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Abstract

Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not
embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor
conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at
centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that
this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in
flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone
variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4,
coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through
centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has
shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in
budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin
by promoting correct chromatin architecture.
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Introduction

The functional state of chromatin domains results from the

action of multiple determinants, including histone modifications,

histone variants, nonhistone proteins and nucleosome remodeling

factors. The inclusion of specific histone variants is essential for the

organisation of chromatin to delineate specific domains [1]. For

example, histone H3 variant CENP-A (CENH3) and its orthologs

characterize centromeric regions [2]. The histone H2A variant

H2AZ (Htz1 in budding yeast) demarcates many promoters and

boundary elements in yeast and other organisms [3]. The

distribution of histones and specific histone variants, in turn, is

regulated by SWI/SNF2-like ATP-dependent remodeling activi-

ties. The Fun30/SMARCAD1/Etl1 family is a poorly character-

ized class of SWI/SNF-like factors [4]. In mice SMARCAD1 (also

referred to as ETL1) is important for normal development [5] and

is implicated in pluripotency and self renewal in embryonic stem

cells [6]. SMARCAD1 has a role in maintenance of silent

chromatin through replication in mammalian cells [7]. In

Saccharomyces cerevisiae the unique SMARCAD1 homolog Fun30

is required for silencing in heterochromatin loci [8,9]. Fun30 has

nucleosome remodeling activity in vitro and affects chromatin

structure in vivo [8–10]. Fission yeast has three genes coding for

Fun30-like factors, one of which, FFT3, has been shown to

function at boundary elements, protecting heterochromatin from

euchromatin invasion [11].

The analysis of centromere establishment and maintenance has

provided many important insights into how various chromatin

factors cooperate to assemble a very specific and essential

chromatin configuration. Centromeres serve as attachment

anchors for kinetochore proteins, which, in turn, interact with

microtubules of the mitotic spindle (reviewed in: [12,13]). A

hallmark of all eukaryotic centromeres is the centromeric histone

H3 variant CENP-A (termed Cse4 in budding yeast) that provides

an essential platform for kinetochore assembly and subsequent

chromosome segregation [13,14]. In budding yeast centromeres

are well defined and composed of a single Cse4-containing variant

nucleosome for each chromosome, each occupying approximately

125 bases pairs comprising three regions (CDE I, CDE II, CDE

III) [13,15–21]. Multiple mechanisms contribute to the specific

localization of Cse4, including Scm3, a Cse4-specific histone

chaperone [22,23], and the regulated Cse4 removal and degra-
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dation at extra-centromeric sites [24–26]. Each single point

centromere is essential for viability. Therefore, these point

centromere nucleosomes provide a unique model system to

explore how specific chromatin configurations are assembled

and maintained.

To gain insight into Fun30 function, we mapped Fun30 binding

sites genome-wide and found that it bound chromatin at specific

loci, particularly at the centromeres. We found that Fun30

supports chromosome segregation, and determines nucleosome

positioning at many sites, including the majority of centromeres.

Fun30 has a major impact on Htz1 occupancy genome-wide,

including around centromeres. We propose that Fun30 assists

faithful chromosome segregation by promoting a correct chroma-

tin infrastructure at and around centromeres and limits perturba-

tion of centromeres through transcription.

Results

Fun30 Is Recruited to Specific Genomic Loci including
Centromeres

To obtain insights into the biological role of Fun30, we

performed chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-Seq) to obtain a genome-wide

binding profile for Fun30. We obtained more than 4.8610+6

sequence reads - i.e. 14-fold coverage of the genome - giving us a

comprehensive insight into Fun30 enrichment across the chroma-

tin. A browser overview showed that peaks of Fun30 enrichment

are found predominantly at intergenic regions (Figure 1A). Fun30

is relatively depleted within ORFs compared to intergenic sites

and Fun30 peaks are predominantly over the 39 end of genes

compared to the 59 start site (Figure 1B, Figure S1).

To further explore the binding of Fun30 to intergenic sites, we

analyzed its association with genomic features (Figure 1B). Several

genomic elements show preferential enrichment of Fun30

including tRNAs genes, small nuclear RNA (snRNA) genes, small

nucleolar RNA (snoRNAs) genes, Long Terminal Repeats and

Autonomous Replicating Sequence regions (ARSs) (Figure 1B).

We also noticed telomeric repeats are enriched in Fun30 whereas

subtelomeric elements X and Y9 are not (Figure 1B, left panel).

Interestingly centromeric regions show the greatest enrichment of

Fun30 compared to other sites (Figure 1B, right panel, Figure 1C).

The enrichment of Fun30 at centromeres was confirmed by

chromatin immunoprecipitation experiments followed by quanti-

fication using PCR (Figure S2).

FUN30 Deletion Leads to Upregulation of Genes Involved
in Chromosome Segregation

To further understand how Fun30 might have a role in

chromosome segregation and to test direct versus indirect roles, we

performed expression profiling of mRNA using RNA-seq in

Dfun30 deletion and control (‘wildtype’) cells. A ‘global expression

profile’ analysis [27] indicated that Fun30 activity is largely

required to silence genes (Figure S3). We employed a 1.5-fold

cutoff value to define lists of FUN30-deletion affected genes,

identifying 255 genes which were downregulated and 573 genes

which were upregulated (Table S1). To investigate if genes

involved in specific cellular processes were affected by FUN30

deletion, the up or down-regulated genes were submitted to Gene

Ontology (GO) analysis [28] by applying a p-value cutoff

(P,0.05). This analysis did not revealed significant GO terms in

the group of downregulated genes. The upregulated gene group

showed several genes involved in chromosome segregation

(pvalue2log10 = 2.8) and meiosis (pvalue2log10 = 1.9) (Figure 2). The

deletion of FUN30 caused the upregulation of genes belonging to

the anaphase promoting complex (AMA1, APC1, APC2, APC4,

APC2, APC9, CDC26) which is required for sister chromatid

separation and exit from mitosis [29]. Other upregulated genes are

components of the kinetochore or involved in its assembly, such as

IML3/MCM19 [30,31]), CNN1 [32,33]), DAM1 [34,35]), TID3

[36]). The hypergeometric distribution analysis revealed only a

poor relationship between Fun30 recruitment and upregulated

(P = 0.042) or downregulated genes (P = 0.012). Thus, the

upregulation of genes involved in these specific pathways appears

to be a cellular response to the absence of Fun30 function. To

explore this further, we investigated a quantitative genetic

interaction profile database containing 75% of all genes in S.

cerevisiae [37] (http://drygin.ccbr.utoronto.ca/) and found 147

genes (SGA 0.04, P,0.05 cutoff) that have a significantly similar

genetic interaction profile as Fun30. Interestingly analysis of this

list of genes by Gene Ontology also reveals roles in meiosis and

chromosome segregation (Figure 2). This analysis shows significant

negative genetic interactions with several genes involved in the

spindle checkpoint (MAD3, BUB1, BUB3) (p-values: 3.01610218,

1.2761023 and 261024) and kinetochore formation (NDC10,

AME1) (p-values: 8.45610218 and 6.2561023) [38,39]. The

analysis also indicates a genetic similarity to components of the

TRAMP complex, which, in turn, has been linked to chromosome

segregation [40]. Together, these results suggest a role of Fun30 in

chromosome segregation.

FUN30 Genetically Interacts with CSE4
Deletion of Fun30 alone does not significantly affect viability,

whereas overexpression of Fun30 results in chromosome segrega-

tion defects [41]. To explore the role of Fun30 in centromere

function, we used the conditional cse4-1ts mutant with an amino

acid substitution [42] which leads to reduced Ctf3, Ctf19, Ndc10

and Scm3 binding over the centromere at the nonpermissive

temperature (38uC) and causes cell cycle arrest in G2 phase

Author Summary

Centromeres are essential to chromatin structures, provid-
ing a binding platform for the mitotic spindle. Defects in
centromere structure or function can lead to chromosome
missegregation or chromosome breakage. This, in turn,
can cause cancer in metazoans. Centromeres are defined
by specialized chromatin that contains the histone H3
variant CENP-A (also called CenH3, or Cse4 in budding
yeast), and transcription over centromeres is tightly
controlled. Budding yeast centromeres are composed of
a single nucleosome containing the essential Cse4. Loss of
one of these specialized centromeric nucleosomes can
lead to chromosome missegregation during mitosis
followed by cell death. We provide evidence that energy-
dependent chromatin remodeling factor Fun30 supports
faithful chromosome segregation, especially when centro-
mere structure is challenged by mutation of Cse4 or by
forced transcription through centromeres, which disrupt
centromere structure. We show that Fun30 binds to
centromeres and that loss of Fun30 leads to various
defects in centromere chromatin, suggesting a direct role
for Fun30 in promoting normal centromere function. Our
analysis shows that Fun30 affects nucleosome positioning
at many genomic sites, including centromeres, and is
required for normal occupancy of histone variant Htz1. In
the absence of Fun30, we detect an increase in transcrip-
tion through centromeres. We suggest that an important
function of Fun30 is to limit transcription over centro-
meres.

