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ABSTRACT

Data-driven parcellations are widely used for exploring the functional organization of the

brain, and also for reducing the high dimensionality of fMRI data. Despite the flurry of

methods proposed in the literature, functional brain parcellations are not highly reproducible

at the level of individual subjects, even with very long acquisitions. Some brain areas are also

more difficult to parcellate than others, with association heteromodal cortices being the most

challenging. An important limitation of classical parcellations is that they are static, that is,

they neglect dynamic reconfigurations of brain networks. In this paper, we proposed a new

method to identify dynamic states of parcellations, which we hypothesized would improve

reproducibility over static parcellation approaches. For a series of seed voxels in the brain,

we applied a cluster analysis to regroup short (3 min) time windows into “states” with highly

similar seed parcels. We split individual time series of the Midnight scan club sample into

two independent sets of 2.5 hr (test and retest). We found that average within-state

parcellations, called stability maps, were highly reproducible (over 0.9 test-retest spatial

correlation in many instances) and subject specific (fingerprinting accuracy over 70% on

average) between test and retest. Consistent with our hypothesis, seeds in heteromodal

cortices (posterior and anterior cingulate) showed a richer repertoire of states than unimodal

(visual) cortex. Taken together, our results indicate that static functional parcellations are

incorrectly averaging well-defined and distinct dynamic states of brain parcellations. This

work calls to revisit previous methods based on static parcellations, which includes the

majority of published network analyses of fMRI data. Our method may, thus, impact how

researchers model the rich interactions between brain networks in health and disease.

AUTHOR SUMMARY

Functional brain parcellation has been a very active topic of investigation for the past two

decades, yet there is no evidence to date of reproducible results at the individual level—see

for example Figure 2 in Gordon, Laumann, Gilmore, et al. (2017), with a Dice coefficient

plateauing around 0.7 using 40 min or more of data. In this paper, we show that highly

reproducible brain parcels can be observed using short (3 min) time windows. Different

modes—or states—of reproducible parcellations can be observed in a single brain region,

and these modes have only little overlap with each other. We carefully quantified these

individual dynamic states of parcellation using the Midnight Brain Scan dataset, featuring

5 hr of functional MRI per subject. Our results indicate that static functional parcellation are

incorrectly averaging well-defined and distinct dynamic states. This brings important caution
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Unraveling reproducible dynamic states of functional parcellation

for any work based on static atlases, which is the dominant approach currently in so-called

network analysis of fMRI data.

INTRODUCTION

Brain parcellation is a tool for understanding the functional organization of the human cerebral

cortex, and also to reduce the dimensionality of fMRI data. Parcellations are notably heavily

used to characterize brain network properties. A brain parcellation was defined as the entire

subdivision of the brain into clusters (or spatially distributed parcels/regions). A good parcella-

tion should typically satisfy two conflicting objectives. The first objective is to be reproducible

enough to allow for replication and comparison across studies. The second objective is to be

flexible enough to accurately represent the organization of an individual brain. Simultaneously

achieving these two objectives is challenging, in part because of intersubject variability (Braga

& Buckner, 2017; Nastase, Gazzola, Hasson, & Keysers, 2019; Sripada et al., 2019), which is

also associated with measures of cognitive performance (Betzel et al., 2019). In addition, it has

also become apparent that brain functional connectivity substantially reorganizes dynamically

(Yaesoubi, Adali, & Calhoun, 2018) according to different cognitive states (Salehi et al., 2020).

Our main objective in this work was to develop a new method to capture reproducible dy-

namic states of parcellations at the individual level. These dynamic states represent the spatialDynamic state of parcellation:
The subdivision of the brain into
functionally homogeneous regions,
each with a set of sliding windows
over time.

brain reconfigurations over time in the resting-state condition.

Even though there has been remarkable progress in the field of brain parcellation, there are

still concerns about the reproducibility of individual-level parcellations. For instance, Gordon

and colleagues confirmed that subject-to-group similarity was relatively low (Gordon, Laumann,

Adeyemo, & Petersen, 2017). This was measured by the average parcel connectivity similarity

to group connectivity score, which reached a plateau with an average of 0.7 for long scan

duration (around 800 time points; Gordon, Laumann, Gilmore, et al., 2017). Researchers

reported that the lateral prefrontal cortex and the lateral temporal occipital cortex were among

the most variable parcels across subjects (Marek & Dosenbach, 2018). We hypothesize that

the main limitation of these approaches was the use of a fixed parcellation over time, which

neglected the dynamic aspect of heteromodal brain networks (Salehi et al., 2020). In other

words, different brain reconfigurations for each parcel were forced to be averaged in one brain

parcel while suppressing region boundary reconfigurations over time. In the literature, Yeo

and colleagues reported results in line with our hypothesis, showing that brain networks were

continually aggregating and segregating over time (Yeo, Krienen, Chee, & Buckner, 2014). This

suggests the importance of considering the dynamic aspects of brain parcellation, rather than

considering it to be a fixed system.

A proliferation of approaches also exist in the literature to study the dynamics of functional

connectivity. These studies confirmed the spatiotemporal reconfiguration of the brain networks

(Allen et al., 2014; Calhoun, Miller, Pearlson, & Adali, 2014; Hutchison et al., 2013) and asso-

ciated it to dynamics of cognitive processing or mental states dictated by tasks (Bassett et al.,

2011; Braun et al., 2016; Gonzalez-Castillo et al., 2015; J. Liu, Liao, Xia, & He, 2018; Reinen

et al., 2018). The co-activationpatterns (Chen, Chang, Greicius, & Glover, 2015; X. Liu &Duyn,

2013) and spatial independent component analysis (Smith et al., 2012) were among the most

widely applied techniques to consider brain dynamics (see Chen, Rubinov, & Chang, 2017

for a review). These dynamic analyses of the brain, using for instance sliding-window correla-

tion, have demonstrated better results compared with stationary approaches in the detection

of neurological disease (Iraji et al., 2019; Sakoglu et al., 2010). Other findings confirmed the
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interaction between brain networks for different task states (Braga & Buckner, 2017; Casorso

et al., 2019; Yeo et al., 2014). For instance, Braga and Buckner (2017) discovered that the

default mode network could be reliably subdivided into parallel networks within the same

individual. Chen et al. (2015) modeled these states switching processes of resting-state brain

activities using a hidden markov model. Therefore, neuroscientists mentioned there is a need

to have neuroimaging tools to identify how brain parcels reconfigure spatially in the case of

highly cognitive regions over time and to evaluate the variability of brain parcels across time

and across individuals (J. Liu et al., 2018). Even though dynamic functional connectivity is

well studied, to the best of our knowledge, the only parcellation approach that considered

dynamic changes of parcels was suggested by Salehi and colleagues. These authors demon-

strated that the brain functional parcellations are not spatially fixed, but reconfigure with task

conditions (Salehi et al., 2020). These reconfigurations were used to reliably predict different

task conditions. Still, this approach only suggested a brain parcellation per task condition,

and it neglected brain parcel reconfigurations across short time durations, within each task.

Dynamic brain parcellation thus represents a promising area of research to further investigate

brain dynamics.

In this paper, we build upon the findings of Salehi et al. (2020), and we propose a novel

approach to extract different dynamic states of functional parcellations at the individual level.

We define a dynamic state of parcellation as the spatial reconfiguration of a given brain net-

work that occurs for short time durations in the resting-state condition. We hypothesize the

existence of homogeneous modes of spatial reconfigurations, or dynamic states of parcella-

tions, at the level of these short time windows and we propose a dynamic cluster analysis for

their identification. Our approach is based on aggregating sliding-window parcellations for

a given region to obtain stability maps of the different dynamic states of parcellations. WeDynamic state stability map:
Each voxel in the map represents its
probability to be included in a given
state.

generate these dynamic states for the 10 subjects of the Midnight scan club (MSC) resting-state

dataset and we aim to study similarities and variations within states (across replication sets),

across states (within subjects), and across subjects. We also aim to evaluate the reliability of the

generated state maps in a “fingerprinting” experiment, that is, matching state maps generated

from the same subjects within a group.

