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Macrophage colony-stimulating factor receptor (M-CSFR/CSF1R) signaling is crucial for the

differentiation, proliferation, and survival of myeloid cells. The CSF1R pathway is a

promising therapeutic target in many human diseases, including neurological disorders and

cancer. Zebrafish are commonly used for human disease modeling and preclinical

therapeutic screening. Therefore, it is necessary to understand the proper function of

cytokine signaling in zebrafish to reliably model human-related diseases. Here, we

investigate the roles of zebrafish Csf1rs and their ligands (Csf1a, Csf1b, and Il34) in

embryonic and adult myelopoiesis. The proliferative effect of exogenous Csf1a on

embryonic macrophages is connected to both receptors, Csf1ra and Csf1rb, however there is

no evident effect of Csf1b in zebrafish embryonic myelopoiesis. Furthermore, we uncover

an unknown role of Csf1rb in zebrafish granulopoiesis. Deregulation of Csf1rb signaling

leads to failure in myeloid differentiation, resulting in neutropenia throughout the whole

lifespan. Surprisingly, Il34 signaling through Csf1rb seems to be of high importance as both

csf1rbD4bp-deficient and il34D5bp-deficient zebrafish larvae lack granulocytes. Our single-cell

RNA sequencing analysis of adult whole kidney marrow (WKM) hematopoietic cells suggests

that csf1rb is expressed mainly by blood and myeloid progenitors, and the expression of

csf1ra and csf1rb is nonoverlapping. We point out differentially expressed genes important

in hematopoietic cell differentiation and immune response in selected WKM populations.

Our findings could improve the understanding of myeloid cell function and lead to the

further study of CSF1R pathway deregulation in disease, mostly in cancerogenesis.

Introduction

Hematopoiesis is a process of proliferation, differentiation, fate-commitment, and self-renewal of blood
cells. It is primarily regulated by extrinsic signals such as cytokines and growth factors that bind to cell
receptors and activate internal signaling pathways.1,2 One of the most prominent receptors that control the
myeloid compartment is colony-stimulating factor 1 receptor (CSF1R, also known as macrophage-CSFR).
In mammals, it is activated by 2 distinct ligands without obvious sequence homology (colony-stimulating
factor 1 [CSF1; M-CSF] and interleukin 34 [IL-34]).3-6 However, despite the fact that both of these cyto-
kines bind to the same receptor and can equally support cell growth and survival, they achieve this by
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Key Points

� csf1ra and csf1rb are
indispensable for
macrophage differenti-
ation and, together
with csf1a, regulate
embryonic macro-
phage fates.

� Il34 regulates
zebrafish granulocyte
development through
csf1rb.
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triggering different chemokine responses.4,7 The CSF1R signaling
pathway is in general critical for the proliferation, differentiation, sur-
vival, and activation of mononuclear phagocytic cells such as
monocytes, macrophages, osteoclasts, or microglia in mammals,8-10

birds,11,12 and fish.13 Deregulation of the CSF1R pathway was con-
nected to disease phenotypes14 such as osteopetrosis,9,10,15,16 brain
disease,17-20 or cancer.21-24 Thus, the CSF1R signaling is of high
interest as a pathway for therapeutic targeting in neurological and
infectious diseases and tumorigenesis.25,26 Particularly, myeloid cells,
including both neutrophils and macrophages, can act negatively in
carcinogenesis. Therefore, tumor-associated macrophages (TAMs)
are believed to be critical in tumor metastasis and are a good target
in addition to conventional chemotherapy.27-29 It has been shown in
mice that the number of TAMs can be efficiently reduced by the inhi-
bition of CSF1R. Because of its low throughput when testing com-
pounds, other model organisms need to be used.30 Zebrafish is a
convenient model organism for human disease modeling,31-33 and
the small size of zebrafish makes it advantageous for high-throughput
preclinical drug screening.32,34-38 Due to the genome reduplication in
teleost fish, many paralogs were generated that could possess
redundant or novel biological functions.39-41 This includes both Csf1
and Csf1r, and therefore it is still needed to define the role and spe-
cificity of Csf1a, Csf1b, and Il34 toward Csf1rs (Csf1ra/b) in zebra-
fish myelopoiesis. So far, it seems that the function of Csf1ra and
Csf1rb is only partially redundant.15 For instance, there are spatio-
temporal differences in the importance of Csf1rs for microglia and
HSC-derived myeloid cells development and seeding of the zebrafish
brain.42-44