Role of SWI/SNF-Like Fun30 in Centromere Function

PLOS Genetics | www.plosgenetics.org 2 September 2012 | Volume 8 | Issue 9 | e1002974



accompanied by short bipolar mitotic spindles at 38uC [23,42,43].

At the permissive temperature all strains grew well (Figure 3, left

panels, 30uC). At a semi-permissive temperature, control (wild-

type) and Dfun30 single mutant cells did not show growth defects,

but growth of the cse4-1 mutant was reduced, as expected (Figure 3,

right panels, 37uC, 35uC). However, the double mutant Dfun30

Figure 1. Fun30 is localized to specific regions in the genome, including centromeres. A) Overview of ChIP-Seq binding profile of Fun30
for a segment of chromosome III. The lower track of the figure shows open reading frames (ORFs) and their orientations. B) Box plot analysis of Fun30
enrichment over different genomic features. The lines inside the boxes represent the 50th percentile (the median) values. The bottom and top of the
boxes represent respectively the 25th and 75th percentile (the lower and upper quartiles, respectively). The ends of the whiskers represent minimum
and maximum values. C) Binding profile of Fun30 in a selected region of chromosome I including the centromere. The second track shows the
binding profile of Cse4 (ChIP-Seq data extracted from [86]). The bottom tracks show open reading frames (ORFs) and their orientations and the
position of centromere CEN1.
doi:10.1371/journal.pgen.1002974.g001

Role of SWI/SNF-Like Fun30 in Centromere Function
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Figure 2. Gene expression profile and genetic interactions indicate roles for Fun30 in meiosis and chromosome segregation.
Merged histogram of Gene Ontology analysis for 1.5-fold up-regulated mRNAs (n = 259 genes with annotated function in GO) in Dfun30 cells
compared to wildtype cells and for genes interacting synthetically with FUN30 from the DRYGIN database (n = 147, Epsilon cutoff 0.04 and P-value
cutoff 0.05) [37]. Identified gene categories are indicated. Abscises show the P value (2log 10). The gene list is in supplementary data.
doi:10.1371/journal.pgen.1002974.g002

Figure 3. Fun30 is required when Cse4 function is compromised. Growth of the double mutant Dfun30 cse4-1 is strongly affected at semi-
restrictive temperatures. Fivefold dilutions of wildtype (BY4741/Y00000), Dfun30 (Y00389), cse4-1 (AHY666) and Dfun30 cse4-1 (SC53) cells were plated
onto YPD plates and incubated at indicated temperatures for 3 days. Lower panels: Fun30 activity is restored by expressing wildtype Fun30 in trans,
but not Fun30 with a point mutation in the ATPase domain; Cells were spotted on media with 2% glucose and grown for 3 days at 30uC or 35uC.
doi:10.1371/journal.pgen.1002974.g003

Role of SWI/SNF-Like Fun30 in Centromere Function
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cse4-1 was significantly more inhibited (Figure 3, right panels,

37uC, 35uC). Growth could be rescued by expression of wildtype

Fun30 in trans, but not by an ATP-binding site mutant Fun30

(Figure 3, lower right panel). These results therefore suggest a link

between chromatin remodeling by Fun30 to centromeric function.

Fun30 Counteracts Segregation Defects Mediated by
Transcription through Centromeres

Inhibition of transcription through centromeres is required for

the de novo establishment and maintenance of centromere function

[44–46]. Consequently, forcing transcription through a centro-

mere disrupts its normal function [47–49]. To test if Fun30 has a

role in chromosome segregation when centromere function is

perturbed, we employed a yeast strain where transcription through

CEN3 can be induced from a centromere proximal GAL1

promoter by addition of galactose, and segregation can be

monitored using live cell marking of chromosome III [45]

(Figure 4A). Deletion of FUN30 did not have a noticeable effect

on transcription driven from the GAL1 promoter at the CEN3

(Figure S4). We examined chromosome segregation by determin-

ing if the GFP dots, marking chromosome III, are segregated into

both mother and daughter cells, or remain in the mother cell or

are both found in the daughter cell. In the absence of transcription

through CEN3, ,1% of control cells showed some segregation

defect. Deletion of FUN30 increased the number of cells with both

copies of chromosome III remaining in the mother cell ,3 fold,

indicative of a segregation defect or delay (Figure 4B). When

transcription was induced, segregation defects increased dramat-

ically in the control cells and this was further increased when

FUN30 was deleted (Figure 4B). Importantly, persistent transcrip-

tion over days led to a substantial loss of viability when FUN30 was

deleted (Figure 4C). Therefore, it is possible that Fun30 affects

events downstream of the transcription process, e.g., re-establish-

ment of centromeric and pericentromeric chromatin.

A minichromosome loss assay with a plasmid bearing the

centromere sequence of chromosome VI showed that FUN30 was

required for maintenance of this chromosome through multiple

cell generations (Figure 5A). Defects in various pathways,

including DNA replication, could explain this. However, given

the centromeric localization of Fun30, one plausible explanation is

that Fun30 is involved in the formation of a functional centromere

de novo on naked centromere DNA. To explore this further, we

employed a conditional galactose-regulated dicentric chromosome

and the fact that multiple centromeres are deleterious in yeast [46]

(Figure 5B, left panel). Activation of the second centromere by

suppression of transcription through it results in chromosome

breakage and loss of viability [46]. Mutations affecting centromere

establishment, such as deletion of CHL4, an outer kinetochore

component, result in a effective suppression of this dicentric

chromosome breakage [46]. We found that deletion of FUN30

promoted cell viability to almost the same extent as deletion of

CHL4 (Figure 5B, right panel), suggesting that Fun30 might assist

activation of a functional dicentric chromosome, and, therefore,

the establishment of a centromere de novo.

Because Fun30 has been linked to gene silencing, we asked if it

might be required to silence transcription within the centromeres.

We tested how centromere silencing was affected in the Dfun30

mutant by measuring transcript levels for the CEN3 region where a

cryptic unstable transcript has been detected upon deletion of

PAP2, the gene for Trf4, a component of the TRAMP complex

involved in RNA surveillance and noncoding RNA degradation

[50–53]. We found that deletion of FUN30 increased the amount

of transcript over the centromere compared to control to the same

amount as seen when TRF4 was deleted (Figure 6, wt, Dfun30,

Dtrf4). Double deletion of FUN30 and TRF4 increased the amount

of detectable transcript even further (Figure 6, Dfun30 Dtrf4).

Together, our data suggest that Fun30 promotes faithful

chromosome segregation when centromere structure is challenged

and this may be linked to Fun30’s role in gene silencing.

Fun30 Is Required for Normal CEN-Flanking Nucleosome
Positioning and/or CEN Core Particle Structure

Next, we tried to elucidate if Fun30 promotes chromosome

segregation by ensuring a correct centromere chromatin structure,

in line with its binding to centromeres.

Our genome-wide analysis of Fun30 binding and the impact of

FUN30 deletion on histone H3 occupancy indicates that Fun30

binds preferentially at the terminator region of genes and that its

binding there is linked to a loss of histone H3 occupancy at this

region (Figures S1, S5). Thus, our data indicate that Fun30 is

involved in nucleosome removal in intergenic regions and suggest

that Fun30 may promote occupancy of the centromeric Cse4

containing nucleosome by favoring removal of canonical nucleo-

somes over the centromere. To test this idea, we measured Cse4

occupancy over the endogenous, constitutive CEN3 centromere

and over an induced centromere in control and fun30 deleted cells.

This analysis did not show significant changes in Cse4 occupancy

upon fun30-deletion (Figure 7).

Because Fun30 has previously been shown to influence nucleo-

some positions at the HMR and HML boundaries [8,9], we

determined if Fun30 affects nucleosome positions at the centromere.