METHODS

Dataset and Preprocessing

The resting-state MSC dataset includes 10 healthy subjects (female = 5, male = 5; their age

ranges between 24 and 34 years old; Gordon, Laumann, Adeyemo, & Petersen, 2017). In-

formed consent was obtained from all participants. The study was approved by the Washing-

ton University School of Medicine Human Studies Committee and Institutional Review Board

(Gordon, Laumann, Adeyemo, & Petersen, 2017). Each subject underwent a total of 5 hr of

resting-state functional MRI data, with a series of 30-min contiguous acquisitions, beginning at

midnight for 10 consecutive days. In each session, subjects visually fixated on a white crosshair

presented against a black background. All functional imaging was performed using a gradient-

echo sequence (TR = 2.2 s, TE = 27 ms, flip angle = 90°, voxel size = 4 mm × 4 mm ×

4 mm, 36 slices) on a Siemens TRIO 3T MRI scanner. An EyeLink 1000 eye-tracking system

allowed continuous monitoring of the eyes of the subjects in order to check for periods of pro-

longed eye closure, potentially indicating sleep. Only one subject (MSC08) demonstrated pro-

longed eye closures. For details about the data acquisition parameters, see Gordon, Laumann,

Adeyemo, and Petersen (2017). The MSC dataset was preprocessed and analyzed using the

NeuroImaging Analysis Kitexecuted within a Ubuntu 16.0.4 Singularity container, running

GNU Octave version 4.2.1, and the MINC toolkit version 1.9.15. The first five volumes of
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each run were suppressed to allow the magnetization and reach equilibrium. Time series were

normalized to the zero mean and unit variance. Each fMRI session was corrected for interslice

difference in acquisition time and the parameters of a rigid-body motion was estimated for

each time frame. The “scrubbing” method of Power, Barnes, Snyder, Schlaggar, and Petersen

(2012) was used to remove the volumes with excessive motion (frame displacement greater

than 0.5). No session was excluded due to excessive motion. Each session had at least 420

volumes after scrubbing, across all subjects, and with a maximum of 810 volumes available.

Also, the nuisance parameters were regressed out from the time series at each voxel, that is,

slow time drifts, average signals in conservative masks of the white matter, and the lateral ven-

tricles, as well as the first principal components of the six rigid-body motion parameters and

their squares. The fMRI volumes were spatially smoothed with a 6-mm isotropic Gaussian

blurring kernel. A more detailed description of the preprocessing pipeline can be found in

Bellec et al. (2012).

Individual Dynamic States of Parcellation

We developed an algorithm that identifies dynamic states of brain parcellation at the individual

level called dynamic parcel aggregation with clustering (Dypac). The algorithm is composedDypac:
Dynamic Parcel Aggregation with
Clustering. This is our proposed
algorithm for the brain dynamic
parcellation.

of four steps as illustrated in Figure 1. In the first step (Figure 1A), we select a series of sliding

time windows from individual fMRI time series (W= 100 time points, with O= 10 time points

of overlap, starting from the first time point), and we generate parcellations for the whole cere-

bral cortex using a k-means clustering algorithm (Pedregosa et al., 2011). We select fMRI time

windows from several runs, such that some time series may combine signals from separate

runs. The motivation behind this parcellation step is the identification of brain regions with

similar temporal activity for a given time window. We choose the k-means for its linear com-

plexity and simplicity to run; that is, there is no need for many parameters to tune (Arthur &

Vassilvitskii, 2006; MacQueen, 1967). Our algorithm is parallelized based on the multipro-

cessing library to run computations on multiple cores. We also used k-means using scikit-learn

implementation (Pedregosa et al., 2011) to generate parcellations and used the k-means++

method to choose initial cluster centers in a strategic way in order to speed up convergence.

Although the k-means algorithm has the drawback of falling into local minima, the k-means++

initialization helps overcome this limitation with a better exploration of the parcellation so-

lution search space. We also replicate the k-means parcellations (repetition = 5) for each

window with different initializations of the random number generator. This helps identify con-

sistent solutions across different local minima. All the replicated solutions with different seeds

are pooled with the set of k-means parcellations. That is, we simply used all the k-means-based

parcellations from different sliding windows as an input for the similarity matrix of the Hier-

archical clustering. The total number of k-means parcellations used in the similarity matrix

equals the number of sliding windows multiplied by the number of replications. This result is

multiplied by the number of sessions (e.g., if the number of replications = 5, number of slid-

ing windows = 10, number of sessions = 2, then the total number of k-means parcellations =

100).

In the second step (Figure 1B), we identify for a particular seed voxel which parcel this voxel

Seed voxel:
A 3D voxel coordinate for which we
want to parcellate the cluster that
includes this voxel.

is associated with. We thus obtain a binary representation called seed-based parcellation. ThisSeed-based parcellation:
The subdivision of the set of voxels
having the same region as the seed
voxel.

stepmay contribute to the success of our approach, since it allows us to simplify the complexity

of the full-brain parcellation problem by focusing on the functional activity of one region of

interest.
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Figure 1. Subject-specific dynamic parcellation approach (Dypac). (A) We generate multiple short time window parcellations for the whole
cerebral cortex per subject. (B) Then, we identify the parcel associated with a particular seed voxel. (C) We calculate the pairwise similarity of
these seed-based parcellations based on the Dice similarity score. We apply a hierarchical clustering on this similarity matrix to group these
parcellations into a set of clusters (or dynamic states of parcellations) according to a threshold imposed on the Dice similarity matrix, as well
as the number of sliding windows included in the state. (D) For each cluster and each seed, we average all of its seed-based parcellations to
obtain the final dynamic state stability maps.

In the third step (Figure 1C), we calculate the pairwise similarity of all seed-based parcel-

lations generated from different sliding windows. A seed-based parcellation was defined as

the subdivision of the entire subnetwork, associated with a given seed, into spatial clusters

(i.e., spatially distributed regions/parcels). This similarity is measured with the so-called Dice

similarity score. Then, we apply the Hierarchical clustering (here, with the average linkage

method) on the Dice similarity matrix to group seed-based parcellations into dynamic clusters

or “states,” according to an empirical similarity threshold. This threshold constrains the clus-

tering of seed-based parcellations by requiring a minimum Dice similarity (here, 0.3) between

these parcellations in the same dynamic state, which will in turn infer the number of states

in a data-driven way. Given the previously mentioned settings, we hypothesize that some dy-

namic states of parcellations only appeared in few sliding windows, that is, inferior to 10% of

the total number of available seed-based parcellations. These states might be associated with
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spurious or nonreproducible spatial brain reconfigurations. Then, we apply another threshold

that filtered the identified states based on their number of seed-based parcellations in order

to keep only those with more than 10% of the total number of seed-based parcellations. This

second threshold will remove noisy states in order to keep reproducible patterns over time.

There should be a trade-off between the similarity threshold imposed on the Dice similarity

matrix and the threshold that constrains the number of seed-based parcellations in a given

state. In other words, a higher Dice score threshold allows us to obtain smaller states (i.e., the

higher the Dice score, the lower the number of seed-based parcellations of a given state), and

thus it requires a smaller number of seed-based parcellations threshold. This allows us to avoid

missing the most interesting states.

