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Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary 
osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids 
for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of 
fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone 
homeostasis. When bone formation and resorption are out of balance, abnormalities in bone 
structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by 
promoting osteoclast formation and prolonging osteoclasts’ lifespan, leading to an increase 
in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts’ formation and 
facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. 
Several signaling pathways, signaling modulators, endocrines, and cytokines are involved 
in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids 
chronically with a high fracture risk are considered to have medical intervention. In addition 
to vitamin D and calcium tablet supplementations, the major therapeutic options approved 
for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone 
N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective 
estrogen receptor modulator can only be used under specific condition for postmenopausal 
women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic 
contraindications. In this review, we focus on the molecular etiology of GIOP and the 
molecular pharmacology of the therapeutic drugs used for GIOP treatment.

Keywords: Bone remodeling, Glucocorticoid, Osteoblast, Osteoclast, Secondary 
osteoporosis

osteoporosis has been associated with various congenital 
diseases and endocrine disharmony, as well as nutritional 
status and some medications [13]. The most common 
form of secondary osteoporosis is glucocorticoid-induced 
osteoporosis (GIOP) [14], accounting for 20% of all forms 
of osteoporosis [15]. The majority of these patients have 
autoimmune diseases (e.g., rheumatoid arthritis and lupus 
erythematosus), allergic diseases (e.g., asthma and atopic 
dermatitis), or have undergone organ transplantation. GIOP 
occurs in two phases: an early phase in which bone mineral 
density (BMD) declines due to rapid bone resorption and a 
slow and progressive phase in which BMD declines due to the 
impaired bone formation [16]. The underlying mechanism of 
GIOP could be complicated and multifactorial. In this review, 
we provide an overview of the molecular etiology, assessment, 

Introduction

T here are >49 million patients with osteoporosis in 
developed countries, such as the United States, European 

Union, Australia, and Japan [1]. Patients with osteoporosis 
tend to develop vertebrae and hip fractures. Vertebrae fractures 
and fragility fractures at other sites of the body have increased 
by millions with the population of osteoporosis [2-5], which 
causes a heavy financial burden on the country [2,6]. Moreover, 
complications may arise in addition to pain and limited 
mobility, which increases the risk of death in fracture patients 
and imposes financial burdens on the family and society [7,8]. 
Therefore, several countries recognize osteoporosis as a 
major public health issue, and the World Health Organization 
has ranked osteoporosis as the second most crucial health 
care issue worldwide. Osteoporosis can be divided into (1) 
primary osteoporosis (including postmenopausal osteoporosis 
and senile osteoporosis) and (2) secondary osteoporosis. 
Primary osteoporosis is most common in postmenopausal 
women [9-11] and elderly persons [12]. Secondary 
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and treatment options in the aspect of molecular pharmacology 
for GIOP.

Endogenous glucocorticoid is required 
for bone homeostasis

Bone remodeling is a normal physiological process that 
involves bone resorption and bone synthesis. Under normal 
physiological conditions, bone resorption and bone formation 
are in balance, and many cytokines, hormones, and signaling 
pathways are involved [17] [Figure 1]. The bone remodeling 
process undergoes continuously during which osteoclasts 
absorb aged or damaged bones, whereas osteoblasts and 
osteocytes are responsible for new bone formation. However, 
if an imbalance arises, abnormalities in the bone structure or 
function may occur, resulting in osteometabolic disorders, 
such as osteopetrosis or osteoporosis [18]. Osteoblasts, 
osteocytes, and osteoclasts interplay with each other to 
maintain bone microstructure and homeostasis. Osteoblasts 
and osteocytes secrete receptor activator of NF-κB 
ligand (RANKL) and osteoprotegerin (OPG) to regulate 
osteoclasts proliferation and differentiation [16]. On the other 
way, the activated transforming growth factor-beta (TGF-β) 
and bone morphogenetic protein (BMP) released from the 
bone matrix after bone resorption also regulate osteoblasts 
formation [19,20]. Moreover, osteoblasts and osteocytes 
negatively feedback the differentiation of osteoblasts by 
inhibiting Wingless-related integration site (WNT) signaling 
through the secretion of WNT antagonists, Sclerostin (SOST), 
and Dickkopf 1 (DKK1) [21].

