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ABSTRACT: For next-generation sequencing technolo-
gies, sufficient base-pair coverage is the foremost require-
ment for the reliable detection of genomic variants. We
investigated whether whole-genome sequencing (WGS)
platforms offer improved coverage of coding regions com-
pared with whole-exome sequencing (WES) platforms,
and compared single-base coverage for a large set of exome
and genome samples. We find that WES platforms have
improved considerably in the last years, but at compara-
ble sequencing depth, WGS outperforms WES in terms of
covered coding regions. At higher sequencing depth (95x—
160x), WES successfully captures 95% of the coding re-
gions with a minimal coverage of 20x, compared with 98%
for WGS at 87-fold coverage. Three different assessments
of sequence coverage bias showed consistent biases for
WES but not for WGS. We found no clear differences for
the technologies concerning their ability to achieve com-
plete coverage of 2,759 clinically relevant genes. We show
that WES performs comparable to WGS in terms of cov-
ered bases if sequenced at two to three times higher cov-
erage. This does, however, go at the cost of substantially
more sequencing biases in WES approaches. Our findings
will guide laboratories to make an informed decision on
which sequencing platform and coverage to choose.
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Background

Whole-exome sequencing (WES) has been adopted as a standard
approach within genetic research; however, the implementation in
clinical settings has been much slower. This is in part due to the fact
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that clinical applications are more demanding in terms of quality
and robustness of the experiment than research applications. Novel
clinical tests are typically required to perform as well or better than
existing clinical tests on sensitivity and specificity. A major concern
for the implementation of WES in the clinic is the reduced sensitiv-
ity as compared with gold-standard Sanger sequencing at particular
regions [Strom et al., 2014]. Although WES is much more sensitive
on an exome-wide scale, the sensitivity may be low at particu-
lar regions due to locus-specific features or sequencing bias [Ross
et al., 2013]. Fine-tuning or improvements of mapping and variant
calling software can resolve some of these false negatives [Liu et al.,
2013; Park et al., 2014]. However, the most prominent reason for
not calling variants is a lack of sufficient sequence coverage [Parla
etal.,, 2011; Sulonen et al., 2011; Dewey et al., 2014], which cannot
be resolved by improved algorithms.

Early comparisons of whole-exome capture kits showed that all
were able to capture around 80% of the human consensus-coding
sequence regions at a minimal coverage of 20x [Parla et al., 2011].
For the majority of low-coverage regions, this could be attributed to
an extreme GC content of the captured region as these regions are
both difficult to capture as well as sequence [Hoischen et al., 2010;
Benjamini and Speed, 2012]. This initial lack of sequence coverage
for a significant proportion of the exome has spurred clinical labo-
ratories to develop custom gene panels, or custom exome captures
in order to achieve better capture performance, especially for known
disease genes [Xue et al., 2014]. Current-day exome enrichment de-
signs try to circumvent the problem of capturing difficult regions by
designing capture probes close to the region of interest. In combi-
nation with long paired-end reads, this allows one to also sequence
regions adjacent to the capture targets, that is, the actual region on
interest. Comparisons performed for earlier capture kits are there-
fore not representative of current-day standards in sequencing and
capture technologies. Moreover, most of the published studies have
compared coverage of capture targets rather than coding regions
that is more relevant to clinical applications [Clark et al., 2011;
Parla et al., 2011].

The cost of whole-genome sequencing (WGS) is becoming less
prohibitive for applying WGS as a clinical test [Hayden, 2014], and
pilot studies have already been performed [Lupski et al., 2010; Jiang
et al., 2013; Gilissen et al., 2014; Soden et al., 2014]. Although
the major advantage of WGS over WES is its ability to also se-
quence noncoding DNA, WGS is also expected to outperform WES
in the coding regions as WGS does not involve capture methods
that can introduce bias. This improved coverage may make WGS a
more suitable clinical test than WES. However, whether WGS indeed
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Table 1. Overview of Tested Datasets, Average Coverage, Used Sequencing Systems, and Enrichment Kits