In the last step (Figure 1D), we averaged all seed-based parcellations for a given cluster to

get its state stability map. This provides a probability of each voxel to be assigned to a given

state as a measure of the stability of voxels with respect to their membership in a particular

area. Stability maps represent the spatial signature of each dynamic state of brain parcellations,

and the final outcome of the algorithm.

Our method generates dynamic states of parcellations as functionally distributed subnet-

works across the brain or local subnetworks surrounding the seed. We also suggest a simple

conversion to split subnetworks into multiple spatially contiguous/connected regions instead

of spatially distributed parcels. This can be useful in the context of graph theory by consider-

ing contiguous regions as nodes in the graph. To this end, we apply a constraint that separates

out connected components and assigns to each region a unique state label, using the Nilearn

function implementation. We set the minimum region size in volume required to keep after

extraction to 50 voxels. This removes small or spurious regions.

Choice of the Studied Subnetworks and Their Seed

To generate seed-based parcellations, we studied seed voxels from three regions of the MIST

parcellation. We picked MNI coordinates (0,−76, 10), (0, 20, 28), and (3,−43, 37) as the re-

spective medoids of the regions of interest 90, 6, and 42 corresponding to the posterior medial

visual subnetwork (PM-VIS), the dorsal anterior cingulate cortex (dACC), and the posterior cin-

gulate cortex (PCC) subnetworks in the MIST atlas (Urchs et al., 2017). The choice of seeds was

driven by the properties of the networks in the literature. We first chose a seed from an area

with the least functional variability (Gordon et al., 2016): PM-VIS, a core visual area (Gordon,

Laumann, Adeyemo, & Petersen, 2017). In the case of the dACC, this region played a promi-

nent role within the salience network, which is involved in many functions including response

selection, conflict resolution, and cognitive control, and it is among the most highly dissim-

ilar networks across subjects (Gordon et al., 2016; Menon, 2015; Menon & Uddin, 2010).

Finally, the PCC is considered to be a hub node in the default mode subnetwork. Previous

findings reported it as a highly heterogeneous network and suggested it may play a direct role

in regulating the focus of attention, memory retrieval, conscious awareness, and future plan-

ning. Also, functional interaction between the nodes of the salience seed and those of the de-

fault mode, including the PCC, during moral reasoning is reported in previous studies (Chiong

et al., 2013; Jilka et al., 2014).

Spatial Reproducibility Analysis

To evaluate the quality of the dynamic states of parcellations, we conducted two quantitative

analyses. First, we compared the performances of the Dypac algorithm with a static parcella-

tion algorithm; that is, the k-means algorithm. This allowed us to compare the goodness of our
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dynamic states of parcellations with an existing static state of the art parcellations. Second,

we conducted a quantitative consistency analysis at the within-subject level. This allowed us

to identify, for a given subject, similarities and variations in the spatial reconfigurations across

states and seeds. We conducted a reproducibility analysis for the two analyses.

Within-subject
reproducibility analysis:
This analysis allows us to quantify
the spatial similarity between the
state stability maps associated with
the same subject.

Between-subject
reproducibility analysis:
This analysis allows us to quantify
the spatial similarity between the
state stability maps associated with
different subjects.

In both analyses, we half-split the Midnight scan club dataset into two equally sized sets

of five independent sessions (of a total of 2.5 hr each) per subject. Each half (about 2.5 hr

per subject) was used to replicate several seed-based parcellations that we called replication

sets. Then, we generated dynamic states of parcellations based on our proposed approach

(See Figure 1). We sorted the states by decreasing dwell time for the first replication set (i.e.,

Dwell time:
The cumulative durations of all
sliding windows associated with a
given state, relative to the total
duration of the scan.

the cumulative durations of all sliding windows associated with a given state, relative to the

total duration of the scan). Accordingly, we labeled the states of the first replication set into

primary state, secondary state, tertiary state, and so on. Prior to comparing our state stability

maps, we matched the first set of maps to maps from the second set using the Hungarian

method (Kuhn, 2012), which used the Pearson correlation for the spatial matching between

state stability maps. The Hungarian method was applied to the within-subject and between-

subjects analysis. A high correlation reflected a strong linear relationship between state maps

and is indicative of consistent spatial regions from the two sets of independent data. We

replicated these consistency analyses across all states and all subjects of the Midnight scan

club dataset. We run both our Dypac algorithm and the k-means algorithm 15 times per set

with different random seeds because of the stochastic aspect of the k-means algorithm. This

allowed us to verify the sensitivity of both algorithms to local minima.

Fingerprinting Experiment

We finally evaluated the individual specificity of our dynamic states of parcellations by at-

Deterministic fingerprintingexperiment:
This experiment allows us to quantify
the reliability of state stability maps
in identifying a given subject. tempting to match dynamic state maps generated from data acquired on the same subjects,

when these maps are mixed with maps generated from other subjects. To this end, we cross-

correlated a given state stability map with all state stability maps from all subjects. The state

stability maps were generated from the split half sets of the Midnight scan club dataset, and all

these maps were pooled together in the fingerprinting. For a given map, we looked for the map

that matched the closest map from the pool of all maps. Each seed subnetwork was analyzed

separately. A fingerprinting was successful when maximal correlation was observed between

a pair of two state stability maps originating from the same subject; otherwise it was consid-

ered a failure. We repeated this experiment for all state maps across all subjects and seeds.

We denoted this procedure by the deterministic fingerprinting. We computed the accuracy

score as the number of correct states matching over the total number of matched maps. A high

accuracy score revealed that state stability maps were reliable to differentiate subjects based

on their specific spatial brain reconfigurations. Inversely, a low accuracy score was associ-

ated with state stability maps that were either very similar across subjects or unreliable within

subjects.

To correct for the different number of identified states for each subject, we run a fingerprint-

ing by chance experiment. To do that, we selected a state map arbitrarily for each subject.
Fingerprinting by chance experiment:
A baseline experiment that arbitrarily
associates state stability maps with
their corresponding subjects.

Second, we selected another second state map arbitrarily from the pool of state stability maps

of all subjects. If these two maps belonged to the same subject, then the fingerprinting was

successful; otherwise it was considered a failure. We repeated this process 1,000 times. We

computed the accuracy of the fingerprinting by chance and compared it with the deterministic

fingerprinting.
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State Dwell Time Reproducibility Analysis

We aimed to get a better understanding of the dwell time reproducibility over time of the dy-

namic states; that is, the proportion of the total number of sliding windows that were associated

with a given state. To this end, we performed a spatial matching of states between two sets

of independent sessions in terms of the Pearson correlation, and we reported their associated

dwell times in Figure 12. This matching was based on the Hungarian method. Therefore, only

the dwell times associated with spatially reproducible states were included.

Data Records

Scripts used in this study are available on Github (https://github.com/SIMEXP/dynamic-states

-parcellations; Boukhdhir, 2020a). The generation of state stability maps can be executed

online via a Jupyter notebook via the binder platform. We have also made available online

all the state stability maps for the 10 subjects of the MSC dataset on the NeuroVault website

(https://identifiers.org/neurovault.collection:6642; Boukhdhir, 2020b).

RESULTS

Temporal Cluster Analysis Reveals “Dynamic Parcellation States” With Highly Homogeneous

Parcellations Within a State, and Highly Dissimilar Parcellations Across States

We first aimed to assess whether homogeneous parcellations can be extracted from short time

windows of about a 3-min duration. We replicated seed-based parcellations on 220 sliding

windows for this purpose. These time windows were extracted from a pool of time samples,

generated by randomly concatenating five sessions of imaging data for the Midnight scan club

sample, resulting in a total of 2.5 hr of fMRI signals per subject.