Endogenous glucocorticoid at physiologic 
concentrations is necessary for osteoblasts to maintain 
bone homeostasis [22,23]. The physiological activity of 
glucocorticoids is regulated by two enzymes, namely 
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) 
and type 2 (11β-HSD2), among which 11β-HSD1 
activates glucocorticoid, whereas 11β-HSD2 inactivates 
glucocorticoid [24]. Studies using mouse models elucidate 
the significance of endogenous glucocorticoids in bone 
homeostasis. The decrease of glucocorticoid sensitivity 
in osteoblasts by transgenic expressing of glucocorticoid 
inactivating enzyme 11β-HSD2 causes a reduction of the 
bone mass [25,26]. Mice with conditional knockout of the 
glucocorticoid receptor in osteoblast lineage also reveal a 
significant reduction of vertebral bone density and osteoblast 
activity [27]. These results suggest that endogenous 
glucocorticoid is necessary for osteoblast activity and bone 
mineralization. In another way, human diseases causing 
an imbalance of endogenous glucocorticoid secretion also 
impair bone metabolism. Cushing’s disease, causing an 
elevation of serum level of endogenous glucocorticoids, is 
correlated with osteoporosis [28-30]. Patients with Addison’s 
disease who have a reduced serum level of endogenous 
glucocorticoids are also associated with a higher risk of hip 
fracture [31]. In conclusion, evidence from animal models 
and clinical observations suggests an essential role of 
endogenous glucocorticoid in maintaining bone remodeling. 
While the proper regulation of glucocorticoids’ physiological 
concentration is essential for bone homeostasis, excessive 

Figure 1: Schematic representation of signaling pathways involved in bone remodeling and the formation of osteoblast and osteoclast. WNT, transforming growth factor-beta, 
bone morphogenetic protein, parathyroid hormone, and estrogen (e) are essential modulators of osteoblast and osteoclast formation. WNT and bone morphogenetic protein 
enhance the differentiation of osteoblasts. Bone morphogenetic protein, estrogen, and parathyroid hormone could indirectly regulate WNT activity by controlling the 
expression of Sost, and Dkk1 from osteoblasts and osteocytes. Transforming growth factor-beta enhances bone formation by suppressing the apoptosis of osteoblasts and 
osteocytes and enhancing the apoptosis of osteoclasts. Moreover, estrogen and WNT also suppress the apoptosis of osteoblasts and osteocytes. Blue lines indicate the 
effects of signaling molecules or the secreted proteins on the regulation of bone remodeling. Ligands are marked as yellow ovals. Signal modulators or the extracellular 
matrix proteins are marked as pink ovals. Endocrines are marked as green ovals
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glucocorticoids cause bone loss through the dysregulation of 
osteoblastogenesis and osteoclastogenesis [Figure 2].

The negative impact of excessive 
glucocorticoids on osteoblast and 
osteocyte

The therapeutic concentration of glucocorticoids reduces 
the formation and survival of osteoblast and osteocyte. 
Osteoblasts are differentiated from mesenchymal stem 
cells (MSCs) which travel through the blood vessel to 
reach the bone surface [32]. At the bone surface, the WNT 
signaling promotes the differentiation of MSC into osteoblast 
progenitor cell [33] and inhibits the differentiation of MSC 
into chondrocyte or adipocyte [34,35]. In the modulation of 
osteogenesis, glucocorticoids facilitate the differentiation 
of MSCs into adipocytes instead of osteoblast progenitor 
cells [36-38].

The differentiation of osteoblast progenitor cells into 
preosteoblasts and then osteoblasts requires the action of 
WNT and BMP signaling [39-41] by which activate the 
expression of Runt‑related transcription factor 2 (Runx2) 
and Osterix (SP7) transcription factors [42,43]. Accordingly, 
excess glucocorticoids exposure suppresses WNT signaling 
by decreasing Wnt expression [44], bolstering the expression 
of WNT antagonists, such as Dkk1 [22,45-47], Sost [46,48], 
and Secreted frizzled‑related protein‑1 (sFRP‑1) [22,49], and 
increasing the expression of negative WNT signaling regulator 

Axin‑2 [49]. It is to be noted that the serum concentration 
of SOST is reduced in humans, which might reflect a 
compensatory mechanism that remains elucidated [50,51]. 
Glucocorticoids also suppress the BMP signaling by inhibiting 
BMP-2 expression [46,52] and enhancing the expression 
of BMP antagonists – Follistatin and Dan [49]. Besides, 
glucocorticoids suppress both the expression of Runx2 and 
RUNX2 activity and thus inhibit osteoblast maturation [53,54].