In this article, we focus on the roles of Csf1a, Csf1b, and Il34 cyto-
kines in zebrafish embryonic and adult hematopoiesis, shown by ex
vivo tools and single-cell RNA sequencing (scRNA-seq) of whole
kidney marrows (WKM). We use a collection of zebrafish loss-of-
function mutants to discern the effects of Csf1-receptor and ligand
functional defects. We show that Csf1a drives the expansion of
embryonic macrophages, Csf1b has no evident role in embryonic
myelopoiesis, and Il34, acting through Csf1rb, is important for
embryonic granulopoiesis. Finally, our observations suggest evolu-
tionarily interesting functions of CSF1R signaling in the myelopoiesis
of nonmammalian vertebrates in addition to the conventional role of
CSF1 in mammalian myelopoiesis8,9,45 that should be taken into
consideration when modeling human myeloid disorders in zebrafish.

Materials and methods

Animals

Zebrafish were bred, raised, and kept in ZebTEC aquatic systems
(Tecniplast) according to standard procedures46 and tracked using
Zebrabase.47 Zebrafish csf1-receptor mutant lines used in this study
were csf1raV614M (panther),48 csf1rat36ui (further csf1raD5bp),
csf1rbre01 (further csf1rbD4bp),42 and csf1raV614M;csf1rbre01 double
mutants.42 The csf1r ligand mutants used were csf1ains2bp,
csf1bD2bp, and il34D5bp.49 All the mutant zebrafish lines used in this
study carried homozygous mutation (2/2). Transgenic reporter
zebrafish lines used were Tg(mpeg1:EGFP),50 Tg(fms:GA-
L4;UAS:mCherry),51 Tg(mpx:EGFP),52 and Tg(pax7:GFP).53 Wild-
type (WT) (AB) were used as controls. For ex vivo experiments, 6- to
12-month-old fish were used to get an optimal number of WKM cells.
Animal care and experiments were approved by the Animal Care

Committee of the Institute of Molecular Genetics (13/2016 and 96/
2018) in compliance with national and institutional guidelines.

Multiplexed quantitative RNA fluorescence in situ

hybridization

Hybridization chain reaction (HCR) v3.0 probe sets, amplifiers, and
buffers were used according to the manufacturer’s protocols (Molec-
ular Instruments).54 Probes detecting zebrafish csf1rb (XM_
009295703.3), mpeg1 (NM_212737.1), and mpx (NM_001351837.
1) were designed by the manufacturer. The Alexa647, Alexa546, and
Alexa488 amplifiers were used.

Fluorescence imaging

Fluorescent images were acquired on Zeiss AxioZoom.V16 with
Axiocam-506 mono camera. Orthogonal projections were created in
ZENBlue-2.3 software. Images of HCR-stained embryos were
acquired on Dragonfly-503 microscope (Andor) using Zyla-4.2
sCMOS camera. All images were processed by Fiji and Adobe Pho-
toshop CC2021.55

scRNA-seq and transcriptomics

WKM cells were isolated as described previously,56 fractionated
with Biocoll (1.077 g/mL; Merck), and counted. Between 3000 and
5000 cells were used for the preparation of chromium 39 sequenc-
ing libraries using Chromium Single Cell 39 Chip Kit v3.1 and
sequenced with Illumina Nextseq500. The Illumina FASTQ files
were used to generate filtered matrices using CellRanger (10XGe-
nomics) with default parameters. To generate filtered matrices, data
were loaded to Cellbender package57 using the following parame-
ters: expected-cells 5 5000, total-droplets-included 5 15 000. Fil-
tered matrices were then imported into R for exploration and
statistical analysis using a SeuratV3 package.58 Counts were nor-
malized according to total expression, multiplied by scale factor
(10000), and log-transformed. For cell cluster identification and
visualization, gene expression values were also scaled according to
highly variable genes after controlling for unwanted variation gener-
ated by sample identity. Cell clusters were identified based on
UMAP of the first 20 principal components using Seurat’s method,
FindClusters, with an original Louvain algorithm and resolution
parameter value 0.5. Following quality control and basic clustering
of each sample, we subsetted individual datasets to contain 1700
cells each and merged them. To visualize marker gene expression,
Seurat’s method, Dot-Plot, was used. To merge individual datasets
and to remove batch effects, SeuratV3 Integration and Label Trans-
fer standard workflow were used.58