For a given seed voxel in the brain, we observed pairs of seed-based parcellations with high

homogeneity across different time windows: Dice coefficients between pairs of seed-based

parcellations were larger than 0.8, or 0.9 for some seeds and subjects; see Figure 2. We re-

ported the Dice coefficient distributions for the identified states across the studied subnetworks

(see the Supporting Information, Supplement 3). By contrast, many pairs of seed-based parcel-

lations associated with different sliding windows had very low Dice scores, close to 0, despite

being associated with the same seed. For example, in the similarity matrix of subject MSC02,

bright colors were associated with some highly homogeneous seed-based parcellations across

the diagonal, while the remaining pairs of seed-based parcellations were associated with low

Dice scores (blue color). This observation motivated us to develop a “dynamic cluster anal-

ysis,” grouping seed-based parcellations on sliding windows into a number of homogeneous

“dynamic states of parcellations,” for a given seed voxel. This approach allowed us to disentan-

gle different dynamic states of parcellations based on the variability of their spatial distribution

over time, specifically for a given brain subnetwork. Moreover, our findings suggested the ex-

istence of different temporal dynamics for most of the different states associated with either the

same seed or different seeds (see the Supporting Information, Supplement 6).

Each dynamic state was characterized by its dwell time relative to the total scan duration,

that is, the proportion of the total number of sliding windows that were associated with a given

state. We applied two criteria to decide on the number of states for a seed voxel: (a) Seed-based

parcellations within a state had to exhibit a minimal average level of Dice similarity; that is,

Dice > 0.3. (b) The dwell time of a given dynamic state needed to be substantial, that is, larger

than 10%. For example, using these two criteria for the PCC seed and subject MSC02, three
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Figure 2. Dice similarity matrices of seed-based brain parcellations showed groups of highly homogeneous seed-based parcellations and
other groups of dissimilar seed-based parcellations. Each element in the similarity matrix represented the Dice score between a pair of seed-
based parcellations. This matrix was calculated separately for each subject and each seed voxel. Three subjects of the MSC dataset and three
seeds were investigated: the posterior medial visual subnetwork (PM-VIS), the dorsal anterior cingulate (dACC), and the posterior cingulate
cortex (PCC).

separate dynamic states of parcellations were identified, and together these dynamic states of

parcellations added to about 75% dwell time of all available sliding windows; see Figure 2.

For a better understanding of the dwell time distribution across dynamic states, we showed

its distribution across the 10 subjects of the Midnight scan club dataset and the Dypac
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Figure 3. Subnetworks were multistate with a dominant primary state. We included state dwell times for both sets of independent data.
Three seed subnetworks were investigated including the PM-VIS, the dACC, and the PCC subnetworks across 10 subjects of the Midnight scan
club dataset. The number of replications of seed-based parcellations per sliding window = 5. We reported dwell times from 30 replications
of the Dypac algorithm.

algorithm. The results showed the existence of a dominant state for the three studied sub-

networks. For instance, the primary states of the PM-VIS had a median dwell time of 73% over

only 11% median dwell time in the case of its secondary states. Similarly, the primary states

of the PCC had a median dwell time of 63% over only 20% median dwell time in the case of

its secondary states. Moreover, the dACC and the PCC subnetworks were multistate with up to

five states in the case of the dACC seed and up to four states in the case of the PCC seed. Fewer

states were observed in the case of PM-VIS with very low dwell time, that is, 10%. Therefore,

the PM-VIS was monostate for most subjects even though some subjects had multistate maps

with a dominant primary state (see Figure 3).

Taken together, these results showed that resting-state brain parcellations fall into a number

of highly homogeneous and distinct states over time, at an individual level. We also investi-

gated the impact of different parameters of our Dypac algorithm on the state dwell time in-

cluding thewindow length (Supporting Information, Supplement 4.3), the cluster size threshold

(Supporting Information, Supplement 4.5), and the smoothing kernel size (Supporting Informa-

tion, Supplement 4.6). Our findings were consistent across different parameters.

Dynamic States of Parcellations Had Better Reproducibility Than Static Parcellations

Using Long Acquisitions

We aimed to compare the performance of the Dypac algorithm with the performance of the

k-means algorithm. Dypac aggregated seed-based parcellations on short time windows (of

about a 3-min duration), while the k-means used long time series (about 2.5 hr of resting-

state functional MRI signal). We compared the within-subject reproducibility of Dypac sta-

bility maps with the k-means parcellations for three seed voxels associated with the PM-VIS,

the dACC, and the PCC subnetworks. Our results showed that most Dypac parcellations out-

performed the k-means parcellations (with long time series) in terms of reproducibility. Par-

ticularly, the reproducibility scores of the Dypac primary states outperformed the k-means

parcellations across seeds. For instance, the dACC seed and the Dypac primary states had

a median Pearson correlation of 0.84 over a median correlation of 0.76 in the case of the

k-means parcellations. Similarly, the PCC seed and the Dypac primary states had a median

correlation of 0.93 over a median correlation of 0.63 in the case of the k-means parcellations

(see Figure 4).
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Figure 4. Dypac dynamic states of parcellations outperformed static parcellations based on long acquisitions in terms of within-subjects
reproducibility. The within-subject reproducibility scores were computed between the two sets of five independent sessions. Both our Dypac
parcellations and the k-means parcellations used a total of 2.5 hr per set. Each algorithm was replicated 15 times per set with different seeds.
The box plots represent the distribution of within-subject Pearson correlation scores. Dypac:1, Dypac:2, and Dypac:3 denoted the primary,
secondary, and tertiary states of our Dypac algorithm. The green dots represented the mean Pearson correlation score for each distribution.
We studied three seed voxels from the PM-VIS, the dACC, and the PCC subnetworks. Ten subjects of the Midnight scan club dataset were
investigated.

Also, Dypac secondary states had better reproducibility scores compared with the k-means

parcellations reproducibility in the cases of the dACC and the PCC seeds. For instance, the

dACC seed and the Dypac secondary states had a median correlation of 0.79 over a median

correlation of 0.76 in the case of the k-means parcellations. Likewise, the PCC seed and the

Dypac secondary states had a median correlation of 0.84 over a median correlation of 0.63 in

the case of the k-means parcellations (see Figure 4).

Visual Evaluation of Dynamic States of Parcellations Within and Between Subjects

To assess the reproducibility of parcellations, the Dypac dynamic parcellation method was

applied on independent datasets for each subject; each dataset was composed of five sessions

(for a total duration of 2.5 hr of data per subject) available in the MSC sample. We looked at the

spatial reconfigurations of dynamic states of parcellations and tried to identify similarities and

variations within state’s (across replication sets, within subjects), across states (within subjects),

and across subjects. We also added an extension for our method to consider spatially contigu-

ous regions, which led to similar conclusions as distributed parcellations (see the Supporting

Information, Supplement 2).

At the within-state level, we observed a high consistency between the dynamic states of

the two replication sets, for all seeds and subjects. For instance, in subject MSC04 and

the PM-VIS seed, the primary state maps showed high consistency in the left anterior insula

(AI) region (Figure 5, X = −38) and the supragenual anterior cingulate cortex (sACC) region

(Figure 5, X = −4). Similarly, the secondary state map of subject MSC02 and the dACC seed

had consistent dACC region (Figure 6, X = −4) and left AI region (Figure 6, X = −38). Finally,

the primary and the tertiary state maps of subject MSC02 and the PCC seed had respectively

consistent temporoparietal junction (TPJ) (Figure 7, X = −38) and medial prefrontal cortex

(MPFC) (Figure 7, X = 2) across the two replication sets.
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Figure 5. PM-VIS dynamic state stability maps were similar across sets at the within-subject level and variable across states and
subjects. A complete matching between states was applied using the Hungarian method bymaximizing the Pearson correlation between maps.
The primary and secondary states were represented in, respectively, blue and red colors. A threshold was applied to keep only stability scores
over 0.5.