In order to examine the role of Fun30 at all CENs, we used Illumina

paired-end-mode technology to sequence micrococcal nuclease

(MNase)-digested chromatin samples from wildtype and Dfun30

mutant cells. Nucleosome-like particle positions were mapped as

distributions of the center points of paired-end reads with an end-to-

end distance of ,150 bp. This class of size-selected paired-end

reads largely defines the DNA entry- and exit-points on nucleo-

somes exposed by MNase digestion in the original chromatin

sample. The frequency distributions of paired-read centre points,

therefore, effectively estimate the frequency of nucleosome dyads,

and peaks in the distributions correspond to translationally

positioned nucleosome-like chromatin particles in the original

genome [54,55]. Figure 8 shows these data for areas around CEN1,

CEN10, CEN11, and CEN12. At these sites both CEN flanking

nucleosome positions, and/or the MNase accessibility of the CEN

core particles themself are altered in the Dfun30 mutant confirming

that Fun30 is required for normal CEN chromatin structure. Figure

S6 shows that such changes are seen at a majority of centromeres.

Our analysis indicates a broad distribution of Fun30 over

centromeres with peaks of several 100 bps or more, encompassing

the central centromeric nucleosome (Figure 1, Figure S6), consistent

with a role of Fun30 in regulating pericentromeric and centromeric

chromatin. A similar localised alteration in nucleosome positioning

in Dfun30 cells was also observed at the other sites identified by

Fun30 ChIP sequencing (Figure S7 shows Fun30-dependent

nucleosome positioning at ARS elements). These results therefore

suggest that Fun30 plays a major role in defining local nucleosome

positioning at a variety of structural loci, particularly those with

boundary and silencing functions, in a manner similar to its S. pombe

ortholog Fft3 [11]. In conclusion, we show that Fun30 not only

binds at centromeres but also affects their structure.

FUN30 Deletion Perturbs Htz1 Binding Genome-Wide,
including at Centromeres

Positioned nucleosomes at yeast promoters and other genomic

sites, including areas in the vicinity of centromeres, telomeric

Role of SWI/SNF-Like Fun30 in Centromere Function
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Figure 4. Absence of Fun30 increases chromosome segregation defects upon transcription through a centromere. A) Schematic
depiction of the transcription-regulated centromere system. In the presence of glucose transcription through centromere III is repressed and the
centromere functions normally (left panel). Galactose induces transcription that perturbs centromere function (right panel). Chromosome

Role of SWI/SNF-Like Fun30 in Centromere Function
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elements and ARS, are often specifically enriched for Htz1 [56–

60]. Fun30 has been shown to be able to catalyze histone H2A/

H2B dimer exchange from nucleosomes in vitro including Htz1/

H2B dimers [10]. Preliminary experiments suggested that FUN30

deletion led to an increase of Htz1 at telomeric sites and within

and around the silent mating locus HMR (ATV, WRW, PVW,

data not shown). Therefore, we tested if FUN30 deletion affected

Htz1 occupancy genome-wide, including at centromeres. An

analysis of Htz1 occupancy at divergent promoters allows focusing

on the effect on promoters as opposed on terminator sites from

adjacent genes. This shows a dramatic loss of Htz1 around that 59

transcription start sites upon FUN30 deletion and a corresponding

increase within gene bodies (Figure 9A). A corresponding analysis

of Htz1 occupancy surrounding terminator sites of convergent

genes also demonstrates a drastic increase of Htz1 within the

coding regions up to the 39 terminator sites (Figure 9B). FUN30

deletion does not affect the expression from any of the histone

genes that we tested, including HTZ1 (Figure S8) and did not

affect total Htz1 protein levels relative to histone H3 (data not

shown). We found changes in Htz1 occupancy around several

centromeres, as shown for CEN10 and CEN11 in Figure 9C. While

such changes are not seen at all centromeres they are evident at a

majority of them (Figure S9). We see both loss of Htz1 occupancy

at promoters in the vicinity of the core centromere and increased

Htz1 binding at other, e.g., downstream sites. This is well

illustrated with CEN10, but also evident with other centromeres,

such as in the vicinity of CEN2, CEN4, CEN7, CEN11, CEN15, and

CEN16. Thus, Fun30 affects not only nucleosome positioning but

also Htz1 occupancy at centromeres and this may be linked to

defects in centromeric silencing that we observed upon FUN30

deletion.

Discussion

Fun30 is one of the most highly conserved members of the

SWI/SNF-like enzymes and homologues appear to be present in

all eukaryotes [4,8]. However, its biological role and mode of

function remained poorly characterized. In this study we

employed genome-wide chromatin analysis to obtain insights into

how Fun30 shapes the chromatin landscape. We show that loss of

FUN30 leads to alterations in nucleosome positions and occupancy

at several sites that are normally occupied by Fun30, including

centromeric and pericentromeric sites. Furthermore, deletion of

FUN30 leads to a substantial perturbation of the binding of Htz1, a

key H2A-variant histone, and this is also observed around

centromeres. We provide evidence that Fun30 is involved in

supporting faithful chromosome segregation through its role in

determining centromeric and pericentromeric chromatin. This

role of Fun30 is required when centromeric function is perturbed,

e.g., by mutation of Cse4 or forcing transcription through

centromeres. A recent study on a fission yeast homolog of

Fun30, FFT3, shows a role for this protein in chromosome

segregation and the regulation of CENP-A occupancy by

promoting the formation of centromeric heterochromatin [11].

Unlike in fission yeast, budding yeast centromeres are not

embedded in heterochromatin, but are surrounded by genes that

are actively transcribed at some of the centromeres. Thus Fun30

has a role at centromeres that can be separated from a role in

heterochromatin.

We found that Fun30 is required for normal nucleosome

positioning and occupancy surrounding the centromeric nucleo-

some. There is also loss of nuclease protection over the

centromeric nucleosomes at CEN5, CEN9 and CEN10 upon

FUN30 deletion. This loss may indicate a structural alteration of

the centric nucleosome, maybe because of loss of a centromeric

component, or a change in the overall chromatin configuration at

this site that renders chromatin more accessible. In addition, and

possibly linked to its role in determining nucleosome positioning,

Fun30 is required for the correct occupancy of Htz1 genome-wide,

including at centromeres. It is possible that the correct chromatin

structure around the core centromeric nucleosome, including fine-

tuned nucleosome spacing and correct Htz1 occupancy, is

required for the optimal presentation of the centromere to the

kinetochore. Thus, Fun30 may support centromere function by

ensuring a correct chromatin environment. Because we detect an

increase of transcription through CEN3 upon Fun30 deletion, we

believe that Fun30 may be involved in establishing a chromatin

environment around the centromere that represses transcription

over it, possibly by buffering against transcription emanating from

surrounding genes. Both negative and positive roles for transcrip-

tion have been reported at yeast centromeres [47,49,61]. The role

of Fun30 in mediating correct Htz1 occupancy may therefore be

linked to its role in suppressing transcriptional noise or in fine-

tuning the precise level of transcriptional activity.

Fun30 appears to have a profound role in regulating Htz1

occupancy and this may be connected to its reported role in

mediating silencing [8,9]. Presently, we do not know if this is the

result of direct chromatin remodeling by Fun30 or by a more

indirect mechanism. For example, Fun30 may interact with and

regulate components of the SWR1 complex that deposits Htz1

[62–64]. A direct role of Fun30 in regulating Htz1 occupancy

would be consistent with its previously demonstrated in vitro

histone dimer exchange activity, including H2AZ-H2B dimers

[10]. It is intriguing that deletion of FUN30 has a very similar

outcome with respect to Htz1 occupancy as the deletion of

chromatin remodeling factor complex INO80, which also results in

a loss of Htz1 over promoters and gain of Htz1 occupancy

downstream in the body of genes [65]. While there is evidence that

Ino80 can regulate removal of Htz1 from nucleosomes directly

[65], miss-incorporation of Htz1 on deletion of FUN30 or INO80

might be a common outcome of stress on the yeast cells. What

could be the connection between Htz1 occupancy and centromere

function? In fission yeast H2AZ mediates suppression of antisense

transcripts [66]. It is possible that in budding yeast Htz1 also

controls antisense transcripts, such as cryptic un-translated

transcripts emanating from promoters and that this functions

segregation is visualized by following the fluorescent dot, due to binding of LacI-GFP to a LacO array proximal to the centromere [45]. B)
Chromosome segregation defects/delays in cells with a functional CENIII (+ glucose) or a transcription-disrupted CENIII (+ galactose) in the presence
and absence of Fun30. Three categories of cells were scored: GFP dots separated with one in the mother cell and one in the daughter cell (bud,
column 1), two dots in the mother cell (column 2), two dots in the daughter cell. Values represent the mean percentage of cells 2/+ standard
deviation of three experiments in which each time 200 cells were counted; the p values are derived from t-tests for the two dots in mother cases. C)
,500 cells with or without Fun30, containing the conditional centromere were plated on glucose and incubated 3 days or on galactose and
incubated 5 days. On glucose there were about 500 colonies irrespective of the presence or absence of Fun30, with less than 5% of the colonies
being small. When grown in the presence of galactose, only ,250 of the control cells grew to colonies, with ,40 being large and the remainder small
colonies. The fun30-deleted cells showed only 2 large colonies in this condition and ,90 tiny colonies (see inserts). Repeat experiments gave similar
results.
doi:10.1371/journal.pgen.1002974.g004
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Figure 5. FUN30 deletion counteracts viability defects upon formation of a dicentric chromosome. A) Dfun30 cells show increased rates
of loss of a circular minichromosome (pUG25), the left diagram illustrates the assay, the right panel shows % of plasmid loss in wildtype (wt) and
fun30-deleted cells, shown is the average of two experiments, bars represent minimum and maximum values. B) Left panel: Diagram illustrating the
dicentric chromosome breakage assay [46]. In the presence of galactose, the ectopic formation of a second centromere on chromosome III is
suppressed through transcription of the locus. In the presence of glucose, the suppression of transcription allows formation of a second centromere
on the same chromosome, which ultimately leads to chromosome breakage and loss of viability. Right panel: Deletion of FUN30 promotes viability on
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limits transcription into and over centromeres. Remarkably,