Sequencing platform Enrichment/library Average exome coverage Coverage range # Samples
Ilumina HiSeq Agilent SureSelect V4 77.92 70-90 12
Ilumina HiSeq Agilent SureSelect V4 159.92 151-170 12
Iumina HiSeq Agilent SureSelect V5 100.17 81-117 12
Illumina HiSeq NimbleGen SeqCap V3 94.50 92-97 12
Complete Genomics Whole genome 44.17 41-48 12
Complete Genomics Whole genome 87.42 83-95 12
Ilumina HiSeq Whole genome 28.09 26-30 11
Mlumina HiSeq Whole genome 56.20% 56-57 5
Ilumina X Ten Whole genome 39.58 30-47 12

Columns depict (from left to right) the sequencing platform that was used; the exome enrichment kit or library preparation that were used; the average coverage across the RefSeq

exome; the range of coverage; the number of samples used in the analysis.

2For comparison, the 28.09x genomes sequenced on the Illumina HiSeq system are merged to resemble five samples sequenced to 56.20x coverage.

does perform better than WES, remains unclear. Jiang et al. (2013)
performed one of the first direct comparisons of sequence coverage
between WGS and WES. However, the study [Jiang et al., 2013]
included only 10 WGS and 10 WES samples from a single platform
and compared average exon coverage. A comparison of two WGS
platforms for 56 genes concluded that current WGS platforms are
unable to cover 10%—19% of genes to acceptable standards for SNV
discovery [Dewey et al., 2014]. However, a direct comparison to
current-day exome sequencing was omitted. A comparison of WES
and WGS for variant calling showed that both current WES experi-
ments as well as WGS are unable to identify all variants [Clark et al.,
2011]. It remained unclear however what proportion was due to
intrinsic lack of sequence coverage, and which proportion may be
amendable by improved variant detection.

Here, we focus on the coverage capability of the latest WES and
WGS technologies in protein-coding regions and investigate differ-
ent technological biases. In particular, we look at the potential for
clinical application by comparing the ability of WES and WGS to
fully cover clinically relevant disease genes at a depth sufficient for
reliable variant calling (=20x). We provide a comprehensive com-
parison of base-pair coverage and read distribution of the human
exome of a wide array of high-coverage samples generated by the
most commonly used WES and WGS platforms.

Materials and Methods

Whole-Exome Sequencing

Exome sequencing samples were collected for two current main-
stream technologies. We selected 2 x 12 exome libraries captured
with the Agilent SureSelect V4 kit (Agilent, Santa Clara, CA) se-
quenced by the Beijing Genomics Institute (BGI) in Copenhagen
on an Ilumina HiSeq system (Illumina, San Diego, CA) with 101
bp paired-end reads. The first set contained samples sequenced to
an average coverage of 78x and the second set were different sam-
ples sequenced at 160x. An additional 12 libraries were captured
with the latest Agilent SureSelect V5 capture kit and sequenced by
the Charité university clinic Berlin to an average coverage of 100x
on an Illumina HiSeq system using 100 bp paired-end reads. For
NimbleGen, we selected 12 libraries captured by the latest Nim-
bleGen SeqCap V3 and sequenced on an Illumina HiSeq using
101 bp paired-end reads at 95x average coverage at the Duke Genome
Centre (Table 1). DNA from all samples was derived from blood.

Whole-Genome Sequencing

Samples for WGS were likewise collected for three mainstream se-
quencing platforms. We selected 12 whole genomes of four parent—
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child trios that were sequenced by Complete Genomics to an average
coverage of 87x using 35 bp paired-end reads [Drmanac et al., 2010]
and were additionally downsampled to 44x. We obtained 11 ad-
ditional WGS samples sequenced on an Illumina HiSeq at Duke
genomics core at 28x using 101 bp paired-end reads. For coverage
comparisons, the single base pair coverage counts of these samples
were merged into five samples to resemble an average of 56x cov-
erage. Additionally, we gathered 12 WGS samples from the Charité
university clinic Berlin sequenced on an Illumina X Ten system at
Macrogen Inc. with the TruSeq Nano DNA (350) to an average
coverage of 40x using 150 bp paired-end reads (Table 1).