Across states, there existed different spatial reconfigurations within the same subject, espe-

cially in the cases of the dACC and PCC seeds. We observed some differences locally, at the

level of a region surrounding the seed. For example, the region around the dACC seed was cir-

cumscribed and anterior in the primary state of subject MSC02, while the region shifted to the

posterior direction in the secondary state (Figure 6, X = −4). We also observed differences in-

volving multiple regions distributed throughout the brain. Using again the example of subject

MSC02 and the dACC seed, the entire AI was involved in the primary state, while the secondary

state included only the dorsal anterior insula region (dAI) and the ventral anterior insula (vAI)
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Figure 6. dACC dynamic state stability maps were similar across sets at the within-subject level and variable across states and subjects. A
complete matching between states was applied using the Hungarian method by maximizing the Pearson correlation between pairwise maps.
The primary and secondary states were represented in, respectively, blue and red colors. A threshold was applied to keep only stability scores
over 0.5.

regions (Figure 6, X = −38). Similar local and distributed variations were observed with the

PCC seed, which had up to three states in the case of subject MSC02 (Figure 7). The primary

state had a cortical region following the boundaries of PCC (Figure 7, X = −4), along with

distributed regions in the cerebellum (Figure 7, X= 38) and the left TPJ (Figure 7, X= −38). By

contrast, the tertiary state included the PCC core (Figure 7, X = −4) along the MPFC (X = 2).

Finally, the secondary state involved almost exclusively an extensive PCC region (Figure 7,

X = −4).
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Figure 7. PCC dynamic state stability maps were similar across sets at the within-subject level. A complete matching between states was
applied using the Hungarian method by maximizing the Pearson correlation between pairwise maps. The primary and secondary states were
represented in, respectively, blue and red colors. A threshold was applied to keep only stability scores over 0.5.

At the inter-subject level, we found some overlapping in regions as well as completely

inconsistent regions between subjects in their state spatial maps. As an example of overlapping

regions, we found that the PM-VIS seed was characterized by highly similar visual cortex

regions for all subjects (Figure 5). Only subject MSC04 had an inconsistent primary state map

that differed from other subjects maps. Here, we observed that the PM-VIS seed involved AI

regions (Figure 5, X = −38) and sACC regions (Figure 5, X = −4). It was worth mentioning

that no spatial matching was applied between state maps of two different subjects in Figures 5,

6, and 7. Unlike the PM-VIS seed, the dACC and the PCC seeds had both overlapping and

nonoverlapping regions when we compared their state maps across subjects. As an example,

we found some overlapping regions in the primary states of subjects MSC02 and MSC10 and
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Figure 8. High spatial reproducibility of dynamic states of parcellations across subjects and seeds. Most subjects had two dynamic states
of parcellations, and the highest reproducibility score was found for the primary states of three subnetworks including the PM-VIS, the dACC,
and the PCC seeds. These reproducibility scores represented the similarity between state stability maps associated with two sets of data for
each subject. Each set included five independent sessions. A complete matching between states was applied using the Hungarian method by
maximizing the Pearson correlation between pairwise maps. States were sorted and labeled (i.e., primary state, secondary state, tertiary state,
etc.) based on their dwell time such that the primary state had the highest dwell time. Ten subjects of the MSC dataset were investigated, that
is, MSC1, MSC2, MSC3, etc.
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the dACC seed (Figure 6), for example, overlapping AI region (Figure 6, X = −38) and dACC

region (Figure 6, X= −4). For the same dACC seed, some subjects had nonoverlapping regions

such as the secondary states of subject MSC02 and subject MSC10 (Figure 6). In the secondary

state of subject MSC02, the dACC region (Figure 6, X = −4) occurred as a dominant region

along with AI regions (Figure 6, X = −38). However, the secondary state of subject MSC10

was particularly characterized by the existence of the visual region (Figure 6, X = −9), the

anterior hippocampus (AH), and the sACC (Figure 6, X = −4).

Dynamic States of Parcellations Are Highly Reproducible at the Intrasubject Level

We quantified the reproducibility of our dynamic states of parcellations at the within-subject

level. First, we computed the within-subject consistency by means of a spatial similarity mea-

sure (i.e., Pearson correlation) between state stability maps associated with two sets of five

sessions per subject. Each value in the stability map represented the probability of a voxel

to belong to the cluster of a given seed. In these maps, we observed high within-subject re-

producibility scores across states and seeds. For instance, most subjects had a reproducibility

score that exceeded 0.8 in terms of the Pearson correlation across seeds in the cases of primary

and secondary states. Although the third state rarely occurred, it had a high reproducibility

score with more than 0.75 reproducibility score; for example, for the dACC seed, both subjects

MSC03 and MSC08 had, respectively, 0.78 and 0.75 Pearson correlation scores. Similarly, in

the case of the PCC seed, subject MSC02 had a 0.9 correlation score. The PM-VIS seed was

characterized by the highest reproducibility scores compared to the dACC and the PCC with

more than 0.9. Except subject MSC04, all subjects had only one highly reproducible state (see

Figure 8). From one set, some states did not have a matched map from the second set and

had, therefore a zero correlation score. For example, in the case of the PM-VIS seed and the

primary state, subject MSC02 did not have a state in the replication sample that matched the

primary state of the discovery sample (see Figure 8).

Within-Subject Reproducibility of Dynamic States of Parcellations Is Substantially Higher Than

Between-Subject Reproducibility

In this section, our purpose was to contrast the dynamic states reproducibility within and be-

tween subjects. To this end, we cross-correlated their state stability maps as a measure of

reproducibility and compared the results at the between- and within-subject levels, where the

measures were derived from all the state maps simultaneously (i.e., pooling primary, secondary,

etc.). Our results showed that within-subject reproducibility scores outperformed the between-

subject reproducibility scores with almost two disjoint distributions of correlation scores for

all dynamic states and seeds (see Figure 9). For example, the between-subject PCC-related

scores did not exceed 0.78 while most within-subject reproducibility scores exceeded 0.8.

Similar findings were observed in the case of the dACC. Only a few cases of the within-subject

reproducibility scores fell within the distribution of between-subject reproducibility. We also

investigated the impact of different parameters of our Dypac algorithm on the reproducibility of

the dynamic states. We compared the results with different clusters; that is, number of clusters

in 12, 50 (see the Supporting Information, Supplement 4.1), different window lengths in 30, 50,

100, 200 (see the Supporting Information, Supplement 4.2), different cluster size thresholds in

5%, 10%, 20% (see the Supporting Information, Supplement 4.4), different smoothing kernels

in 4 mm, 6 mm, 8 mm (see the Supporting Information, Supplementary Material 4.6), 15 differ-

ent seed voxel coordinates from the visual network, the dACC and PCC subnetworks (see the

Supporting Information, Supplement 4.8) and, finally, different number of replications of seed-

based parcellations with random seeds; that is, number of replications in 1, 5, 30 (see the
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Figure 9. Within-subject reproducibility scores were higher than between-subject reproducibility scores for most dynamic states of parcel-
lations. The Dypac algorithm was replicated 15 times with different seeds for each half of the dataset. Number of replications of seed-based
parcellations = 5. The green dots represented the mean of the Pearson correlation. We studied the PM-VIS, the dACC, and the PCC seeds.

Supporting Information, Supplement 4.9). Our conclusions on the reproducibility of the dy-

namic states of parcellations were valid for different parameters of the algorithm. That is, the

within-subject reproducibility analysis robustly outperformed the intersubject reproducibility

across all ranges of parameters that were investigated. Moreover, differences in the distribu-

tions of within-subject reproducibility related to parameter changes were only subtle.