H2A.Z has a role in mitosis in mammalian cells and is a structural

component of mammalian centromeres [67,68].

The recent study of fission yeast Fun30 homologue FFT3

showed a role of this factor at boundary elements by evicting

nucleosomes and preventing the spread of euchromatin into

heterochromatin. We also found that Fun30 accumulates at

putative boundary elements, such as tRNA genes (this study, [8]).

Therefore, it is likely that budding yeast Fun30 has a similar role as

proposed for FFT3, and this may, at least in part, be linked to the

silencing defects in fun30-deleted cells that we observed previously

[8].

While we did not find that deletion of FUN30 affected binding

of Cse4 over the endogenous CEN3 and an inducible CEN, we

show that Fun30 affects centromeric and pericentromeric chro-

matin (Figure 8, Figure 9) in line with its role in supporting

chromosome segregation (Figure 3, Figure 4, Figure 5). Even the

relatively simple centromere of budding yeast is a very complex,

multi-subunit structure that, on top of this, is highly dynamic.

While Cse4 is an essential component of the centromere,

centromere function can be compromised at several levels,

including the pericentromeric chromatin. The studies of the

diverse roles of ATP-dependent nucleosome remodeling factors in

supporting centromere function, as described below, make this

point very clearly. Several other ATP-dependent nucleosome

remodeling factors have been implicated in chromosome segrega-

tion and centromere maintenance or function in budding yeast,

including the RSC complex [69–71] and the SWI/SNF complex

[26]. RSC has been proposed to act following Cse4 recruitment

and SWI/SNF has been shown to support segregation by

preventing Cse4 binding to extra-centromeric sites [26,70]. The

budding yeast Ino80 complex also binds centromeres and is

involved in sister chromatid cohesion, but is not required for

centromeric association of kinetochore components including

Cse4 [72]. In fission yeast, HRP1, a homolog of the budding

yeast Chd1 protein, is required for faithful chromosome segrega-

tion and full CENP-A (CNP1) occupancy [73,74]. Similar

conclusions have been made for chicken and human Chd1 [75],

but it has also been reported that Chd1 has no role in CENP-A

binding in Drosophila [76]. It is not known if the budding yeast

Chd1 fulfills a centromere function. Overall, a picture emerges

where several remodeling factors, including Fun30, have comple-

mentary and overlapping roles in assuring correct centromere and

pericentromeric chromatin structure and faithful chromosome

segregation. Whether a remodeling factor exists in budding yeast

that is actively involved in depositing Cse4 is an open question.

Recent work from the Bloom laboratory highlights the importance

of regulated histone dynamics of the pericentromeric chromatin

induction of a dicentric chromosome, to a comparable extent as centromere establishment factor CHL4. More than 500 colonies/plate were counted
for cells grown in galactose and the corresponding number of colonies were established for cells grown in glucose. Shown is a representative
experiment, error bars represent 10% confidence interval.
doi:10.1371/journal.pgen.1002974.g005

Figure 6. Loss of Fun30 leads to increased Transcription at centromere regions. Analysis of transcript levels at CEN3 region by RT-qPCR in
wildtype yeast (wt), the corresponding Dfun30 mutant, Dtrf4 mutant and the double mutant Dfun30 Dtrf4 strains. Primers PM22/48 detecting
transcripts directly over CEN3 were used to amplify cDNA. The graph reports the relative amount of transcript compared to a control gene that is not
regulated by Fun30. Similar results were obtained when we examined absolute amounts.
doi:10.1371/journal.pgen.1002974.g006
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for chromosome segregation by maintaining kinetochore structure

during mitosis and implicates remodeling factors in this process

[77].

ISW2 is a nucleosome remodeling factor that prevents

noncoding transcription away from promoters and other nucleo-

some depleted regions, by limiting nucleosome free region size

[78]. Fun30 may be another remodeling factor that regulates

noncoding transcription. We detected an increase of nongenic

transcripts by qPCR over centromeres on deletion of FUN30.

However, using northern blotting upon FUN30 deletion we did

not detect an increase of cryptic unstable transcripts (CUTs) at

several other sites including at sites between convergent genes

where we find peaks of Fun30 binding (JRM, unpublished results).

Given the pronounced Fun30 binding over intergenic regions,

especially between convergent genes and its link to loss of histone

H3, it will be interesting to examine what is the biological role of

Fun30 at these sites. A clue may be given by the fact that Fun30

also binds intergenic sites, tRNA elements, ARS sequences,

snoRNA genes and centromeres. All these sites have been shown

to also bind cohesin and condensin [79,80]. Future studies will

examine if Fun30 collaborates with these chromosome-organizing

factors and elucidate how Fun30 identifies its specific binding sites,

such as centromeres.

Materials and Methods

Cell Cultures, Plasmids
Yeast strains used in this study are listed in Table 1. Strains SC138

and SC140 were generated by integrating CSE4-myc13 driven by the

CSE4 promoter into the LEU2 locus of strains KBY4001B and SC110

using BstX1 cleaved integration vector SB500, kind gift from Dr Sue

Biggins. Standard budding yeast genetic techniques and media were

used according to Guthrie et al. [81]. Cells were usually grown in YPD

media at 30uC. For spotting and serial dilution experiments, cells were

grown to mid-log phase and counted by haemocytometer. Cultures

were diluted to 2.56106 cells/ml with sterile H2O, than 1:5 serial

dilutions were performed five times. For the dicentric chromosome

assay, strains containing GALCEN3 were plated for single colonies on

YP galactose or glucose at 30uC as described in [46]. For the mitotic

stability assay, cells transformed with pUG25 centromere plasmid

(Gueldener and Hegemann, unpublished, [82]) were grown in

nonselective minimal media for 12 generations and then plated on

2leu or + leu plates. Plasmids used in this study are listed in Table 2.

RNA Extraction and Reverse Transcription (RT)
For RT-qPCR analysis, total RNA was extracted from mid-

logarithmic phase cells (O.D.600: 0.7) in YPD media using the hot

Figure 7. Deletion of FUN30 does not affect Cse4 occupancy at a constitutive and an induced centromere. A) Cse4 histone variant
occupancy at the endogenous CEN3 locus (eCEN3) and at a conditional CEN3 locus (cCEN3) when it is repressed (in the presence of galactose) or
induced (glucose) by ChIP. Control (SC138) and Dfun30 (SC140) cells are grown in YP Gal until<1 OD, then shifted in YP Glu or YP Gal containing
15 mg/ml of nocodazole and incubated for 4 hours. Cse4-Myc associated chromatin was immunoprecipitated and the immunoprecipitated DNA was
analyzed by PCR followed by agarose gel electrophorsis and ethidium bromide staining to visualize the DNA fragments. PCR was with the primers
described in Table 3. Shown are the relevant, cropped out bands from a single, representative gel, input was 1/243th of the immunoprecipitated
material. B) A bar plot reporting the enrichment over the input, expressed in arbitrary units, of three independent experiments as shown in (A).
Quantitation of bands was carried out using ImageJ software, error bars are standard deviation from the average.
doi:10.1371/journal.pgen.1002974.g007

Role of SWI/SNF-Like Fun30 in Centromere Function

PLOS Genetics | www.plosgenetics.org 10 September 2012 | Volume 8 | Issue 9 | e1002974



acidic phenol standard extraction protocol [83]. Total RNA was

treated by DNAse I amplification grade (Invitrogen). For analysis

by RT-qPCR, RNA was reverse transcribed and amplified in one-

step using specific primers and iScriptTM One-Step RT-PCR Kit

with SYBR Green (Bio-Rad Laboratories). Each sample was

prepared in duplicate and a control without the Reverse

Transcriptase was included to control for contaminating DNA.