Mapping of the Reads

All exome samples were aligned to the hgl9/GRCh37 assembly
of the human reference genome by the Burrows Wheeler Aligner
(BWA) [Li and Durbin, 2009] by the respective sequencing center.
Mumina HiSeq samples were aligned by BWA version 0.5.9; Illumina
x Ten samples were aligned with ISAAC version 1.0 and Complete
Genomics samples were aligned using Complete Genomics assembly
software version 2.4.0.43. We did not take into account whether
duplicate reads were excluded during the mapping process.

Definition of the Exome and Gene Sets

In order to compute coverage of human protein-coding regions,
we defined a consensus exome by merging locations of protein-
coding regions using the hgl9 assembly transcripts of the NCBI
RefSeq database (Release 60) [Pruitt et al., 2014]. As an alternative
to the more conservative RefSeq regions, we used the EMBL-EBI
Ensembl (Release 77) [Flicek et al., 2014] regions, which contains
more gene models from multiple sources. The RefSeq and En-
sembl transcripts were downloaded from the UCSC table browser
(http://genome.ucsc.edu/) [Karolchik et al., 2004] and converted
by a custom Java program to bed format. The merging of overlap-
ping regions was done by the merge function from the BEDTools
software package v.2.19.1 [Quinlan and Hall, 2010]. Only protein-
coding regions annotated to chromosomes 1-22 and X were used
in the coverage comparison. This resulted in a 33.3-Mb RefSeq and
a 35.1-Mb Ensembl-based consensus exome (Supp. Table S1).

The computation of transcript coverage was based on two sets of
disease genes. The first set consisted of 56 genes recommended by
the American College of Medical Genetics (ACMG) for pathogenic
variant discovery [Green et al., 2013]. The second set, named here-
after OMIM+, consisted of 2,759 genes derived from the Online
Mendelian Inheritance in Man (OMIM) Morbid Map (Online
Mendelian Inheritance in Man) and the Clinical Genome Database


http://genome.ucsc.edu/

(CGD) [Solomon et al., 2013]. The OMIM Morbid Map and CGD
are manually curated databases and catalogue disease genes pub-
lished in literature. Only genes with the highest OMIM level of
evidence were included (entries with a known molecular basis of
the disorder). For both gene sets, rather than calculating consensus-
coding regions, we selected the longest transcript of each gene. This
provides a biologically more meaningful and practically more rel-
evant comparison. The regions of the transcripts were extracted
from the RefGene transcript list (downloaded from the UCSC ta-
ble browser, http://genome.ucsc.edu/) [Karolchik et al., 2004]. The
base-pair coverage for each transcript at different coverage intervals
was calculated using custom java programs.

Coverage Calculation of the Exome

Single base-pair coverage was calculated, based on the BAM-files,
with the use of the coverage function of the BEDTools package
v.2.19.1 [Quinlan and Hall, 2010]. For Complete Genomics, the ref-
erence coverage files were converted to tabix format and the coverage
of the regions was extracted via the tabix tool from the SAMtools
package v0.1.19 [Li et al., 2009].

Coverage Calculation of Human Gene Mutation Database
Mutations

To analyze coverage of known pathogenic mutations, 96,377
single-nucleotide mutations from the Human Gene Mutation
Database (HGMD; professional version) were downloaded on
09-2014 [Stenson et al., 2014]. Mutations were then intersected with
RefSeq (82076 SNVs) and Ensembl (82353) coding regions covered
at >20x using the BEDTools software package v.2.19.1 [Quinlan and
Hall, 2010].