Dynamic State Stability Maps Can Reliably Identify Subjects

We evaluated the reliability of our dynamic state stability maps in identifying a particular sub-

ject among a pool of subjects using the fingerprinting experiment. Because of differences in

the number of states per subject, we set up a fingerprinting by chance experiment as a baseline

to verify the impact of these differences on the accuracy of the fingerprinting. We evaluated

the accuracy of the fingerprinting by chance, and we compared it with the deterministic finger-

printing. Our results showed poor accuracy in the case of the fingerprinting by chance with an

average accuracy score of 0.3 compared with the deterministic fingerprinting for which the av-

erage accuracy falled between 0.72 and 0.9 across seeds (see Figure 10). These results showed
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Figure 10. The deterministic fingerprinting had higher accuracy than the fingerprinting by chance. The accuracy of the fingerprinting
represented the ratio of the successful fingerprinting over the total number of matchings in the cases of both the deterministic fingerprinting
and the fingerprinting by chance. The state stability maps were generated from the split half sets of the Midnight scan club dataset, and all
these maps were pooled together in the fingerprinting. For a given map, we looked for the map that matched the closest one from the pool
of all maps. In the case of a successful fingerprinting, the matched maps belonged to the same subject. The PM-VIS, dACC, and PCC seeds
were analyzed separately. Ten subjects of the Midnight scan club dataset were included.

a low impact of the differences in the number of states on the deterministic fingerprinting, and

thus its accuracy scores were reliable.

The results of the deterministic fingerprinting experiment showed high accuracy results

across seeds, with more than 0.72 average accuracy scores. This confirmed that many subjects

were successfully fingerprinted based on one of their state maps. The highest accuracy results

were associated with the PCC seed with an average accuracy of 0.9 across states. Also, the

dACC state maps had a high average accuracy score of 0.72. Similarly, the PM-VIS had an av-

erage accuracy of 0.78. In the case of a failure, two state stability maps were highly correlated

but their maps were not associated with the same subject. Most failures were associated with

the PM-VIS and the dACC. Overall, these findings confirmed that our dynamic state stability

maps were reliable in the delineation of subjects (see Figure 10).

We further reported the Pearson correlation scores associated with the deterministic fin-

gerprinting experiment. The distribution of correlation scores across subjects allowed us to

quantify the spatial similarity across subjects. Most importantly, failed fingerprinting allowed

us to have a better understanding of the degree to which state maps were similar across sub-

jects. Our results showed that the successfully matched maps had high Pearson correlation

scores. For instance, the dACC and the PCC seeds had, respectively, 0.8 and 0.9 Pearson cor-

relation scores. In the case of failures, the lowest scores were associated with the PM-VIS seed

with a 0.5 median correlation, while the highest scores were associated with the PCC seed

with a 0.7 median correlation (see Figure 11). The high Pearson correlation scores in the case
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Figure 11. The fingerprinting experiment showed high reliability of state stability maps in delineating subjects across seeds. We showed the
correlation scores for the deterministic fingerprinting experiment results. The spatial similarity was computed between pairs of state stability
maps in terms of Pearson correlation. If the correlated maps were associated with the same subject, it was considered a success fingerprinting
(blue color). Otherwise, the correlated maps were associated with different subjects. This was considered a failure (orange color). We studied
three seeds from three subnetworks including the PM-VIS, the dACC, and the PCC. Ten subjects of the Midnight scan club dataset were
included.

of failures, correlation >0.6, may be associated with spatially similar maps across subjects.

Here, the PCC had the highest spatially similar state maps between subjects. Overall, the high

accuracy and the high correlation measures confirmed the reliability of the fingerprinting in

identifying a given subject based on his dynamic state map.

Dynamic State Dwell Times Were Not Reproducible Across Replications for the dACC

and the PCC Seeds

We aimed to get a better understanding of the dwell time reproducibility over time. To this end,

we performed a spatial matching of states between two sets of independent sessions in terms

of the Pearson correlation. This matching was based on the Hungarian method. Therefore,

only the dwell times associated with spatially reproducible states were included. Our results

showed an inconsistency between state dwell time for most states between the two sets in the
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Figure 12. Dwell time of dynamic states of parcellations was inconsistent across the two sets of independent data in the cases of the dACC,
and PCC seeds. The dwell time across states was computed by summing durations of time-windows per state from two sets of five indepen-
dent sessions for each subject. Three seeds were investigated including the PM-VIS, the dACC, and the PCC. The seed-based parcellations
number = 5. The number of replications of the Dypac algorithm = 30. The seed-based parcellations were clustered into 12 clusters. The
smoothing kernel = 6 mm, the cluster size threshold = 10%, the Dice threshold = 0.3. Number of time points in the window length = 100.
All 10 subjects of the Midnight scan club dataset were included. Green dots represented the mean of the dwell time value.

cases of the dACC and the PCC seeds. For instance, the primary state and the dACC seed had

43% median dwell times for the first set and over 22% median dwell times for the second set.

Similarly, the PCC and the secondary states had 23% median dwell times for the first set over

17% median dwell times for the second set. Unlike the dACC and the PCC seeds, the dwell

times of the PM-VIS had higher reproducibility across the two sets. For instance, the primary

state and the PM-VIS seed had 62% dwell times for the first set over 64% dwell times for the

second set (see Figure 12). Overall, the dynamic state dwell times were not reproducible across

the two sets of independent data for the dACC and the PCC subnetworks. The PM-VIS showed

higher levels of consistency between dwell times of the two sets.

We also observed that some states might have a high dwell time but no matching in the

second set. For instance, in the case of subject MSC09 and the dACC seed, there existed five

states with the following dwell times for the first set: 31.11%, 12%, 11.11%, 10.66%, 10.22%.

However, this subject had only two states in the second set with the following dwell times:

22.22% and 13.33%. After the spatial matching, the matched primary states had 11.11% and

22.22% dwell times for the first and second sets, while the secondary state had 10.22% and

13.33% for the first and second sets, respectively.

DISCUSSION

In this paper, our overall objective was the identification of dynamic states of brain parcellations

in individual resting-state fMRI data. Our first main finding was the existence of highly sim-

ilar spatial parcellations extracted from short time windows, sometimes separated by several

days. This led us to propose a dynamic cluster analysis to extract dynamic states of parcel-

lations. These dynamic states were markedly different in terms of the brain regions involved,

despite being derived from the same seed region and the same subject. We also found that

dynamic states of parcellations were subject specific, highly reproducible, and reliable enough

to successfully differentiate subjects in a fingerprinting experiment with high accuracy.

In the literature of brain parcellation, the only approach that had consistent findings with

our approach was published by Salehi et al. (2020). We both suggested an approach that

contradicts the notion of a fixed functional parcellation of the brain. The main difference with
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our work is that Salehi and colleagues generated a different parcellation for different cognitive

states in a series of task datasets (i.e., motor task, working memory, rest, etc.), while in our

approach we identified different dynamic states of parcellations in short windows of a single

cognitive state (resting state). Our results on dynamic brain parcellation is in line with several

studies that showed that brain connectivity is highly dynamic, with recurring spatiotemporal

patterns of brain subnetworks (Allen et al., 2014; Calhoun et al., 2014; Donnelly-Kehoe et al.,

2019; Hutchison et al., 2013; Korhonen, Saarimaki, Glerean, Sams, & Saramaki, 2017) both in

the case of spatially distributed regions or even in the case of spatially contiguous regions (see

the Supporting Information, Supplement 2). For instance, Iraji and colleagues demonstrated the

existence of spatial fluid interactions between intra- and internetwork relationships, emphasiz-

ing the dynamic interplay between segregation and integration (Iraji et al., 2019). Researchers

raised the need for new computational methods to reveal robust, interpretable reconfigurations

in the complex and high-dimensional feature space of dynamic fMRI data (Chen et al., 2017).