In addition to WNT and BMP, TGF-β is also involved in 
regulating osteoblast formation. TGF-β could promote the 
differentiation of osteoblast progenitor cells from MSCs [55] 
by enhancing the WNT signaling [56]. On the other hand, 
TGF-β inhibits osteoblasts and osteocytes’ differentiation by 
decreasing the expression of Runx2 [57-62]. However, the 
essentiality of TGF-β in the regulation of osteoblastogenesis 
can be evident by the study showing that Tgfb1-null mice 
exhibit a significant loss of trabecular bone density and the 
reduction of osteoblasts [63]. Even limited literature addresses 
glucocorticoids’ effect on TGF-β signaling; it has been 
reported that glucocorticoid treatment decreases the mRNA 
level of TGF‑β [64].

Excess glucocorticoids also lead to apoptosis of osteoblasts 
and osteocytes. The undifferentiated osteoblast usually goes 
through apoptosis a few months after its formation. WNT [65], 
TGF-β [66,67], interleukin-6 (IL-6) [67], and estrogen [68-70] 
are reported to suppress the apoptosis of osteoblast. By 
contrast to osteoblasts’ 3-month lifespan, osteocytes are 
long-lived bone cells that can survive for more than 

Figure 2: Schematic representation of the molecular etiology of glucocorticoid-induced osteoporosis and the effect of anti-osteoporotic drugs. Glucocorticoids (red) induce 
osteoporosis by inhibiting the differentiation of osteoblasts from mesenchymal stem cell, inducing apoptosis of osteoblasts and osteocytes, increasing the formation of 
osteoclasts, and prolonging the lifespan of osteoclasts. The effects of anti-osteoporotic drugs (green lines) such as bisphosphonates, teriparatide, denosumab, and raloxifene 
are indicated. Bisphosphonates inhibit the activity of osteoclast and induce its apoptosis. Bisphosphonates and the intermittent administration of teriparatide decrease 
the apoptosis of osteoblasts and osteocytes. Raloxifene, only used for postmenopausal women with glucocorticoid-induced osteoporosis, promotes bone formation by 
stimulating osteogenesis and suppressing osteoblast apoptosis and indirectly inhibits osteoclastogenesis by decreasing the expression of receptor activator of NF-κB ligand 
and increasing the expression of receptor activator of NF-κB ligand inhibitor osteoprotegerin. Denosumab inhibits osteoclastogenesis by neutralizing receptor activator 
of NF-κB ligand. Blue lines indicate the signaling affecting osteoclastogenesis
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decades [71,72]. Osteocytes are mechanosensory cells that can 
sense the microdamage on the bone through their dendritic 
processes [73] and trigger their apoptosis [73-75]. While 
osteocytes undergo apoptosis, the neighboring nonapoptotic 
osteocytes attract osteoclast precursor cells to the microdamage 
site by releasing IL-6 and soluble IL-6 receptor [76] and 
secret RANKL to stimulate the osteoclastogenesis [77]. In the 
regulation of lifespan of cultured osteoblasts and osteocytes, 
excess glucocorticoids (≥10−6 M) induced apoptosis [78-80]. 
This observation is consistent with the in vivo experiment 
showing that excess glucocorticoids increase the apoptosis 
of osteoblasts and osteocytes [81]. Mechanistically, 
glucocorticoids could induce the apoptosis of osteoblasts by 
inhibiting the WNT, TGF-β, and IL-6 signaling [64,65,82].

The excessive glucocorticoids promote 
the differentiation and survival of 
osteoclast

The excessive amount of glucocorticoids promote the 
proliferation and survival of osteoclast precursor cells. 
Osteoclasts are originated from hematopoietic stem cells 
which differentiate into osteoclast precursor cells and 
then fuse to form multinucleated osteoclasts [83]. During 
osteoclastogenesis, both macrophage colony-stimulating 
factor (M-CSF) and RANKL play vital roles [84]. M-CSF 
is required for the cell survival and proliferation of 
osteoclast precursor cells, whereas RANK is required for 
the differentiation of osteoclast precursor cells [85-87]. 
When M-CSF binds to its receptor, colony-stimulating factor 
1 receptor (c-Fms), on osteoclast precursor cells, the cell 
survival and proliferation of osteoclast precursor cells are 
promoted through the extracellular signal-regulated kinases 
and Serine/threonine kinase (Akt) signaling pathways [88]. 
Evidence has shown that glucocorticoids promote the 
proliferation and survival of osteoclast precursor cells by 
increasing the expression and half-life of M‑CSF produced by 
osteoblast [89,90].