Assessment of Systematic Biases

First, we calculated three different metrics in order to assess po-
tential technological biases. The evenness score describes the uni-
formity of the base coverage over target regions and was calculated
according to the method by Mokry et al. (2010). The score is nor-
malized to the average coverage and therefore depicts the quality of a
targeted genome section. The evenness score is 100% for completely
uniform coverage where an extreme nonuniform distribution ap-
proaches a score of 0%. The average coverage for the exome was
computed using a custom Java program.

Second, we also evaluated coverage bias for genes located on
the positive and negative strand. We extracted the orientation for
all genes from the NCBI RefSeq database (Release 60) [Pruitt et al.,
2014]. Consistent with the transcript analysis, we selected the longest
transcript of each gene. For each transcript, we computed the per-
centage of base pairs not covered at a coverage level ranging from
20- to 40-fold and tested for coverage bias based on DNA strand
(Mann—Whitney nonparametric U-test).

Finally, we evaluated bias in the allele distributions of common
heterozygous single-nucleotide polymorphisms (SNPs). The list of
protein-coding single SNPs, based on the dbSNP database (build
138) [Sherry et al., 2001], was downloaded from the UCSC table
browser (http://genome.ucsc.edu/) [Karolchik et al., 2004]. SNPs
annotated with a population frequency above 10% were considered
as common. In total, our set contained 15,153 common SNPs in
protein-coding regions. With the mpileup function from SAMtools
v0.1.19 [Li et al., 2009], the nucleotide counts for each SNP lo-

cation were extracted from the BAM files. SNPs with less than 16
reads were discarded to rule out distribution bias caused by low
coverage. SNPs were considered heterozygous when the allele ration
was between 10% and 90% based on the raw-nucleotide counts.
Difference in coverage was determined by the Mann—Whitney non-
parametric U-test and P values were corrected for multiple testing
by the Benjamini—-Hochberg procedure. On average, 4,307 (range
[2,690-5,096]) heterozygous SNPs of our set were found per sample.
For this analysis, we excluded the five Illumina genomes that were
merged together to resemble 56.2x coverage. For the Complete Ge-
nomics data, the nucleotide counts for the common protein-coding
SNPs were extracted from the masterVarBeta files.

GC Content of Low-Covered Regions

Based on the single base-pair coverage, the RefSeq regions covered
with less than 5x, between 5x and 10x and between 10x and 20x
were selected. With the use of the nuc function from the BEDTools
software package v.2.19.1 [Quinlan and Hall, 2010], the percentage
G and C nucleotides of these regions could be extracted based on
hg19 assembly of the human genome. The exome kit regions were
corrected for targeted regions based on the capture probes locations
as provided by the manufacturers.

Results

For our comparison, we evaluated three widely used exome cap-
turing kits: Agilent SureSelect version 4 (Agilent V4), Agilent Sure-
Select version 5 (Agilent V5), and NimbleGen SeqCap version 3
(NimbleGen V3). Libraries for all aforementioned enrichment kits
were sequenced on the commonly used Illumina HiSeq sequencer.
Additionally, three WGS platforms were examined: Complete Ge-
nomics, [llumina HiSeq, and Illumina x Ten (Table 1). For all plat-
forms, we evaluated the percentage of sufficiently (=20x) covered
protein-coding regions based on RefSeq [Pruitt et al., 2014] and En-
sembl [Flicek et al., 2014] annotated exons. Furthermore, the cov-
erage in two clinically relevant transcript sets was assessed to study
the potential for clinical application. Next to coverage, systematic
biases such as nonuniform mapping of reads, unequal strand cover-
age, and deviations in allele distributions of common heterozygous
SNPs were assessed.