Other procedures and methods

The cloning of constructs for mRNA and recombinant protein
expression, mRNA and protein microinjections, generation of mutant
zebrafish, whole-mount in situ hybridization (ISH) of zebrafish
embryos using digoxigenin-labeled antisense riboprobes, ex vivo
WKM cell cultures, Sudan Black-B (SBB) staining of embryos,
fluorescence-activated cell sorting (FACS) analysis, ex vivo cultures
and histological staining, image processing, and statistical analysis
are outlined in the supplemental Materials and Methods available in
the online version of this article.
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Results

Zebrafish csf1ra and csf1rb are expressed from

early embryonic development and have distinct

expression patterns in adults

To determine whether the spatiotemporal expression pattern of
zebrafish csf1ra and csf1rb overlap in embryonic development, we
crossed fms:GAL4;UAS:mCherry (simplified as csf1ra:mCherry)
and mpeg1:EGFP reporter lines to generate triple transgenic
animals (Figure 1Aa). At 72 hours postfertilization (hpf), almost all
mpeg1:EGFP1 macrophages are also csf1ra:mCherry1 (Figure
1Ab-c) (40% to 45% of fluorescent cells are double-positive: 230 6

20 cells out of 520 6 40 per embryo) and single csf1ra:mCherry1
cells in the skin are xanthophores,48 zebrafish pigment cells.53,59 On
the contrary, by performing double fluorescent HCR using probes
for mpeg1 and csf1rb at 72 hpf (Figure 1Ba), we showed that the
majority of macrophages are mpeg1 single-positive with only a few
mpeg1 and csf1rb double-positive cells (Figure 1Bb-c) (4% to 7%
of fluorescent cells are double-positive double-positive: 30 6 10
cells out of 550 6 50 per embryo). In addition, we have identified a
subset of csf1rb1 cells that also expressed c-myb, a marker of
hematopoietic stem and progenitor cells (HSPCs) (data not shown).

We characterized the expression pattern of csf1ra/b during develop-
ment and in adult tissues. Here, we demonstrate that csf1ra starts
to be expressed at 20 hpf, whereas csf1rb expression was detected
first at 36 hpf by qRT-PCR (Figure 1C). However, few csf1rb-
expressing cells were observed using HCR already at 24 hpf
(data not shown). The overall expression of both receptors during
embryonic development gradually increases until 7 days post fertili-
zation (dpf).

Similarly, qRT-PCR using selected adult zebrafish tissues (supple-
mental Figure 1) showed high expression of csf1ra in the brain,
moderate expression in the spleen, muscles, eyes, kidneys, and
skin, and weak expression in the remaining organs. The strongest
expression of csf1rb was in adult kidney marrow and brain, whereas
it was low in other organs. To summarize these results, we created
representative schemas (Figure 1D).

To get a more detailed insight into the expression of csf1ra/b in
adult hematopoietic tissues, we performed scRNA-seq (Figure 1E)
and demonstrated that there is no overlap between csf1ra and
csf1rb expression in adult WKM. Instead, the expression of csf1ra
is restricted to a few cells within the population of monocytes-
macrophages, whereas the csf1rb1 cells comprise blood and myeloid
progenitors, monocytes-macrophages, and granulocytes (Figure 1E;
supplemental Table 1). This is in agreement with our HCR expression
data (Figure 1Ba-c), where we show that only a subset of csf1rb1
cells are macrophages.

csf1a drives the expansion and differentiation of

zebrafish embryonic macrophages

To further characterize the effects of csf1 ligands on hematopoietic
cells, we in vitro transcribed and injected mRNA for csf1a, csf1b, and
il34 ligands into 1-cell stage zebrafish embryos and examined their
caudal hematopoietic tissue (CHT) region at 72 hpf. We noticed that
the overexpression of csf1a but not of csf1b or il34 caused expan-
sion of csf1ra:mCherry1 (Figure 2A) and mpeg1:EGFP1 macro-
phages (Figure 2B). These injected embryos had high expression of

csf1rs and macrophage-specific markers, such as mpeg1, mfap4,
and lcp1 (supplemental Figure 2A). Increased expression of lcp1 was
also documented by ISH staining using lcp1 probe (supplemental
Figure 2B). We also noticed that the overexpression of both csf1a/b
highly increased the number of csf1ra:mCherry1 cells across the
whole fish. We saw the same expansion in the xanthophore-specific
pax7:EGFP transgenic line (data not shown).