Such methods would allow a better understanding of the individual differences in internal state

changes over short timescales (Chen et al., 2017). In the brain parcellation literature, our ap-

proach is, to our knowledge, the first attempt to shed light on this dynamic brain organization

at fine temporal scale (in the order of few minutes) and at a voxel level (i.e., without reducing

the dimensionality in a fine-grain parcellation).

To evaluate the quality of our dynamic states of parcellations, we relied mainly on a re-

producibility analysis. We found that our reproducibility scores markedly outperformed static

brain parcellation scores (Kong et al., 2019). For instance, the reproducibility scores observed

in the case of our visual dynamic states of parcellations were near perfect (with an average

correlation score of 0.95), while static visual parcels using about 2.5 hr of data had 0.85 corre-

lation score on average (see Figure 4). Moreover, visual static brain parcels reported previously

in the literature did not reach near perfect similarity scores (with an average Dice score of 0.85;

Kong et al., 2019). Such high reproducibility scores were also observed for all three seeds such

that dynamic state scores outperformed static parcel scores (see Figure 4). Another important

consideration was that parcel reproducibility depended on the spatial location in the brain in

the case of static parcellations, while we observed the same ranges of values for the three seeds.

For instance, static parcellations reproducibility ranged between 0.7 and 0.85 average Dice

scores in the cases of temporal and visual cortices regions, respectively (Kong et al., 2019). In-

terestingly, our spatial correlation similarity measure exceeded 0.85 for the three seeds for the

primary states, and exceeded 0.7 correlation score for secondary and tertiary states for almost

all subjects and seeds (see Figure 4). Recent attempts towards better reproducibility scores of

static connectivity measures relied on long fMRI acquisitions (Gordon, Laumann, Adeyemo,

& Petersen, 2017). Even though similarity measures were improved (with 10 min and 50 min

of data, authors got, respectively 0.6 and 0.7 average Dice scores), these measures plateaued

after 40 min of acquired signal with a maximum average of 0.7 Dice score across the 10

subjects of the MSC dataset. Using long acquisitions of functional MRI data, the compari-

son of the k-means parcellations with our dynamic states confirmed that a dynamic approach

of the parcellation problem resulted in improved reproducibility (see Figure 4). Moreover,

higher Dice scores were observed for pairs of seed-based parcellations as extracted from a few

minutes (3 min) of fMRI data within a given dynamic state (see the Supporting Information,

Supplement 3). Overall, many studies have aimed to derive static brain parcellation ap-

proaches at either the group or the individual level (see Arslan et al., 2018, and Eickenhoff,

Yeo, & Genon, 2018, for a review), and yet no technique had highly reproducible individual

parcels. This leads to the conclusion that human brain parcellation is a hard, ill-posed problem

(Arslan et al., 2018). Our results demonstrated that the main limitation associated with static
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brain parcellation approaches is neither the quality of employed clustering algorithms, nor the

quality of fMRI data in specific brain regions, nor the duration of fMRI acquisitions. The main

issuewas the incorrect formalization of functional brain parcellation as a static problem, which

did not take into consideration the dynamic organization of the brain. Specifically, we showed

here that a very basic clustering algorithm, k-means, leads to highly reproducible parcellation

maps when applied on short fMRI time series (a few minutes) with a dynamic approach.

Another important consideration was the comparison of the reproducibility scores within

and between subjects. Previous studies reported that within-subject similarity of dynamic states

of parcellations was substantially higher than intersubject similarity (Kong et al., 2019). Our

quantitative and qualitative evaluations were consistent with these findings (see Figures 4,

5, 6, 7, and Supporting Information, Supplement 4), and we suggest that dynamic states

of parcellations captured some of the variability between subjects. To further evaluate the

reliability of these dynamic state stability maps in identifying a particular subject from a pool of

10 subjects from the Midnight scan club dataset, we implemented a fingerprinting experiment.

Even though the fingerprinting failed in a few samples, results on the 10 subjects of the MSC

dataset showed high scores with 0.6 and 0.7 average accuracy scores for the PCC and the

dACC seeds, respectively (see Figure 11). Because of the small sample size, in theMSC dataset,

investigating and validating our results on larger samples in the future needs to be considered.

Researchers already demonstrated the variability in functional connectivity profiles as a reliable

fingerprinting to identify subjects from a large group (Finn et al., 2015). Our state stability maps

were derived from binary cluster maps that eliminated a huge amount of the fine details present

in a connectivity map. Despite such dramatic dimensionality reduction in dynamic state maps,

it preserved enough relevant information to reliably delineate subjects, especially in the case

of highly cognitive networks (i.e., the PCC subnetwork). Our PCC and PM-VIS accuracy scores

actually outperformed the accuracy scores of connectivity maps–based fingerprinting in some

networks (DMN and the salience), as reported in Badhwar et al. (2020), but this observation

may also reflect the fact that we used much longer individual fMRI time series and fewer

subjects.

In the context of our Dypac algorithm, we showed that the reproducibility of the dynamic

states of parcellations were robust to the choice of different parameters (see the Supporting

Information, Supplement 4). Still, it is important to mention that the number of clusters k is

a critical parameter, and can be used to uncover the pseudo-hierarchy of brain subnetworks.

Here, we simply checked that “states” could be identified at two different resolutions (i.e., 12

and 50), but it remains to be tested how the number of states vary with resolution, and whether

dynamic parcellation follows a pseudo-hierarchical organization as was previously described

by static parcellations (Urchs et al., 2017).

Added to the spatial reproducibility analysis, our temporal analysis showed that the dwell

times of dynamic parcellations were inconsistent across the two sets of independent data. This

may either indicate algorithmic variability in the estimation of dwell times, maybe linked to our

choice of threshold on interparcel similarity to define states, or physiological variability where

a given subject expresses markedly different states over long timescales. We believe the latter

to be more plausible, but further validation of this hypothesis would require data that directly

manipulate cognitive states across replication states, such as, using tasks, and is outside of the

scope of the present paper. We note, however, that the high variability of dwell times across

replication sets is probably the factor that drives the “glass ceiling” in reproducibility of static

methods: Even the definition of what is the primary state can change over long timescales, so

averaging across states is not sufficient to stabilize parcel estimates.
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Another important aspect of the evaluation of the dynamic states of parcellations was their

neurobiological validity. In the absence of brain organization ground truth, current parcellation

work capitalized on replication, robustness, and convergence as criterias for biological valid-

ity. However, the observed variations in the shape and position in the spatial patterns across

individuals suggest that these patterns are likely to be associated with physiological or cognitive

processes (Eickhoff et al., 2018). As pointed out in the previous section, our quantitative results

support the neurobiological validity of our dynamic states of parcellations. Qualitatively, we

observed that many regions from the dynamic states of parcellations relate to previous litera-

ture when studying subnetwork dynamics. For instance, the regions of the dACC state stability

maps overlapped with the salience network regions as reported by Menon (2015), including

the insula and the anterior cingulate cortex (i.e., sACC). Consistent with previous research,

we frequently observed the AI and the dACC in either the primary or the secondary states

of parcellations. These regions were among the most frequently activated regions in func-

tional neuroimaging research (Buchsbaum, Greer, Chang, & Berman, 2005; Yarkoni, Poldrack,