Newer Exome Capture Kits Show a Clear Improvement in
Exome Coverage

First, we compared the coverage of sequence libraries constructed
by the exome kits (Table 1). We observed that libraries of the most
recent Agilent V5 kit are able to capture on average 94.57% of RefSeq
and 93.58% of Ensembl defined exome at >20x coverage, whereas
the Agilent V4 libraries achieved 88.75% and 87.41% (Fig. 1; and
Supp. Table S2). The difference between Agilent V4 and V5 is in
part due to missing coding regions in the V4 capture design (Supp.
Table S3). Deeper sequencing, on an Illumina HiSeq system, of
the Agilent V4 libraries to 160x average depth increased the >20x-
covered exome to 94.10% for the refSeq exome and 92.79% for
the Ensembl exome. However, by deeper sequencing, the average
coverage did not surpass that of the Agilent V5. The NimbleGen
V3 capture kit performed similar to the Agilent V5 with 95.83%
and 94.49% covered at >20x. These results represent a marked
improvement compared with previous generations of sequencing
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Figure 1. Coverage of the Ensembl and RefSeq annotated protein-coding regions and (full) coverage of 2,759 clinically relevant OMIM+ genes.
A: The percentage of base pairs of Ensembl (in yellow) and RefSeq (in blue) annotated protein-coding regions covered by at least 20 reads for the
tested platforms. B: Percentage of base pairs covered by at least 20 reads for the longest OMIM+ transcripts (in green). The red bars depict the
percentage of the (longest) OMIM+ transcript base pairs that are fully covered by at least 20 reads.

platforms that were able to capture at most 80.50% of the human
consensus-coding sequence regions [Parla et al., 2011].

WGS Provides a Better Exome Coverage than WES

Next, we assessed whether WGS indeed provides a better cov-
erage of the RefSeq and Ensembl defined exomes. Both the 44x
Complete Genomics and 56x Illumina HiSeq genomes achieved a
much higher fraction of the exome covered at >20x than the 70x
Agilent V4 (Fig. 1; Supp. Table S2). Only at a deeper average coverage
of 160x, the results from the Agilent V4 libraries were comparable to
much lower sequenced WGS (44-56x). Both Agilent V5 and Nim-
bleGen V3 libraries achieved similar performance compared with
the WGS, although be it at the cost of about two times more average
coverage. Complete Genomics sequencing at high coverage (87x)
outperformed all exome libraries with 98.40% and 98.58% cover-
age (Fig. 1; Supp. Table S2). Similar results were obtained when we
compared only the coverage of 96377 HGMD mutations between
the different platforms (Supp. Table S4) [Stenson et al., 2014].
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Complete Coverage of Clinically Relevant Genes

From a clinical point of view, it is important to cover the sequence
of disease genes as complete as possible. We analyzed the coverage
for a set of 56 genes, recommended by the American College of
Medical Genetics and Genomics (ACMG) for pathogenic variant
discovery [Green et al., 2013]. This transcript set covers 198,482
nucleotides divided over 1,169 exons. We assessed the percentage
of transcripts that are completely sequenced to a depth of >20x
(Fig. 2; Supp. Table S5). With an average of 50.15%, the Nim-
bleGen V3 libraries, achieved the highest average of fully covered
transcripts captured for the enrichment kits. Genome performance
was not obviously better than the exomes with on average 54%
and 43% of fully covered transcripts for Complete Genomics 87x
genomes and Illumina 56x genomes, respectively. The difference be-
tween the Complete Genomics 44x and 87x genomes was striking,
with an average percentage of fully covered transcripts of 6.70%
and 54.32%, respectively. Interestingly, for these genes, the differ-
ence in percentage of exome fraction covered at >=20x was only
4.44%.
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Figure 2. Overview of 56 genes and the percentage of coding bases not covered at 20x. The boxplots depicting the percentage of bases not
covered by at least 20x reads. For each of the 56 ACMG-recommended genes, the coverage of the longest RefSeq transcript was analyzed. A:
Shows the performance of all tested exome capture libraries. B: Shows the performance of the tested WGS platforms.

We extended our analysis to the coverage of 2,759 transcripts from
the OMIM-+ set (Fig. 1; Supp. Table S5). This set is much larger than
the ACMG set and includes overall 6,374,161 nucleotides distributed
across 38,498 exons. Due to the higher number of transcripts, a
lower average number of nucleotides was covered at >20x compared
with the ACMG set. However, for all platforms, the percentage
of transcripts fully covered at >20x increased compared with the
ACMG set. This may indicate that some of the ACMG genes are
particularly difficult to sequence compared with other disease genes.