Chromosome Segregation Assay and Microscopy
Cells were grown overnight in minimal media without uracil

and leucine containing 2% glucose. Cells were then collected,

washed three times in minimal media without glucose and grown

in minimal media with either 2% glucose or 3% galactose for 4 h.

To count the number and location of GFP dots of the LacO array

proximal to CEN3 [45], cells were fixed at room temperature with

2% paraformaldehyde, 10 min directly in the media and then

washed once with PBS. A Nikon Eclipse E600 equipped with a

6100 1.4 NA lens (Nikon), GFP filter, a Cascade 512B digital

camera (Photometrics) and MetaMorph software (Universal

Imaging Corporation) was used to determine the number of

GFP dots per cell by moving the focal plane through the sample

and analyzing the live digital image on the computer screen.

Chromatin Immunoprecipitation
ChIP was carried out essentially as described [8]. Overnight

cultures grown in YPD at 30uC were diluted to 0.2 OD595, then

grown to 0.7 OD595 at 30uC before crosslinking. Samples were

crosslinked 15 min for H3, 3Myc-Htz1 and Cse4-Myc or 30 min for

Fun30 detection with 1% final formaldehyde and chromatin extracts

were sonicated to ,500 bp. Triplicates or duplicate ChIP samples

were validated by qPCR. Chromatin extracts were then immuno-

precitated with 5 mg the Rabbit polyclonal anti-H3 (Ab1791,

Abcam) for histone H3; 2 mg affinity-purified rabbit polyclonal

anti-Fun30 for Fun30 [8] or with 2 mg of mouse monoclonal anti-

myc (9E10, Ab32, Abcam) for Cse4-Myc and 3Myc-Htz1.

Quantitative PCR (qPCR) Analysis
Immunoprecipitated and Input DNAs were analysed by qPCR

using the SYBR Green PCR Master Mix (Applied Biosystems).

For immunoprecipitated DNA a 8-fold dilution was performed,

input DNA was diluted 500 times; primers used are listed in

Table 3. The enrichment of the protein in a specific locus was

calculated as percentage of input DNA. The background binding

was calculated form the no-antibody control and subtracted from

the respective sample.

ChIP–Seq Library Preparation
Illumina sequencing was performed using protocols derived

from [84–86] and the standard Illumina protocol according to the

Figure 8. Fun30 is required for normal CEN-flanking nucleo-
some positioning and/or CEN core particle structure. A) Genome
browser trace of Fun30 ChIP enrichment and nucleosome dyad
frequency centred on and surrounding yeast CEN1. The upper trace
shows Log2 Fun30 ChIP-seq enrichment values binned at 10 bp
intervals and smoothed with a 3 bin moving average. Wildtype (WT)
and Dfun30 chromatin was digested with MNase and nuclease-
protected DNA species sequenced using paired-end mode Illumina
technology. Nucleosome sequencing data (nuc) traces were plotted as
mirror images in the lower panel. The graph shows a map of the centre
point positions of paired sequence reads with end-to-end distances of
150 bp+/220% wild-type and Dfun30 mutant chromatin samples

surrounding CEN1. The frequency distributions, which effectively map
chromatin particle dyads, were binned at 10 bp intervals, and
smoothed by applying a 3 bin moving average. Peaks in the dyad
distributions correspond to translationally-positioned nucleosomes in
the original genome. The CEN core particle is also mapped using this
method and can be visualised as a small peak centred on the CEN
region marked with a grey box. Pink bars show the positions of ORFs
(B–D) Genome browser plots of Fun30 ChIP-seq and nucleosome
sequence distributions as described above for CEN10, 11 and 12
respectively. Fun30-dependent changes in the height of a nucleosome
dyad or CEN core particle peak are marked with a red asterix. Fun30-
dependent changes in the position of a CEN-flanking nucleosome dyad
peak are marked with red arrows. Genome browser plots for all yeast
CENs are shown in Figure S6.
doi:10.1371/journal.pgen.1002974.g008
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Figure 9. Fun30 affects Htz1 occupancy, including at centromeres. (A) Average occupancy analysis for histone Htz1 for divergent orientation
genes relative to the 59 Transcription start site (5TSS) position for wildtype cells (left panel), Dfun30 cells (middle panel) and ratio Dfun30 versus WT
(right panel, W303 3Myc-Htz1 versus W303 3Myc-Htz1 Dfun30). (B) Average occupancy analysis for histone Htz1 for convergent orientation genes
relative to the 39 Transcription stop site (3TSS) position for wildtype cells (left panel), Dfun30 cells (middle panel) and ratio Dfun30 versus wildtype. (C)
Effect of Fun30 on Htz1 occupancy 5 kbp up- and downstream of CEN10 and CEN11. Shown is the Fun30 occupancy as measured by ChIP-seq in the
top lane (dark blue, log2 scale, expressed as ratio of normalized sequence tag counts from ChIP to input). Htz1 occupancy from wildtype (wt, red) and
Dfun30 (light blue) are shown in the two lanes below expressed as normalized sequence tag counts corrected for input in linear scale. The change in
occupancy of Htz1 is indicated in the lane below as the values from the Dfun30 cells minus the values from wt cells (black). Positions of ORFs and
centromeres are indicated in the lowest lane, orange box: centromere, back and grey boxes: ORFs in the sense and antisense direction, respectively.
doi:10.1371/journal.pgen.1002974.g009
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manufacturer. ChIP DNA fragments were purified and concen-

trated using MinElute columns (QIAGEN). Eluted DNAs from

two pooled ChIP reactions of biological replicas (equal amount of

DNA) were separated by electrophoresis through 2% agarose in

TAE and DNA fragments with size range 150–450 bp were

excised. Excised DNA fragment were purified using the QIAGEN

Gel Extraction Kit and eluted in 30 ml of EB buffer (10 mM Tris-

HCL, pH 8). The entire size selected ChIP reaction was then used

in the end-filling and A-tailing reactions, essentially as described in

the standard Illumina protocol, using standard molecular biology

reagents purchased from New England Biolabs. The adapter

ligation step was performed using barcoded single-end adapters

synthesized by Sigma-Genosys described in [86]. Briefly, forward

and reverse adapters were mixed in equimolar ratios, incubated at

95uC for 5 minutes, and allowed to anneal by using a ramp of

21uC/10 seconds until the sample reached 4uC. The ligation of

adapters with DNA fragments was performed using T4 DNA

ligase from Enzymatics, with incubation for 30 minute at 16uC
followed by an additional 30 minutes at 22uC. Next the library

was purified using the QIAGEN MinElute kit and separated in a

Table 1. S. cerevisiae strains used in this study.

Strains Mating type Genotype Source/Reference

Y00000 (BY4741 ) MAT a his3Dl leu2D10 met15D ura3D0 EUROSCARF

Y00389 MAT a his3Dl leu2D10 met15D ura3D0 YAL019W::kanMx4 EUROSCARF

SC13 MAT a his3D1; leu2D0; met15D0; ura4D0; trf4D::natMX6 Jon Houseley

SC15 MAT a his3D1; leu2D0; met15D0; ura4D0; trf4D::natMX6 YAL019W::kanMx4 This study

SBY617 MAT a ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 Dbar1 CSE4-12myc::URA3 [23]

AHY666 MAT a ade2-101 his3-del200 lys2-801 trp1-D63 ura3-53 leu2-3, 112 cse4-1 (lys2+?) [95]

SC39 MAT a his3D1; leu2D0; met15D0; ura4D0 CSE4-12myc::URA3 YAL019W::kanMx4 This study

SC53 MAT a ade2-101 his3-del200 lys2-801 trp1-del63 ura3-53 leu2-3, 112 cse4-1 (lys2+?),
YAL019W::kanMx4

This study

SC56 MAT a ura3-52, trp1D2, leu2-3_112, his3-11, ade2-1 can1-100 pYES2.1 This study

SC58 MAT a ura3-52, trp1D2, leu2-3_112, his3-11, ade2-1 can1-100 YAL019W::kanMx4 pYES2.1 This study

SC60 MAT a ura3-52, trp1D2, leu2-3_112, his3-11, ade2-1 can1-100 YAL019W::kanMx4 pFA1 This study

SC62 MAT a ura3-52, trp1D2, leu2-3_112, his3-11, ade2-1 can1-100 YAL019W::kanMx4 pFA3 This study