Glucocorticoids also promote osteoclast differentiation. 
RANKL secreted by both osteocytes and osteoblasts 
binds to the RANK receptor on osteoclast precursor cells 
and subsequently activates the mitogen-activated protein 
kinase, Akt, and nuclear factor of activated T-cells, 
cytoplasmic 1 signaling, which stimulate the differentiation 
and fusion of osteoclast precursor cells into multinuclear 
osteoclasts [91-93]. The activity of RANKL can be 
neutralized by its decoy receptor OPG secreted by both 
osteoblasts and osteocytes [94-96]. When Opg is expressed 
in large amounts, it hinders the formation of osteoclasts, 
resulting in osteopetrosis [94]; conversely, osteoporosis 
can be observed in Opg knockout mice [97,98]. Therefore, 
the ratio of RANKL/OPG is recognized as an indicator for 
the trend of osteoclast differentiation. For example, IL-6 
enhances osteoclastogenesis by increasing the Rankl/Opg 
ratio [99]. Glucocorticoids promote the differentiation of 
osteoclast precursor cells toward osteoclast by enhancing 
the expression of Rankl from osteoclasts [100,101]. In the 
other way, glucocorticoids indirectly increase the RANKL 

activity by reducing the expression of its decoy receptor Opg. 
Glucocorticoids reduce the expression of Opg by directly 
regulating its expression in osteoblasts [100] or indirectly 
reduce the expression of Opg through the suppression of 
WNT signaling, which promotes the secretion of OPG from 
osteoblasts and osteocytes [102]. It has also been reported 
that glucocorticoids stimulate osteoclast formation through the 
activation of IL-6 signaling in osteoblasts [103], although the 
detailed mechanism is unclear.

The average lifespan of osteoclasts is around 2 weeks in 
humans [104]. Glucocorticoids act directly on osteoclasts 
to suppress their apoptosis and thus prolong the lifespan of 
osteoclasts [105,106]. On the other hand, glucocorticoids also 
suppress apoptosis of osteoclast precursor cells by decreasing 
the expression of Opg [107] and increasing the expression of 
Rankl [108]. Although glucocorticoids prolonged osteoclasts’ 
lifespan, it was reported that glucocorticoids reduce osteoclast 
activity by disrupting M-CSF-stimulated cytoskeletal 
organization in vitro [109].

The impact of therapeutic glucocorticoids 
on bone matrix

During the process of bone formation, osteoblasts secrete 
osteoid, the premineralized bone matrix, to prompt bone 
formation [110] and differentiate into osteocytes embedded in 
the bone matrix [111]. In osteoid, hydroxyapatite, a complex 
of calcium and phosphate, is formed within the matrix vesicles 
that bud from the plasma membrane of osteoblasts [112]. 
The hydroxyapatite further deposits into the extracellular 
matrix (ECM) of the bone and interacts with the main fibrous 
protein, type I Collagen, to form the mineralized collagen 
essential for maintaining the bone strength [113]. In GIOP 
patients, glucocorticoids lessen bone mineralization by 
inhibiting the expression of type I Collagen and increasing the 
expression of interstitial Collagenase [114-116].

Osteoblasts also secrete noncollagenous proteins, 
such as tissue nonspecific alkaline phosphatase (TNAP), 
osteocalcin (OCN), and osteonectin (ON)/secreted protein 
acidic and rich in cysteine [117]. These noncollagenous 
proteins play crucial roles in the bone matrix’s mineralization 
and could be affected by glucocorticoids. TNAP is a 
membrane-bound enzyme that is localized on the plasma 
membrane of osteoblasts and the matrix vesicles [118,119]. 
TNAP can hydrolyze inorganic pyrophosphate (PPi) to 
phosphate (Pi) for the formation of hydroxyapatite [120]. OCN 
is a γ-carboxy glutamic acid-containing protein and has a dual 
function on bone development. In one way, OCN functions 
as an inhibitor of bone mineralization by binding to calcium, 
mediating its association with hydroxyapatite; in the other 
way, OCN and osteopontin enhance the mechanical properties 
of the bone [121]. Besides, exogenous supplementation of 
OCN enhances the differentiation of osteoblasts and increases 
extracellular calcium levels and TNAP activity [122]. As 
a calcium-binding matricellular protein, ON triggers the 
release of the calcium ion by binding to both collagen and 
hydroxyapatite [123], thereby promoting mineralization 
of the collagen matrix during bone formation. In addition, 