Embryonic macrophage fate is impaired with the

loss of csf1a signaling in zebrafish

To study impaired macrophage development upon loss of csf1ra or
csf1rb, we compared lcp1 expression by ISH in CHT at 48 hpf
between WT and other receptor mutants (csf1raV614M, csf1raD5bp,
or csf1rbD4bp). The number of lcp1-positive cells was significantly
decreased in csf1raD5bp mutant animals, while there was no differ-
ence in the csf1raV614M (Figure 2C), csf1rbD4bp, or in the
csf1raV614M; csf1rbD4bp double-mutant fish (supplemental Figure
2C). Even though the number of lcp11 cells was unchanged in
csf1rbD4bp mutants, positive cells aggregated more to the rostral
part of the CHT as compared with the WT (supplemental Figure
2D). In addition, we also examined mpeg1 expression in
csf1raV614M as well as in csf1rbD4bp mutants at 48 hpf. As
expected, based on published data43,44 and lcp1 expression data
(Figure 2C; supplemental Figure 2C), the number of mpeg11 mac-
rophages in csf1raV614M CHT did not differ from those in WT (sup-
plemental Figure 2E); however, it was significantly decreased in
csf1rbD4bp fish (supplemental Figure 2F). To reveal the Csf1a
ligand-receptor specificity, we microinjected csf1a into both of
these mutants and demonstrated that ligand-overexpression-
induced macrophage expansion was defective in them. Neither the
number of mpeg1:EGFP1 cells in csf1raV614M (supplemental Fig-
ure 2G) nor of mpeg11 cells in csf1rbD4bp mutants (supplemental
Figure 2H) was changed as compared with the WT. Thus, Csf1a
acts through both Csf1rs.

We examined lcp1 expression in csf1a and csf1b ligand mutants
carrying frameshift mutations. ISH showed a significant decrease in
the number of lcp1-expressing cells in the csf1ains2bp but not in the
csf1bD2bp mutants (Figure 2C). Likewise, this phenotype can be res-
cued at 36 hpf by injection of csf1a mRNA or Csf1a proteins (sup-
plemental Figure 3A-B) into csf1ains2bp mutant 1-cell stage embryos
(Figure 2D).

Zebrafish csf1rb together with il34 regulate

embryonic granulocytic fates

To test whether csf1r signaling is involved in the generation of other
myeloid cell types besides macrophages, we examined the granulo-
cytic lineage in csf1 ligand and receptor mutants. Mature granulo-
cytes were visualized in zebrafish embryos and larvae by SBB
staining, and positive cells were counted in tails (Figure 3A).

Strikingly, the number of SBB1 granulocytes in the tail was lower
compared to the WT and failed to increase during the development
in csf1rbD4bp as well as in il34D5bp mutants (Figure 3B), whereas it
gradually increased in both csf1ra mutants at the same time (sup-
plemental Figure 4A). An intermediate phenotype was documented
in the receptor double mutants, in which the size of the original
granulocytic pool did not change significantly with time (supplemen-
tal Figure 4A). In addition, the mutation in csf1a or csf1b ligands
had no obvious effect on the number of granulocytes (data not
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Figure 1. csf1ra and csf1rb have distinct expression patterns in zebrafish. (A) Coexpression of csf1ra (red) and mpeg1 (green) visualized in 72 hpf

Tg(fms:GAL4;UAS:mCherry);Tg(mpeg1:EGFP) triple transgenic embryos: (Aa) whole embryo, (Ab) head, (Ac) caudal hematopoietic tissue (CHT) region. (B) HCR WISH of

72 hpf embryos for csf1rb (red) and mpeg1 (green). (Ba) whole embryo, (Bb) head, (Bc) CHT region. Fluorescence images were taken on Dragonfly 503 microscope

(Andor) using Zyla-4.2 sCMOS camera with magnification 310 and processed with the Fusion software, FIJI, and Adobe Photoshop. (C) qRT-PCR analysis of pooled

zebrafish embryos showing the expression dynamics of csf1ra and csf1rb in zebrafish development. Pool of 15 to 20 embryos per sample in 2 to 6 biological replicates. The

expression was normalized to mob4 gene and to the time point with the highest expression (14 dpf for csf1ra and 7 dpf for csfrb). (D) qRT-PCR analysis of adult zebrafish

tissues. Pool of 3 to 5 fish organs per sample in 3 to 5 biological replicates. The expression was normalized to ef1a gene. (E) scRNA-seq data showing the expression of

csf1ra and csf1rb in whole kidney marrow (WKM) cell populations (pool of 2 to 3 WKMs per sample). BC, B-cells; BP, blood progenitors; E, erythroid cells; EC, endothelial

cells; EP, erythroid progenitors; G, granulocytes; KSC, kidney support cells; M/M, monocytes & macrophages; MP, myeloid progenitors; NKC, NK cells; T, thrombocytes;