Nichols, Van Essen, & Wager, 2011). In some dynamic states of parcellations, we observed a

high stability around the motor and premotor regions of the dACC maps (see Figure 6). This

may be explained by the existence of a functional coupling between the AI and the dACC that

facilitates a rapid access to the motor system (Menon, 2015). Similar to the dACC seed, we

also observed that the PCC is multistate. In the literature, researchers observed a high spatial

heterogeneity in the PCC (Leech & Sharp, 2014; Margulies et al., 2016), but in our case dy-

namic states were observed from a single seed and subject. Dynamic states of parcellation

of the PCC seed identified mainly ventromedial prefrontal cortex regions (i.e., including the

MPFC), the superior parietal cortex regions, and the precuneus. Leech and Sharp surveyed

the different studies that investigated the variations in PCC activity with arousal state and its

interactions with other brain networks. The authors suggested that the high heterogeneity of

the PCC activity was attributed to its important role in regulating the balance between inter-

nal and external attentional focus (Leech & Sharp, 2014). While higher order seeds revealed

multistate maps including the dACC and the PCC seeds, our results showed that the PM-VIS

was also multistate for some subjects (e.g., subject MSC04) even though most subjects had a

monostate PM-VIS subnetwork. Consistent with resting-state functional connectivity studies,

the visual cortex was considered to be a unimodal system since it had a maximal distance

along the principal gradient between the visual and the DMN, which was considered to be a

highly heteromodal network (Margulies et al., 2016). Overall, these qualitative observations

support our hypothesis that dynamic states are driven by biological validity rather than by

methodological effects (Eickhoff et al., 2018).

In addition to biological meaningful brain parcels, researchers hypothesized the existence

of some nonmeaningful parcels that may occur because of physiological sources or other non-

neural effects such as head motion (Chen et al., 2017; Leech & Sharp, 2014). For the scope of

this paper, we did not characterize these sources, and we consider this an important follow-up

question to be studied for more seed regions. However, with the proposed method, a large

number of time windows were not associated with a state, if no robust parcel configuration

was identified. This feature of the method may help to mitigate the influence of confounding

effects on dynamic brain parcellations. However, sources of physiological noise with highly

consistent spatial distribution, such as cardiac noise and motion artifacts, may still lead to ro-

bust spatial parcellation states. We also showed there was no sessions effect on the identified

dynamic states (see the Supporting Information, Supplement 5).

The main conclusion of this work is that stable brain parcellations emerge from a dynamic

analysis considering short time windows, which challenges the notion of a fixed, static brain
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parcellation estimated from very long time series (Gordon, Laumann, Adeyemo, & Petersen,

2017). But this observation was restricted to a few seed regions in the brain, and an important

point of discussion is whether the Dypac algorithm could be generalized to the full brain. The

core generation of brain parcellations was a simple k-means algorithm applied on full-brain

data, and we trust that our conclusions extend beyond the handful of seeds that we considered.

We notably confirmed that our conclusions generalize to many neighboring voxels around se-

lected seed regions (see the Supporting Information, Supplement 4.8). One way of conceptual-

izing k-means as a sparse spatial decomposition is that each brain voxel is associated with only

one brain parcel, which naturally leads to parcels (or seed-based parcellation) that include only

a small portion of the brain (for a large number of clusters k). Similarly, our dynamic analysis

can be conceptualized as a sparse temporal decomposition: For each brain voxel, only a sub-

set of time points are associated with a single brain parcellation (or seed-based parcellation),

and many time points are associated with no brain parcellations at all. The Dypac algorithm

is thus a double sparse space-time decomposition technique, which focuses only on tempo-

rally recurring and highly spatially similar brain parcels. Dypac could, in theory, be applied

to the brain parcels associated with all brain voxels simultaneously, represented as a basis of

one-hot spatial encoding vectors, although the memory cost of the hierarchical clustering step

would become prohibitive. We are working on a modified Dypac algorithm using k-means

for both parcellation generation and aggregation, which scales to the full brain even at high

spatial and temporal resolutions. We would like to emphasize at this stage that the idea of

applying a space-time decomposition to fMRI data is old, at least as old as spatial independent

component analysis (ICA; McKeown & Sejnowski, 1998), which identified brain networks as

a temporal mixture of spatially independent components, including noise. This approach was

extensively applied for more than two decades in fMRI research (see the survey of Beckmann,

2012). Some more recent space-time decomposition of fMRI data explicitly included a spatial

sparsity constraint (Dadi et al., 2020). Based on a visual comparison of our dynamic states of

parcellations and ICA spatial maps, we identified overlapping patterns especially in the case

of the visual and the default mode network, including the PCC/precuneus, the MPFC regions,

and regions of the dorsal attentional subnetwork (Beckmann, DeLuca, Devlin, & Smith, 2005;

Damoiseaux et al., 2006; Zuo et al., 2010). A major limitation of the ICA technique was the

variability of functional resting-state signal at the individual level added to its random initial-

ization (Beckmann et al., 2005; Damoiseaux et al., 2006; Zuo et al., 2010). An intriguing

possibility is that dynamic states of parcellations would converge towards some similar spatial

patterns like those identified by ICA, although with superior spatial stability. This possibility

will need to be further investigated. Such observation would create a bridge between tradi-

tional cluster analysis and space-time decomposition techniques such as ICA, even though the

underlying formalism is quite different.

The existence of dynamic states of parcellation could have important implications for graph-

based analysis of brain networks. In such circumstances, building brain graphs using these

parcels remains a challenging question. As discussed in the preceding paragraph, a full-brain

extension of Dypac would, in practice, be a new flavor of space-time decomposition of fMRI

data that may result in improved characterization of brain graphs compared with either static

clustering-based parcels or ICA techniques. Unlike traditional static brain parcellation, and like

an ICA, our dynamic states of parcellations have spatial overlap (if they associate with different

states of the same voxel). Such types of decompositions are straightforward to apply in a graph-

based analysis, as indeed many graph analyses of fMRI data have relied on ICA decomposition

to define nodes (Yu et al., 2017). The key difference between static parcellations and space-

time decomposition is how fMRI data are embedded in the parcels. For static parcellation,
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the embedding is univariate in nature, as each parcel is treated separately: An average time

series is generated for each parcel, or a principal component analysis is applied to the time

series inside the parcel (Eickhoff et al., 2018). For space-time decomposition, the embedding

is multivariate in nature, as the parcels (or spatial modes of decomposition) are treated jointly

using a multivariate regression analysis to fit a full-brain activity volume at each time point

(Calhoun, Adali, Pearlson, & Pekar, 2001). When applied to traditional static parcellations

generated by a cluster analysis, this regression step is equivalent to extracting the average time

series per parcel. However, in the presence of overlap between brain parcels the regression

solution is different. In this paper, the implementation of Dypac is a proof of concept and it is

restricted to a seed brain region, thus it is not directly applicable to generate full-brain graphs.

As mentioned earlier, we are working on a full-brain extension of Dypac. In this case, we

intend in the future to assess the practical advantages of Dypac to study fMRI graph analysis.

CONCLUSION

To summarize, we show that a simple clustering technique such as k-means can lead to highly

reproducible functional parcellation associated with a particular brain seed, even when ap-

plied on short fMRI time series (a few minutes). We proposed a method to identify the main

states of these dynamic parcellations, and showed that their spatial distributions were subject

specific. The main limitation of previous work on functional brain parcellation may be due

to the oversimplified static parcellation approaches. This limitation may be biasing all neu-

roimaging analyses that rely on static parcellation as a dimensionality reduction step, includ-

ing many graph-based neuroimaging analyses. Therefore, we urge the neuroimaging scientific

community to replace static brain parcellations by dynamic parcellation approaches, in order

to properly capture the rich interactions between brain subnetworks. Dynamic parcellations

may thus widely impact applications of brain connectivity in health and disease.
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