In addition, we explored GC ratios of insufficiently covered re-
gions. The GC ratio of these regions was computed for regions with
minimal (<5x), poor coverage (between 5x and 10x) and inter-
mediate (between 10x and 20x) coverage (Supp. Table S6). Based
on the genomic sequence of the RefSeq protein-coding region, the
average GC content is 51%. The mean GC content for annotated re-
gions with minimal coverage, poor, and intermediate coverage was
however 73.13%, 70.48%, and 64.43%, respectively, on average for
exomes, and 72.78%, 70.40%, and 65.20% on average for Complete
Genomics and Illumina HiSeq genomes.

Systematic Biases in Sequence Coverage

To investigate systematic biases in coverage, we compared the
evenness of mapped reads across targets. As noted by Lam et al.
(2012), less uniform coverage requires more overall sequencing to

achieve a certain level of coverage for most of the genome. Moreover,
uniform coverage is not only important in economic terms, but also
for applications such as the detection of copy-number variation and
somatic variation. The evenness score of exome capture technologies
was on average 74.6% (range [67.67%—78.32%] ). Scores for Illumina
HiSeq, x Ten, and Complete Genomics were very similar around 85%
(range [78.39%-90.31%]) (Fig. 3A; Supp. Table S7).

To assess the observed reduction in evenness further, we evalu-
ated whether transcripts on either the plus or minus strand were
covered at equal proportions. The exome capture libraries provided
significantly less coverage for genes on the minus strand compared
with those on the plus strand (Fig. 3B). This effect becomes more
apparent at higher exome coverage and was not present in the WGS
data (Fig. 3C; Supp. Table S8). To further assess this, we studied the
distribution of reads for heterozygous SNPs (minimal coverage of
>20 reads) to see whether there was a systematic deviation from
the ideal 50%—-50% allele distribution. Exomes showed on average a
deviation of 2.3% to the optimal 50%, whereas the whole-genome
datasets distribution deviated only 1.43% (P = 0.04; two-sided Stu-
dent’s t-test) (Fig. 3D; Supp. Table S9).

Discussion

High-throughput sequencing techniques have shown a rapid de-
velopment and made a significant impact on how genetic research
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platforms based on the RefSeq annotated protein-coding regions. B: The difference in average coverage at 20x of WGS libraries for RefSeq
transcripts grouped by strand. The symbols + and — indicate average coverage level at the plus and minus strand. C: /dem for WES libraries. D:
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is conducted. Scanning all genes simultaneously has led to the iden-
tification of a vast number of disease-causing genes. Various studies
have tried to determine what amount of sequence coverage is suffi-
cient to reliable identify single-nucleotide variants [Ajay et al., 2011;
Clark et al., 2011; Sulonen et al., 2011; Meynert et al., 2014]. A chal-
lenge for this is that a comprehensive golden standard for variant
calling is still under development [Strom et al., 2014; Zook et al.,
2014], and that results may depend on the choice of variant caller
and settings thereof. However, a prerequisite for reliable variant
calling is sufficient sequence coverage.

In this study, we examined the latest WES and WGS platforms
in terms of coverage of RefSeq [Pruitt et al., 2014] and Ensembl
[Flicek et al., 2014] annotated regions (Table 1; Supp. Table S1).
To increase robustness of our results, we used multiple replicates
per approach. Although all of the samples were sequenced using
standard sequencing protocols, site-specific implementations may
have an influence on the actual results. We conducted our compar-
ison at a single base-pair resolution and assessed biases in coverage
for all technologies. We find that exome capture technology has
significantly improved and that, at high-average coverage (>95x),
the latest exome libraries are able to reliably cover close to 95%
of the protein-coding regions to a sequencing depth of at least 20x
(Fig. 1; Supp. Table S2). Our choice of 20x coverage for reliable cover-
age stems from various published studies as well as our own experi-
ence. However, although results change for different thresholds, the
overall differences between the platforms remain the same (Supp.
Table S2).
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We note that the definition of the exome naturally affects the
outcome of this comparison [Bainbridge et al., 2011]. The absence
of probes in enrichment Kits restricts sequencing yield of regions
when a more comprehensive exome definition is used. However, we
find that in all but few exome libraries, a region will be sufficiently
covered if a capture probe is in the vicinity. Exceptions to this occur
in extreme GC regions, where genome sequencing may also suffer
from loss of sequence coverage (Supp. Table S6). The differences in
GC bias that we observed may be directly correlated to the number
of PCR steps of the sequencing protocols that were used.