Peng, et al. / Tzu Chi Medical Journal 2021; 33(3): 212‑223

216 

ON-null mice have fewer osteoblasts and osteoclasts, 
leading to a decrease in bone remodeling [124]. As for 
osteoclast, it also secrets proteolytic enzymes, such as matrix 
metalloproteinases (MMP) [125] and cathepsins [126,127], for 
the degradation of the matrix protein of the ECM during bone 
resorption. The treatment of glucocorticoids negatively impacts 
the mineralization of bone matrix by reducing the TNAP 
activity [128], expression of Ocn [129-131], and expression of 
On [132] in osteoblasts. Moreover, glucocorticoids increase the 
expression of Mmp9, Mmp13, and Cathepsin K by osteoclasts 
and thus promote the bone reabsorption [78,132,133].

Fracture risk assessment for 
glucocorticoid‑induced osteoporosis

For adults ≥40 years of age using glucocorticoids 
chronically, the fracture risk can be assessed based on 
BMD and the fragility fracture history. As defined by the 
World Health Organization in 2008, a BMD T score of 
<-2.5 standard deviation is considered as osteoporosis. In 
addition to BMD, the 2017 American College Rheumatology 
Guideline for the Prevention and Treatment of GIOP 
recommends using Fracture Risk Assessment Tool (FRAX®, 
https://www.sheffield.ac.uk/FRAX/) for fracture risk 
assessment, which is a tool that integrates the information 
derived from both clinical risk factors and BMD. In the 
guideline, adults with low FRAX® fracture probability 
are recommended to take only calcium and Vitamin D, 
whereas adults with moderate-to-high FRAX® fracture 
probability (10-year probability of major osteoporotic 
fracture >10%) are suggested to be treated with additional 
anti-osteoporosis medication. However, the International 
Osteoporosis Foundation and the European Calcified 
Tissue Society suggested that an intervention threshold, 
instead of the categorization of FRAX® fracture probability, 
should be determined for clinical practice [134]. Besides, 
FRAX® fracture probability does not consider the dose of 
glucocorticoids; therefore, it needs to be adjusted according to 
the condition of glucocorticoid usage. For example, FRAX® 
calculations for the 10-year probability of major osteoporotic 
fracture and hip fracture should be uplifted by 15% and 
20%, respectively, when patients take glucocorticoids at 
doses >7.5 mg/day [135]. In Taiwan, although there is 
no specific intervention threshold set for GIOP, the 2019 
Taiwanese Consensus and Guidelines for the Prevention and 
Treatment of Adult Osteoporosis suggests using a presumed 
individual intervention threshold [136]. The presumed 
individual intervention threshold is defined as the 10-year 
probability of FRAX®-derived fracture risks for an individual 
who does not have rheumatoid arthritis, glucocorticoid usage, 
and other osteoporotic risk factors but has a previous fracture 
history [136,137]. By comparing it with the adjusted-FRAX® 
10-year probability according to the glucocorticoid dosages, 
the timing of medical interventions could be determined. 
Besides, a novel hybrid intervention threshold was established 
to identify high-risk populations of fragility fractures in 
Taiwan by considering the FRAX®-derived fracture risks 
probability, BMD, and presumed individual intervention 
threshold [138]. However, the intervention threshold for 

GIOP could vary from country to country, depending on the 
health policy, economic status, and reimbursement issues.

It is to be noted that the FRAX® calculation is not 
applicable to determine the fracture risk probability for 
patients <40 years of age. Although young patients quickly 
regain bone mass when glucocorticoids are discontinued, the 
use of glucocorticoids at a dose of >7.5 mg/day for 6 months 
could still lead to a rapid decrease in bone density in hip or 
vertebrae (a decrease of >10% in one year) [139]. Therefore, 
both BMD and prior osteoporotic fracture history should be 
considered when physicians judge medical intervention for 
individuals <40 years of age.