SC64 MAT a ura3-52, trp1D2, leu2-3_112, his3-11, ade2-1 can1-100 YAL019W::kanMx4 pFA5 This study

SC66 MAT a ade2-101 his3-del200 lys2-801 trp1-del63 ura3-53 leu2-3, 112 cse4-1 (lys2+?) pYES2.1 This study

SC68 MAT a ade2-101 his3-del200 lys2-801 trp1-del63 ura3-53 leu2-3, 112 cse4-1 (lys2+?),YAL019W::
kanMx4 pYES2.1

This study

SC70 MAT a ade2-101 his3-del200 lys2-801 trp1-del63 ura3-53 leu2-3, 112 cse4-1 (lys2+?),YAL019W::
kanMx4 pFA1

This study

SC72 MAT a ade2-101 his3-del200 lys2-801 trp1-del63 ura3-53 leu2-3, 112 cse4-1 (lys2+?),YAL019W::
kanMx4 pFA3

This study

SC74 MAT a ade2-101 his3-del200 lys2-801 trp1-del63 ura3-53 leu2-3, 112 cse4-1 (lys2+?),YAL019W::
kanMx4 pFA5

This study

KBY4001B MAT a ade1 met14 ura3-52 leu2 his3 his4::GALCEN3URA3 [46]

KBY4005 MAT a ade1 met14 leu2 his3 his4::GALCEN3URA3 chl4::KANr [46]

SC110 MAT a ade1 met14 leu2 his3 his4::GALCEN3URA3 YAL019W ::NatMx6 This study

SC138 MAT a ade1 met14 leu2 his3 his4::GALCEN3URA3 LEU2::CSE4prom-CSE4-12myc This study

SC140 MAT a ade1 met14 leu2 his3 his4::GALCEN3URA3 YAL019W ::NatMx6 LEU2::CSE4prom-
CSE4-12myc

This study

SC98 MAT a his3Dl leu2D10 met15D ura3D0 pUG25 (Leu2+) This study

SC99 MAT a his3Dl leu2D10 met15D ura3D0 pUG25 (Leu2+) This study

SC100 MAT a his3Dl leu2D10 met15D ura3D0 pUG25 (Leu2+) This study

SC101 MAT a his3Dl leu2D10 met15D ura3D0 YAL019W::kanMx4 pUG25 (Leu2+) This study

SC102 MAT a his3Dl leu2D10 met15D ura3D0 YAL019W::kanMx4 pUG25 (Leu2+) This study

SC103 MAT a his3Dl leu2D10 met15D ura3D0 YAL019W::kanMx4 pUG25 (Leu2+) This study

SLY806 MAT alpha MATa PHIS3-GFP-LacI2-HIS3, LacO256:LEU2, URA3-CHRIII116000, TRP1:GALpr at CEN3,
ade2-1, leu2-3,112, trp1-1, can1-100

[45]

SC117 MAT alpha MATa PHIS3-GFP-LacI2-HIS3, LacO256:LEU2, URA3-CHRIII116000, TRP1:GALpr at CEN3,
ade2-1, leu2-3,112, trp1-1, can1-100 Dfun30:kanMx6

This study

W303 3Myc-Htz1 [57]

W303 3Myc-Htz1
Dfun30

This study

doi:10.1371/journal.pgen.1002974.t001
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Table 2. Plasmids used in this study.

Name Marker/Backbone Source/Reference

pYES2.1 pYES2.1 V5- TOPO (ura3+) Invitrogen

pFA1 pYES2.1/FUN30 (ura3+) [8]

pFA3 pYES2.1/FUN30-ATPase(ura3+) [8]

pUG25 CEN6/ARSH4(Leu2+) Gueldener and Hegemann, unpublished

SB500 CSE4-myc13 integrating plasmid marked
With LEU2 based on pSB236

Sue Biggins

doi:10.1371/journal.pgen.1002974.t002

Table 3. Oligonucleotide primers used in this study.

Primer Name Sequence 59-39

FUN30 Upstream TACAAGCCTGTTATAGCCTTTAATGATCAC

FUN30 Downstream CCATTTCTCTCCCCAGATTAAA

FUN30TAP fwd GACAAGCTGCTGATAGGGCAC

FUN30TAP rev GTTCACCATTTCTCTCCCCAG

KANMX downstream TGATTTTGATGACGAGCGTAAT

CEN I Forward Camahort et al. 2009, also RT-qPCR TGACATTGAACTTCAAAACCTTT

CEN I Reverse Camahort et al. 2009, also RT-qPCR GGCGCTTGAAATGAAAGCTC

PM70 (CENIII) Camahort et al. 2009 AGTGTCTTCGCATAAAATCCAG

PM71 (CENIII) Camahort et al. 2009 CATCTATTTACTGCTATTAAGCG

PM72 (CENIII) Camahort et al. 2009 CATACCATGCTTTGTTATCGTC

PM73 (CENIII) Camahort et al. 2009 ATTTTATGCGAAGACACTGCTG

PM74 (CENIII) Camahort et al. 2009 CATCTTTGAAAAGTTCATCAAGG

PM75 (CENIII) Camahort et al. 2009 CGATAACAAAGCATGGTATGGC

PM76 (CENIII) Camahort et al. 2009 ATATTGTTTGGCGCTGATCGC

PM77 (CENIII) Camahort et al. 2009 CTTGATGAACTTTTCAAAGATGAC

PM22 (CENIII) Camahort et al. 2009, also RT-qPCR GATCAGCGCCAAACAATATGG

PM48 (CENIII) Camahort et al. 2009, also RT-qPCR AACTTCCACCAGTAAACGTTTC

PM78 (CENIII) Camahort et al. 2009 GTCAACGAGTCCTCTCTGGC

PM79 (CENIII) Camahort et al. 2009 TTTACTGGTGGAAGTTTTGCTC

PM80 (CENIII) Camahort et al. 2009 GAATATGATAATGGTTACACCAG

PM81 (CENIII) Camahort et al. 2009 GAGAGGACTCGTTGACGTAG

PM82 (CENIII) Camahort et al. 2009 GATTTAATGCACGTTATGTTTCG

PM83 (CENIII) Camahort et al. 2009 TGTAACCATTATCATATTCATGAC

PM84 (CENIII) Camahort et al. 2009 GTAAGAGGTAGGTTTTGCAGG

PM85 (CENIII) Camahort et al. 2009 ATAACGTGCATTAAATCTCACTG

GAL2orfF Camahort et al. 2009 CGAACTCAGTTCAATGGAGAGT

GAL2orfR Camahort et al. 2009 TACCGGCCATGATCAGATCT

ARS315_F GCGCGTCAACTTTCTACCA

ARS315_R ATTTTCTTGGCGCTACGATG

snR35_F GTCCTACCAGCCCTTGCATA

snR35_R CAAGTCCATCGGAGAGATCA

Control1_F TCGCAAAGAGATAATGGTGCT

Control1_R TTTCGATGTCGTCAGCAGTC

Control2_F (also used for RT-qPCR) TAGCACGGTGCATCAGAAAG

Control2_R (also used for RT-qPCR) CGCTACCAATACCAGGGAAA

Control3_F GATGAGGCAACCAAGAAGGA

Control3_R TCGTAGCGTGGCATAAAACA

doi:10.1371/journal.pgen.1002974.t003
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2% agarose/TAE gel for 1 hour at 90 V. Libraries were excised

from the gel between 150 bp and 500 bp. Amplification was

performed using Pfx Platinum polymerase (Invitrogen) for 15

cycles as described by Quail et al. [84]. The libraries were

concentrated with QIAGEN MinElute kits and electrophoresed in

a 1.9% agarose/TAE gel. Samples were quantified with SYBR

Green qPCR Master Mix (Applied Biosystems) and the primers

SYBR FP4 and SYBR RP7 and compared to a standard curve of

phiX174 library, as described [84]. The libraries were diluted to

10 nM in EB buffer.

RNA–Seq Library Preparation
Overnight cultures were grown in YPD at 30uC were diluted to

0.2 OD595, then grown to 0.7 OD595 at 30uC. Total RNA was

isolated using the hot acidic phenol method [83]. Next 10 mg

aliquots were treated with DNase I amplification grade (Invitro-

gen) for 30 minutes at 37uC, purified by ethanol precipitation and

quality-checked by 8 M Urea 6% polyacrylamide gel electropho-

resis in 0.56 TBE. PolyA RNA were purified using Oligo-dT

Dynabeads (Invitrogen). Purified polyA RNA samples were

concentrated by ethanol precipitation and then fragmented using

the Ambion RNA fragmentation kit. Samples were ethanol

precipitated and the RNA was used in first strand and second

strand cDNA synthesis with random hexamers at 150 ng/ml. The

entire reaction was used in library generation. Libraries are

summarized in Table 4.