Full transcript coverage for clinically relevant disease genes was
quite variable between replicate samples. Some platforms performed
poor due to lower average coverage, but performed better with a
lower coverage threshold for fully covered transcripts (Figs. 1 and 2;
Supp. Table S5). Unexpectedly, the high-coverage Agilent V5 sam-
ples also performed poor in this analysis. We suspect this may be
due to performance differences between individual sequencing runs,
rather than being intrinsic to the platform itself. Dewey et al. (2014)
previously reported that 10% and 19% of 56 disease genes were
not fully covered at an acceptable coverage of >10x by Illumina
and Complete Genomics, respectively. In this study, a comparable
21% of the genes were not completely covered by at least 10 reads
by Complete Genomics at 87.42x average coverage. However, this
representation of the results does not do credit to the actual perfor-
mance of these technologies as Illumina and Complete Genomics
genomes achieve > 10x coverage for 98.71% and 99.8% of the coding
bases of this gene set (Supp. Table S10).



Next to sequence coverage, we also investigated several other im-
portant features to identify systematic biases. We found that genome
sequencing performed better than exome sequencing in all of these
comparisons, providing a more even coverage, no strand bias, and
a higher proportion of transcripts covered completely (Fig. 3). Al-
though these features may seem secondary to sequence coverage,
they may have implications in a clinical setting where reliability and
reproducibility of results is crucial. Also, for applications other than
the identification of normal SNV, these features are of importance.
A more even coverage increases the sensitivity for detecting copy-
number variants [Medvedev et al., 2010; Szatkiewicz et al., 2013],
and allele biases may hamper the detection of somatic variation.

The imperfect performance of previous generations of exome
captures has spurred clinical laboratories to develop custom gene
panels, or custom exome captures, to boost coverage of relevant dis-
ease genes. Recently published studies of gene panels show that these
libraries are generally sequenced much deeper than WES and WGS
libraries and cover in the range of 92.0%-98.7% of the regions by 10
or more reads (Supp. Table S11) [Glockle et al., 2014; Qu et al., 2014;
Vona et al., 2014; Wei et al., 2014; Zhao et al., 2015]. In comparison,
the ACMG (56 genes) and OMIM+ (2759 genes) disease gene sets
tested in this study shows comparable or better performance cov-
erage for WES (ACMG range [95.95%-99.01%]; OMIM+ range
[95.60%-98.02%]) and WGS (ACMG range [95.24%-99.80%];
OMIM+ range [93.00%-99.51%]) platforms at =10x (Supp.
Table S10). This illustrates the potential of WES or WGS approaches
for more generic clinical testing [Soden et al., 2014].

Conclusion

Both high-coverage WES and WGS are able to generate sufficient
coverage for reliable variant calling of 95% of the coding regions. Se-
quencing biases are however more prominent in WES data, and may
hamper more advanced applications. WGS however offers the addi-
tional advantages that it allows more reliable detection of structural
variants [Gilissen et al., 2014] and the identification of noncoding
variation [Spielmann and Klopocki, 2013]. Although currently the
costs of WES and WGS only differ by a factor 2—4 (depending on cov-
erage), the additional data storage and computational burden may
still make WES a convenient prescreening technology. Our find-
ings will help laboratories to make an informed decision on which
sequencing platform and what sequencing coverage to choose for
their experiments.
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