion

The anticancer effects of FA are its best characterized bioac-
tive property [76–83]. FA also has positive metabolic effects.
In vitro, FA improves insulin signaling in insulin-resistant
porcine myotubes [84] and increases glucose uptake in nor-
mal porcine myotubes and adipocytes, as well as inhibiting
adipocyte differentiation [85]. Interestingly, falcarindiol does
not inhibit adipocyte differentiation but is a more potent
PPARγ agonist than FA which requires a higher dose to ini-
tiate an effect [54, 85]. FA stimulates normal intestinal cell
growth at physiological doses, whereas carotenoids have no
effect [86], and carrot juice has an anti-inflammatory effect

in vitro intestinal cells [87]. FA also has anticomplement
activity [88] and modulates GABAA receptor activation [89].

In this study, we observed that the local effect of LPS on
the intestine produced a greater response of inflammatory
gene expression than in the liver, which would be expected
to experience a lower dose of LPS derived from systemic cir-
culation as opposed to directly from the intraperitoneal
space. Additionally, the protective effect of the phytochemi-
cals and falcarinol, in particular, was more pronounced in
the intestine than in the liver. Intestinal cells would have been
exposed to the full phytochemical dose over a short amount
of time—a higher effective dose that would be available to
cells relying on systemic circulation for phytochemical expo-
sure such as the liver. The novel finding in this study is that
falcarinol was more effective than sulforaphane in attenuat-
ing inflammatory gene expression in the intestine and to a
lesser degree in the liver.

We also examined the effect of phytochemicals on Nrf2-
activated targets, Ho-1 and Nqo1. Heme oxygenase-1 (Ho-1,
Hmox1) has an emerging role in attenuating intestinal
inflammation and protecting intestinal barrier integrity by
upregulating the expression of tight junction proteins [47]
and attenuating inflammation-induced intestinal permeabil-
ity [46]. Prior Ho-1 upregulation protected intestinal barrier
integrity by upregulating tight junction proteins, reducing
apoptosis, activating Nrf2, and reducing NFκB activation
resulting from abdominal surgery in a rat model [90] and
associated oxidative stress [91, 92]. FA, but not SF, signifi-
cantly upregulated Hmox1 in both the liver and intestine,
whereas Nqo1 expression was not affected by phytochemical.
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A unique characteristic of the Nqo1 promoter is the number
of ARE sequences. Rather than rendering Nqo1 more Nrf2-
sensitive due to the increased number of ARE contributing
to its regulation, it appears that it is more likely that Nqo1
requires more intense Nrf2 exposure to affect transcriptional
activation than Hmox1. We demonstrated that Hmox1 is
more sensitive to Nrf2 activation than Nqo1 in the liver and
intestine which was also reflected in protein levels. Nqo1
protein levels were only significantly elevated in the intestine
of PC, whereas in the liver, neither LPS nor phytochemical
pretreatment showed an effect. Ho-1 protein levels were
significantly increased from NC in both the liver and the
intestine only in FA-treated mice, with no difference between
the SF and the PC groups. Notably, this effect was only seen
with FA-treated mice and not those treated with SF. This
unique effect of FA is another novel finding in this study.

FA attenuated circulating eotaxin and GM-CSF (a proin-
flammatory inducer of M1 phenotype [93]) as compared to
other LPS-treated groups, which could potentially translate
to reduced immune cell recruitment, but cell trafficking was
not evaluated in this study. Lipid peroxidation was not
increased at 4 hours after LPS injection in any of the plasma,
intestine, or mesentery; however, FA pretreatment reduced
basal lipid peroxidation in the mesentery, which may be a
contributing factor to the surprising reduction of inflamma-
tory cell infiltration in FA duodena.