ChIP–Seq Data Analysis
To increase the sequence yields, the Illumina sequence reads,

carrying custom barcodes at the start, were re-analyzed using

bareback-processing [87]. Barcodes were used to sort files and

were subsequently stripped off. Alignments to the yeast genome

(genome build SGD1.01, Dec 2006) were performed with Bowtie

[88] using default options and ‘–best’. Next, data were loaded into

Seqmonk (http://www.bioinformatics.bbsrc.ac.uk/projects/

seqmonk/). Read quantification of probe regions were designed

depending on purpose. For analysis of 59 Transcription Start Site

(5TSS) and 39 Transcription Termination Site (39TTS) regions,

UTRs length were obtained from [89]. Tiled probes of 25 bp

resolution were generated from 21000 to +2000 bp relative to the

59TSS region of the gene and from 22000 to +1000 bp relative

the 39TTS regions. Quantification of the reads were corrected for

the total read count and for probe length. Normalizations were

performed using an input DNA library. For the analysis of 59

intergenic regions (59IGRs), genomic elements and 39 intergenic

regions (39IGR) we performed gene annotations according to

Figure S10. For coding genes having identified 59UTRs and

39UTRs according to [89], 59IGR and 39IGR regions comprised

UTR regions plus an extended regions of 150 bases to integrate

the promoter or terminator regions. Each segment was then

averaged vertically for each subgroup of expression to create the

average binding values along each position. Three expression

categories were assigned according to their log2 signal intensities.

Visualization of data was performed using the Affymetrix

Integrated Genome Browser (IGB) (http://www.affymetrix.com/

) and Mochiview [90]. The resulting ratio ChIP versus DNA input

(from chromatin) were extracted for each probe position, defined

as the center (6th) base coordinate for each 13-nucleotide probe.

High-resolution cluster visualization of 59TSS and 39TTS were

performed using MultiExperiment Viewer MeV4.5.1 [91,92].

Correlations were performed using Venn Mapper software

(http://www.gatcplatform.nl/vennmapper/) [93]. GO analysis

was performed using Mochiview with multiple testing correction

[90]. Annotation features were downloaded from SGD database

(http://www.yeastgenome.org/), genome version SGD01.01 (Dec

2006). For determining gene orientation we also considered

noncoding genomic elements, i.e. snoRNAs, snRNAs and tRNAs

Nucleosome Sequencing
S. cerevisiae used for nucleosome sequencing were EUROSCARF

collection wild-type reference strain BY4742 (MATa; his3D1;

leu2D0; lys2D0; ura3D0) and mutant Y10389 (MATa; leu2D0;

lys2D0; ura3D0; Dfun30::KanMX4). Cells were grown in YPD rich

medium (1% peptone, 1% yeast extract, 2% D-glucose) at 29uC to

2.6–2.86107 nucleated cells per ml (determined by haemocyto-

metry). Chromatin digestion and DNA preparation was performed

exactly as described [55]. Briefly, un-fixed detergent-permeabilised

yeast spheroplasts were incubated with MNase, and then a DNA

fraction containing all MNase-digested DNA species ,1 Kb

(including sequences protected by sequence-specific DNA binding

proteins, mono-nucleosomes and poly-nucleosomes) was released

and purified. 10 mg pooled triplicate samples of DNA (Figure

S11A) were processed for library preparation, size-selected on

polyacrylamide gels (to preserve the size distribution of DNA

fragments) and sequenced using the 76 base Illumina GAIIx

paired end mode process exactly as described [55]. Raw paired

sequence reads are deposited at the NCBI short read archive

under accession number SRA039099.2. Paired reads were aligned

to the NCBI S. cerevisiae reference genome using Bowtie 0.12.7 [88]

with command line flags: -n 0 –trim3 40 –solexa.3-quals –maxins

5000 –fr -k 1 –sam. Sequences were, therefore, clipped from the 39

end to 36 bp allowing Bowtie to return overlapping read pairs

resulting from sequencing of relatively short input DNA species.

13,626,902 and 13,362,948 perfectly-aligned reads pairs were

obtained from the wild-type and Dfun30 samples respectively. The

paired reads were sorted into a range of classes based on the SAM

format ISIZE value (difference between 59 end of the mate read

and the 59 end of the first mapped read) plus or minus a window

value of 0.2 times ISIZE as described [55]. Figure S11B shows the

frequency distributions of aligned paired sequence reads from both

yeast strains, and confirms that the ISIZE distributions reflect the

,150 bp nucleosomal periodicity of the input chromatin samples.

To specifically map nucleosomes, aligned paired sequence reads

with an ISIZE of 150 bp630 bp were selected, the assumption

being that the DNA species falling into this size class would have

been generated by protection of DNA from MNase digestion in

Table 4. Summary of sequence libraries.

libraries Total Read Count Fold Coverage References

Input 35 047 745 100 This study

ChIP FUN30 4 881 253 14 This study

ChIP H3 WT 8 610 178 24 This study

ChIP H3 Dfun30 8 610 631 24 This study

WT cDNA 4 506 311 12 This study

Dfun30 cDNA 4 886 511 13 This study

ChIP Htz1 WT 1 937 248 5 This study

ChIP Htz1 Dfun30 2 402 571 6 This study

Nuc.-seq WT 13 626 902 read pairs 195 reads/nucleosome This study

Nuc.-seq Dfun30 13 362 948 read pairs 195 reads/nucleosome This study

Input (for Cse4) 10 523 511 25 [86]

ChIP Cse4 2 184 703 5 [86]

doi:10.1371/journal.pgen.1002974.t004
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chromatin by mono-nucleosome binding. The center value of each

read-pair was calculated to represent the map position of the

putative nucleosome dyad, and a genome-wide frequency distri-

bution of the dyad positions determined and binned to 15 bp. The

frequency distributions were smoothed by taking a 3 bin moving

average and output in a zero-referenced, chromosome base, three-

column format (chromosome number, genomic bin position, dyad

frequency value) as described [55]. The frequency-distribution files

for wild-type and Dfun30 mutant cells were given an .sgr file

ending and rendered using the Integrated Genome Browser [94]

to produce the nucleosome dyad frequency traces presented in this

work.

Accession Code
ChIP-seq and RNA-seq read data has been deposited in the

ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) un-

der accession codes E-MTAB-955, E-MTAB-956 and E-MTAB-

759. Raw paired sequence reads of nucleosome mapping are

deposited at the NCBI short read archive, accession number

SRA039099.2.

Supporting Information

Figure S1 Fun30 preferentially binds intergenic regions over

coding regions (ORFs). A) Analysis of Fun30 binding to intergenic

regions, red line: ratio of 59 intergenic versus ORF regions, blue

line: ratio 39 intergenic versus ORF regions. B) Fun30 shows a

pronounced binding at the intergenic 39 end region and this

enrichment is directly correlated with expression levels, shown is

the average gene analysis for Fun30 binding in relation to RNA

transcript levels (determined by RNA-seq in this study) number of

genes (n) in each category is indicated in the figure, error bars:

95% confidence interval. C) left panel: Binding profile of Fun30

relative to 5 Transcriptional Start Sites (59TSS). The clusters

contain 4560 genes where the 59TSS has been identified [89].

Grey bars on right side indicate respectively expression level for

each gene and promoter orientation (TP: Tandem Promoters, CP:

Convergent Promoters). Values are represented in log2; right

panel: Binding profile of Fun30 relative to 39 Transcriptional

Termination Sites (39TTS). The clusters contain 5208 genes with

identified 39TTS [89]. Grey bars on right side indicate respectively

expression level for each gene and promoter orientation (CT:

Convergent Terminators, TT: Tandem Terminators). Values are

represented in log2. D) As in (C), right panel, but corresponding

histone H3 occupancy in wildtype cells and the change in histone

H3 occupancy as ratio of occupancy between fun30-deleted/

wildtype cells is shown.

(TIF)

Figure S2 Fun30 is enriched over centromeric regions. A)

Validation of Fun30 binding sites by ChIP following qPCR. Fun30

binding at control regions (Ctrl1–3) where Fun30 did not bind

according to our ChIP-seq data, and binding to CEN1, snR35,

ARS315. B) Fun30 binding to CEN3 and surrounding region using

primer pairs spanning +/22 kb, controls as in (A). Level of

enrichment is expressed as % DNA precipitated as compared to

input. Background binding to beads was substracted, error bars

represent the difference of the maximum and minimum values

from the mean. Shown are results from 2 biological replicas, each

with 2 technical replicas.