Treatment options for glucocorticoid‑induced 
osteoporosis
Calcium and Vitamin D supplements

The evaluation indicators of drug therapy include the 
dosage and duration of glucocorticoid usage, fragility 
fracture history, BMD, age, and whether the patient is a 
postmenopausal woman [140]. In general, prophylaxis and 
treatment should be initiated in patients using glucocorticoids 
at a daily dose of 5–7.5 mg for >3 months [139]. Patients 
treated with glucocorticoids have faced systematic calcium loss 
caused by reduced gastrointestinal absorption and renal tubular 
reabsorption [141,142]. Therefore, it is suggested that adult 
patients should take adequate calcium (1000–1200 mg/day) 
and Vitamin D (600–800 IU/day) supplements to reduce 
calcium loss from bone and increase calcium absorption in the 
gastrointestinal tract [139]; for adults >50 years of age, a daily 
intake of 1200 mg calcium with 800–1000 IU Vitamin D is 
suggested [136].

Bisphosphonates
Bisphosphonates have a nonhydrolyzable P-C-P 

structure and are analogs of pyrophosphate. Structurally, the 
bisphosphonates with a nitrogen-containing side chain on the 
central carbon exhibit substantial therapeutic effects (e.g., 
alendronate, risedronate, and zoledronate). Bisphosphonates 
have a high affinity to hydroxyapatite, and thus they could 
accumulate on surfaces undergoing active resorption. Upon 
entry into osteoclasts through endocytosis, nitrogen-containing 
bisphosphonates inhibit the mevalonate pathway’s farnesyl 
pyrophosphate synthase, thereby blocking protein prenylation, 
inhibiting the function of osteoclasts [143,144], and inducing 
osteoclast apoptosis [145,146]. Apart from the major 
therapeutic effect of bisphosphonates on inhibiting osteoclasts, 
bisphosphonates can also increase the lifespan of osteoblasts 
and osteocytes by inhibiting their apoptosis [147]. In the other 
way, bisphosphonates decrease the expression of the BMP 
antagonists Follistatin and Dan, the WNT signaling inhibitors 
sFRP‑1 and axin‑2 [49], thus facilitating WNT and BMP 
signaling and eventually increasing osteoblast formation.

Side effects of bisphosphonates may comprise erosive 
esophagitis, ulcer bleeding, hypocalcemia, renal function 
decline, osteonecrosis of the jaw, and atypical femoral 
fracture [148]. The failure of oral bisphosphonate treatment 
can be defined as GIOP patients who have new fractures 
after >18 months of oral bisphosphonates or experienced a 
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significant decrease in BMD (>10% per year) after 1 year of 
treatment. In such a scenario, follow-up treatment with other 
osteoporotic drugs, such as denosumab or teriparatide, is 
suggested [139]. If the failure of oral bisphosphonate treatment 
is due to poor medical compliance or drug absorption 
issue caused by gastrointestinal side effects, intravenous 
bisphosphonates can be considered because of its long dosing 
interval and infrequent gastrointestinal side effects [149]. 
Accordingly, a decrease in BMD, new fractures, and other 
rare side effects, such as osteonecrosis of the jaw and 
atypical femoral fractures, should be carefully evaluated. For 
patients who stop using glucocorticoids and have a low risk 
of fracture, bisphosphonates can be discontinued; however, 
this is not recommended in patients who have discontinued 
glucocorticoids but remain at high risk of fracture [139]. It 
is to be noted that bisphosphonates have a relatively long 
half-life and tend to be trapped in bones, potentially affecting 
fetal bones; therefore, they are not recommended for pregnant 
women [150].

Therapeutic monoclonal antibody
Another commonly used drug in clinical practice is RANKL 

inhibitor (Denosumab). It is a human monoclonal antibody 
that binds and neutralizes RANKL, limiting the formation 
of osteoclasts, thereby inhibiting bone resorption [151]. The 
clinical trial indicates that GIOP patients take denosumab 
(60 mg subcutaneously once every six months) has a better 
therapeutic effect than those take risedronate (5 mg oral per 
day) in terms of BMD increases in spine and hip after one 
year of the treatment [152].  The side effects for patients taking 
denosumab include hypocalcemia, osteonecrosis of the jaw, and 
a high risk of infection [153,154]. In addition, the incidence 
of vertebrae compression fracture also increases rapidly after 
discontinuation of denosumab [155]. Moreover, there may be a 
risk of fetal teratogenesis when used in pregnant women [156]. 
An advantage of denosumab is that no dose adjustment is 
necessary for patients with renal impairment; however, patients 
with creatinine clearance <30 mL/min or receiving dialysis 
are at risk for hypocalcemia. A clinical study has shown that 
denosumab therapy is well tolerated and improves BMD for 
patients with solid organ transplant, especially in those with 
renal function impairment or bisphosphonate intolerance [157]. 
However, a significant decrease of BMD at the lumbar spine 
and hip was reported when denosumab was discontinued in 
renal transplant recipients [158]. Therefore, if denosumab 
treatment is to be discontinued, an alternative anti-osteoporotic 
therapy should be considered.