Glutathione-S-transferase is a phase II detoxification
enzyme that conjugates electrophiles [94]. Sulforaphane is
absorbed into intestinal cells as a glutathione conjugate
[95], an interaction that is promoted by intracellular glutathi-
one transferases [96] or a direct interaction with lumenal

glutathione derived from the diet [97] or bile [98]. It is
known that a portion of absorbed sulforaphane is secreted
back into the intestine as a glutathione conjugate, reducing
its bioavailability to 74%by some estimates [99]. The bioavail-
ability of polyacetylenes has been demonstrated [100, 101],
and they have been shown to bind human serum albumin
for circulatory distribution [102], but we are not aware of
any studies specific to their uptake mechanisms. Due to the
electrophilicity of polyacetylenes; these mechanisms may be
similar to SF, and possibly differential uptake efficiencies
may contribute to the greater effectiveness of FA in vivo.

Normal epithelial cell loss from the villi tips is replaced by
cells newly differentiated from crypt stem cells; a balance
between cell loss and regeneration maintains intestinal bar-
rier integrity. Accelerated mitosis in the epithelial layer is
suggestive of shedding since there would be an increased
need for regeneration to replace lost cells at the villus tip.
LPS-treated groups had more mitotic cells than NC
(1.38- and 1.88-fold more for FA and SF, respectively); PC
had the most mitotic cells (2.63-fold more than NC) but
did not reach significance (p = 0 0522), demonstrating the
superior effect of FA over SF in protecting intestinal integrity.
While LPS treatment did not substantively increase the qual-
itative score of inflammatory cell infiltration (mild to moder-
ate infiltration in NC, SF, and PC), remarkably, FA did not
show any infiltration despite LPS treatment (score = 0).

While it is possible that FA is a more potent activator
of Nrf2 than sulforaphane, there may be other effects of
FA that are responsible. Endocannabinoid signaling is
involved in maintaining intestinal barrier integrity. Antago-
nismof cannabinoid type 1 receptor (CB1R) reduced intestinal
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inflammation and permeability in a diet-induced obesity
model, attenuating metabolic endotoxemia and adipose
inflammation and improving insulin resistance [103]. Pre-
treatment of the apical but not basolateral side of a Caco-2 cell
monolayer prevented the cytokine-induced increase in intesti-
nal permeability mediated by the antagonism of CB1R [104].
Dietary (apical side exposure) FA is likely protective of the
intestinal epithelium since it is a covalent CB1R antagonist
[105]; we are unaware of any studies directly evaluating sulfo-
raphane for potential CB1R antagonism.

The current study evaluated the anti-inflammatory and
antioxidant effects of isolated bioactive compounds available
in the diet and their role in the prevention of inflammation
(commonly understood to play an important role in the
development of most chronic diseases) and more specifically
in the context of intestinal inflammation and the mainte-
nance of intestinal barrier integrity. Intestinal inflammation
is particularly relevant since it provides the milieu for the
polarization of naive T cells and other immune cells which
have wider implications for the overall immune tone. The
degradation of the intestinal barrier is gaining recognition
as another early deviation from homeostasis contributing to
the development of more serious and widely divergent
diseases including some autoimmune conditions, food aller-
gies, obesity, endotoxemia, chronic inflammation, and even
intense exercise. Furthermore, our use of low/diet-achievable
doses (5mg/kg) as opposed to the commonly used default for
studies of this type (100mg/kg), which is a pharmaceutical or
supplemental dose, make our findings all the more relevant
since these effects are seen at dietary levels of exposure.

In conclusion, we have demonstrated the superior effec-
tiveness of FA over SF at attenuating LPS-induced intestinal
gene expression and to a lesser degree in the liver. FA was
uniquely effective at upregulating Nrf2-target Ho-1 in both
the intestine and the liver and attenuating some initial phase
proinflammatory cytokines. FA also reduced inflammatory
cell infiltration in the duodenum below even negative control
and reduced basal mesenteric lipid peroxidation. These
results suggest that the efficacy of FA may be fruitful to
explore for prevention and treatment in inflammatory
pathologies of the GI tract and in supporting the mainte-
nance of intestinal barrier integrity due to the superiority of
FA at upregulating Ho-1 to the anti-inflammatory and anti-
oxidant effect demonstrated in the current study.
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