(TIF)

Figure S3 Fun30 primarily acts as a repressor of transcription.

Moving average plot (window size = 150 genes, step size = 1 gene)

of the mRNA transcription level ratios in Y00389 (Dfun30) versus

BY4741/Y00000 (WT) plotted as a function of mRNA levels in

WT at 30uC in YPD (normalized reads intensity by bases pairs

count 61000/divided by gene length, [27]). The gene expression

ratio from Dfun30 versus wildtype was plotted as moving average of

this ratio as a function of the wildtype gene expression levels. The

global expression profile for the Dfun30 mutant showed a ratio of 1

for moderately expressed and highly expressed genes indicating

that Fun30 does not affect genes at this range of expression levels.

Silent or weakly expressed genes in wildtype showed a high

median expression ratio.

(TIF)

Figure S4 Deletion of Fun30 does not affect promoter activity of

GAL1 integrated at centromere CEN3. Analysis of GAL1 promoter

induction at CEN3 locus. RNA from SLY806 (control, black) and

SC117 (Dfun30, dashed gray) strains was isolated at indicated time

points after addition of galactose and analyzed by RT-qPCR using

primers specific for CEN3 locus (PM22/PM48).

(TIF)

Figure S5 Fun30 regulates histone H3 occupancy at intergenic

regions. A) 39 regions of genes show the greatest enrichment for

Fun30 when compared to promoter or coding regions. Average

occupancy of Fun30 for divergent orientation promoters (left

panel) and convergent terminators (right panel). The data were

binned into three groups (High, medium, low) according to the

expression level of wildtype cells. The number of genes (n) in each

category is indicated. Error bars represent 95% confidence

intervals. The genomic region of interest was divided into 40

equally sized bins. The 59 and 39 flanking regions have 1250 bp

from respectively the beginning and the end site of the genomic

elements and divided into a 50 fragments of 50 bases (see Materials

and Methods for full description). (B, C) Average trends in specific

promoter or terminator regions - i.e. only divergent or convergent

genes - were determined for the histone H3 occupancy profiles in

wildtype and Dfun30 cells. As previously shown, histone H3 is

mainly present within coding regions whereas in both promoter

and terminator specific regions histone H3 is relatively depleted.

In Dfun30 mutants there is an increase of histone H3 at promoter

and terminator regions. B) Average occupancy analysis for histone

H3 for divergent orientation genes relative to the 59TSS position

for wildtype cells (left panel) and ratio Dfun30 versus WT (right

panel, Y00389 versus BY4741/Y00000). C) Average occupancy

analysis for histone H3 for convergent orientation genes relative to

the 39TTS position of genes for wildtype cells (left panel) and ratio

Dfun30 versus WT (right panel, Y00389 versus BY4741/Y00000).

D) Venn diagrams showing results of hypergeometric probability

tests for 59IGR and 39IGR Fun30 targets and changes in histone

H3 in Dfun30 mutant. This analysis revealed that the changes in

histone H3 occupancy are significant for the 59 and 39 intergenic

regions. Venn diagram illustrating the overlaps in 59 intergenic

regions (59IGR) and 39 intergenic regions (39IGR) between the

genes that display increased Fun30 binding (1.5 fold up

enrichment) and increased histone H3 occupancy in the Dfun30

mutant. Hypergeometric probability values are indicated. For

promoter (divergent genes) or terminator specific regions (conver-

gent genes) these are respectively P(X = 31) = 1.7761029 and

P(X = 156) = 5.4361028.

(TIF)

Figure S6 The majority of yeast CENs exhibits Fun30-

dependent changes in flanking nucleosome position and/or CEN

core MNase accessibility. A) Genome browser traces of Fun30

ChIP enrichment and nucleosome dyad frequency centered on

and surrounding yeast CEN1; B) CEN2; C) CEN3; D) CEN4; E)

CEN5; F) CEN6; G) CEN7; H) CEN8; I) CEN9; J) CEN10; K)
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CEN11; L) CEN12; M) CEN13; N) CEN14; O) CEN15; P) CEN16.

The upper trace of each panel shows log2 Fun30 ChIP enrichment

values binned at 10 bp intervals and smoothed with a 3 bin

moving average. The wild-type (WT) and Dfun30 mutant

nucleosome (nuc) traces were plotted as mirror images in the

lower panel. Centre point positions of paired sequence reads with

end-to-end distances of 150 bp+/220% were mapped across the

yeast genome for the wild-type and Dfun30 mutant MNase-

digested chromatin sequencing samples, binned at 10 bp intervals,

and the resulting frequency distributions smoothed by applying a 3

bin moving average. This class of size-selected paired-end

sequence reads largely defines the DNA entry- and exit-points

on nucleosomes exposed by MNase digestion in the original

chromatin sample. The frequency distributions of paired-read

center points therefore effectively estimates the frequency of

nucleosome dyads [54,55] and peaks in the distribution corre-

spond to translationally positioned nucleosomes in the original

genome. The CEN core particle is also mapped using this method

and can be visualized as a small peak centered on the CEN region

marked with a grey box on each browser panel, pink boxes mark

the surrounding ORFs. Fun30-dependent changes in the height of

a nucleosome dyad or CEN core particle peak are marked with a

red asterix. Fun30-dependent changes in the position of a CEN-

flanking nucleosome dyad peak are marked with red arrows.

(TIF)

Figure S7 Fun30 is required for normal nucleosome positioning

at other sites identified by ChIP-seq. A. ARS regions show Fun30-

dependent nucleosome positioning surrounding the ARS consensus

sequence (ACS). The upper graph shows a plot of the cumulative

Log2 Fun30 ChIP enrichment values centered on the yeast ACS

elements defined by Nieduszynski et al. [96]. The lower graph

shows plots of the cumulative nucleosome dyad frequencies in the

same region for wildtype (black line) and Dfun30 mutant (red line)

chromatin sequencing data sets. The cumulative nucleosome dyad

frequencies in each 15 bp bin were normalized by dividing by the

average nucleosome dyad frequency for the whole feature window

in order to place ‘‘random’’ nucleosome occupancy at a value of 1.

Changes in cumulative distribution between wildtype and the

Dfun30 mutant are indicated with asterisks. B. Genome browser

trace of nucleosome dyad frequencies at Fun30-dependent

ARS202 plotted as described for CEN analyses, Figure 8, Figure

S6. Three nucleosomes surrounding the ARS which exhibit Fun30-

dependent changes in position are marked with arrows.

(TIF)

Figure S8 RNA-seq analysis shows that histone gene expression

is not changed upon FUN30 deletion. Expression in wildtype cells:

dark grey bars, in Dfun30 cells: light grey.

(TIF)

Figure S9 Fun30 affects Htz1 occupancy around a majority of

centromeres. Effect of Fun30 on Htz1 occupancy 5 kb up- and

downstream of CEN1–16. Shown is Htz1 occupancy from

wildtype (wt, red) and Dfun30 cells (light blue, below) expressed

as normalized sequence tag counts corrected for input in linear

scale. The change in occupancy of Htz1 is indicated in the lane

below as the values from the Dfun30 cells minus the values from wt

cells (black). Positions of ORFs and centromeres are indicated in

the lowest lane, orange box: centromere, back and grey boxes:

ORFs in the sense and antisense direction, respectively. Axis and

scales as in Figure 6.

(TIF)

Figure S10 Description of flanking regions annotations for

coding gene. A) 59IGR and 39IGR region assignment for genes

having identified 59UTR and/or 39UTR by [89]. B) 59IGR and

39IGR region assignment for gene having unidentified 59UTR

and/or 39UTR.

(TIF)

Figure S11 MNase digested chromatin samples processed for

paired-end mode Illumina DNA sequencing. A. DNA from

MNase digested chromatin fractions purified from wild-type and

Dfun30 yeast strains separated by agarose gel electrophoresis and

stained with ethidium bromide. B. Graph of the number of aligned

paired-end reads obtained by Illumina GAIIx sequencing of

material shown in Fig. 1A versus paired-read end-to-end distance

(SAM format ISIZE value). Peaks at ,150 bp, 300 bp and 450 bp

are marked and correspond to mono-, di- and tri-nucleosome

DNA fractions respectively. The end-to-end distances of paired

sequence reads therefore reflect the distribution of chromatin

particle input DNA.

(TIF)

Table S1 This EXCEL spreadsheet based table provides gene

lists of up- and down-regulated genes in fun30-deleted cells, a list of

genes that genetically interact with FUN30.

(XLS)
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