Parathyroid hormone N-terminal active fragment
Teriparatide is an active form of parathyroid 

hormone (PTH) consisting of the N-terminal 34 amino acids. 
In the clinical survey, teriparatide significantly increases 
the expression of bone formation markers and bone mass 
density of GIOP patients [159-161]. Intermittent use of 
teriparatide facilitates osteoblast production, increases TNAP 
activity [162], and promotes WNT signaling by reducing 
WNT signaling inhibitors, such as Sost, Dkk1, sFRP‑1, and 
axin‑2 [49,163-165]. Intermittent administration of teriparatide 
also inhibits apoptosis of osteoblasts and osteocytes [166,167], 

thereby promoting bone formation and increasing bone mass. 
In addition, teriparatide and WNT can synergistically increase 
the nuclear translocation of β-catenin by PKA-mediated 
phosphorylation, thus facilitating WNT signaling [165]. In 
the absence of WNT binding, PTH-PTH1R complex can also 
bind to WNT coreceptor LRP6 and trigger WNT signaling in 
osteoblasts [168]. Teriparatide also decreases the expression 
of BMP antagonists Follistatin and Dan to facilitate BMP 
signaling [49]. Besides, PTH exerts an insulin-like growth 
factor I-mediated anabolic effect on bone formation [169,170].

However, long-term use of teriparatide may increase Rankl 
expression and inhibit Opg expression, causing osteoclast 
differentiation and increasing the number of osteoclasts, 
leading to bone resorption and bone loss [171,172]. 
Furthermore, bone loss and fractures may rapidly occur 
after teriparatide is discontinued [173]. Accordingly, after 
teriparatide discontinuation, other osteoporotic drugs should 
be used. After long-term use of teriparatide, the side effects 
include a possible cause of osteosarcoma, hypercalcemia, 
nausea, leg cramps, and dizziness [174].

Selective estrogen receptor modulator
The selective estrogen receptor modulator (SERM), such 

as raloxifene, lasofoxifene, and bazedoxifene, acts as a 
tissue-specific agonist and antagonist as it activates estrogen 
receptors in bone and inhibits estrogen receptors in the uterus 
and breast [175]. Estrogen facilitates the differentiation of 
MSCs into osteoblastic lineage [176]. Correspondingly, 
raloxifene stimulates Runx2 expression to promote the 
differentiation and proliferation of osteoblasts and suppresses 
the production of osteoclasts by inhibiting the expression 
of IL‑6 [177]. Estrogen inhibits the expression of Sost by 
osteocytes and bolsters WNT signaling, leading to increased 
osteoblast formation [178,179]. Raloxifene also attenuates 
the expression of Sost and Dkk1 in mice [180]. In the other 
way, estrogen could suppress the differentiation of osteoclast 
precursor cells by decreasing Rankl expression and increasing 
Opg expression in osteoblasts and osteocytes [181,182]. 
Similarly, raloxifene increased the expression of Opg and 
decreased the expression of Rankl and IL‑6 in human 
osteoblastic MG-63 cells [183]. However, different from the 
effect of estrogen on the regulation of apoptosis [38,69,184], 
clinical and cell culture studies indicate that raloxifene neither 
enhances the osteoclast apoptosis [185] nor suppress osteocyte 
apoptosis [186], except that raloxifene could protect osteoblast 
from apoptosis induced by sodium nitroprusside [187].

Clinical trials with postmenopausal osteoporotic women 
indicate that raloxifene [188], lasofoxifene [189], and 
bazedoxifene [190] are effective for reducing the incidence 
of vertebral fractures, but not nonvertebral fractures. Among 
SERMs for the osteoporosis treatment in postmenopausal 
women, raloxifene is the only SERM approved by the United 
States Food and Drug Administration (US FDA); the Taiwan 
FDA approves raloxifene and bazedoxifene. Although the US 
FDA does not approve the use of raloxifene for GIOP patients, 
the 2017 American College Rheumatology Guideline for the 
Prevention and Treatment of GIOP suggests that raloxifene 
could be used to treat postmenopausal women who have 
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GIOP but fail to respond to regular GIOP treatment or have 
specific therapeutic contraindications [139]. It is to be noted 
that women receiving raloxifene might have an increased risk 
of venous thromboembolism [191].

Treatment of glucocorticoid‑induced 
osteoporosis in pregnant women and 
children

Because of the lack of comprehensive medication 
safety assessments for osteoporotic drugs used in pregnant 
women, there is no treatment recommendation for pregnant 
GIOP patients. According to the 2017 American College 
Rheumatology guidelines, oral bisphosphonates are 
recommended only when female GIOP patients are not 
planning to become pregnant and have moderate to high 
risk of fracture; otherwise, only calcium tablets and vitamin 
D should be used. However, when the female GIOP patients 
experience side effects from oral bisphosphonates, teriparatide 
is recommended. Because of safety concerns, denosumab and 
intravenous injection of high-potency bisphosphonates are only 
applicable to the female GIOP patients having a high risk of 
fracture and avoiding pregnancy when other anti-osteoporotic 
drugs are not applicable [139].

Glucocorticoids are extensively used in children 
with various indications because of their significant 
anti-inflammatory and immunomodulatory activity. A study 
conducted in the United Kingdom found that 1.2% of children 
received at least one kind of oral glucocorticoid within a year 
to treat asthma attacks. Asthma is a chronic, obstructive, and 
inflammatory lung disease requiring long-term treatment with 
glucocorticoids adjusted according to each child’s response 
to treatment [192]. Other chronic inflammatory diseases in 
children requiring long-term treatment with glucocorticoid 
for >3 months include juvenile idiopathic arthritis, systemic 
lupus erythematosus, juvenile dermatomyositis, Crohn’s 
disease, and nephrotic syndrome. The glucocorticoids used to 
control these inflammatory diseases have an additive effect on 
reducing bone formation and severely compromising children’s 
bone health [193].

An epidemiologic study conducted on the British 
population (including those aged 4–17 years) showed 
that oral glucocorticoids used for >4 cycles per year 
significantly increased fracture risk, with humerus fracture 
being the most common [194]. Therefore, the treatment of 
osteoporosis in children (between 4 and 17 years of age) 
who use glucocorticoids chronically requires a multifaceted 
approach: (1) Nutritional intake should be actively 
tracked to prevent obesity and ensure adequate intake of 
calcium (1000 mg/day), Vitamin D (at least 600 IU/day 
and exposure to sunlight for approximately 20 min/day), 
and protein. Furthermore, track the serum concentration of 
1, 25-dihydroxyvitamin D every 3–6 months to determine 
whether the intake dose needs to be adjusted. (2) Regularly 
perform supervised physical exercises. In addition to 
controlling ideal body weight, it is also beneficial to 
maintaining bone and muscle strength. (3) For spontaneous 
fractures, especially vertebrae fractures (confirmed by 

pain or height loss), regular radiological examinations are 
required to rule out the possibility of occult fractures. For 
patients who have suffered GIOP fractures and continue to 
use glucocorticoids for >3 months (0.1 mg/kg/day), medical 
intervention is required [139].

Conclusion
GIOP is the most common type of secondary osteoporosis. 

It often occurs in patients who used glucocorticoids for 
a long time, such as those with autoimmune diseases, 
allergic diseases (e.g., asthma and atopic dermatitis), or 
organ transplantation. It is an iatrogenic disease in which 
osteogenesis and osteoclastogenesis are out of balance. Excess 
glucocorticoids cause rapid bone loss by downregulating 
bone formation and upregulating bone resorption during 
the 1st year of glucocorticoid treatment. In addition to direct 
effects on bone cells, such as osteoblasts, osteoclasts, and 
osteocytes, glucocorticoids also indirectly cause calcium loss, 
hypocalcemia, and secondary hyperparathyroidism. Therefore, 
the dosage and duration of treatment with glucocorticoids 
should be minimized. Moreover, nonpharmacological 
treatments, such as appropriate nutrition and exercise, should 
be combined with pharmacological treatments. For GIOP 
patients at high risk of fracture, medical intervention is 
recommended. In the future, more definitive safety studies 
have to be conducted for the medication of pregnant women 
and children with GIOP. Due to the limited choices and side 
effects of the drugs used for GIOP, it is eager to invent more 
effective and safer therapeutic drugs to meet the best interest 
of GIOP patients and society.
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