TC, T-cells.
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mRNA microinjection in 1-cell stage transgenic wild type (WT) embryos. Control embryos were injected with phosphate-buffered saline (PBS). Fluorescence images were

acquired at 72 hpf and the area of fluorescent cells was calculated in the caudal hematopoietic tissue (CHT) (area inside of the red box) by FIJI. Results were normalized to

injected controls. Scatter plots on the right represent quantification of fluorescent cells in CHT. Each dot in the scatter plot represents 1 larva. (A) Tg(fms:GAL4;

UAS:mCherry); control n 5 28, 1 csf1a n 5 35, 1 csf1b n 5 35, 1 il34 n 5 28. (B) Tg(mpeg1:EGFP); control n 5 41, 1 csf1a n 5 45, 1 csf1b n 5 37, 1 il34 n 5 34.

(C) WISH of 48 hpf embryos showing the expression of lcp1 in WT, 2 csf1ra mutants: csf1raV614M (panther) and csf1raD5bp, and in csf1ains2bp, csf1bD2bp ligand mutants. WT
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**P , .007, ***P , .0001. All fluorescent images were acquired on Zeiss AxioZoom.V16 with Zeiss Axiocam 506 mono camera and ZEN Blue software. Bright field images of
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and Adobe Photoshop were used for image processing.
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csf1rbD4bp: control n 5 48 (L 5 38, M 5 9, H 5 1), 1 il34 n 5 40 (L 5 34, M 5 6, H 5 0), 1 csf3a n 5 44 (L 5 19, M 5 19, H 5 6). The level of statistical significance

was determined by Mann-Whitney U test. ***P , .0003. (E) Coexpression of csf1ra (red) and mpx (green) visualized in 72 hpf triple transgenic embryos
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shown). Along with these findings, the expression of mpx was also
significantly downregulated in the CHT region of csf1rbD4bp and
il34D5bp, but not in other receptor or ligand mutants at 4 dpf (sup-
plemental Figure 4B; data not shown).

Further, we assessed the effects of il34 injection on granulocytic
expansion in WT as well as in csf1rbD4bp mutants. As a positive
control, we injected colony-stimulating factor 3a (csf3a, also
known as gcsfa).60 As expected, the injection of csf3a mRNA led
to a significant increase of SBB-positive granulocytes in either
csf1rbD4bp mutant or WT fish at 4 dpf. Similarly, the injection of
il34 mRNA into WT fish also caused an increase, however in con-
trast to csf3a, this il34-mediated phenotype was diminished in the
csf1rbD4bp mutants (Figure 3C). The same effect was confirmed
by mpx ISH of 4 dpf injected WT as well as csf1rbD4bp mutant
embryos (Figure 3D). We also tested the other ligands, csf1a and
csf1b, but il34 was the only one to affect granulocytic expansion
(supplemental Figure 4C). In addition, we found that the overex-
pression of il34 led to a significant expansion of csf1rb-expressing
cells at 4 dpf (data not shown). Importantly, microinjection of il34
induced granulocytic expansion also in the csf1raV614M mutant
(supplemental Figure 4D). The coexpression of mpx with csf1rs in
the CHT of 72 hpf embryos shows basically no overlap between
csf1ra and mpx (Figure 3Ea-b) (1% to 2% of fluorescent cells are
double-positive double-positive: 5 6 3 cells out of 520 6 40 per
embryo). However, there is a small proportion of csf1rb and mpx
double-positive cells (Figure 3Fa-b) (6% to 10% of fluorescent
cells are double-positive: 40 6 10 cells out of 550 6 50 per
embryo). Taken together, these results indicate that Il34 regulates
embryonic granulocyte development through Csf1rb.

Zebrafish csf1rb is indispensable for definitive

granulopoiesis

To investigate the importance of csf1rb in adult granulopoiesis, we
imaged and counted the number of mpx1 cells in tail fins of 6-
month-old mpx:EGFP transgenic WT and csf1rbD4bp mutant ani-
mals. There was a significantly reduced number of granulocytes in
the periphery of csf1rb D4bp mutants (Figure 4A). Furthermore, we
examined WKMs of csf1raV614M, csf1raD5bp, csf1rbD4bp, and
il34D5bp animals using FACS analysis (Figure 4B), noticing a signifi-
cant decrease in the number of myeloid cells in csf1rbD4bp mutants
only (mean 6 SD; WT: 39.7 6 3.2%; csf1rbD4bp: 16.9 6 6.4%;
il34D5bp: 48.3 6 1.7%). The other mutants were not affected (data
not shown). Additionally, we prepared thin layer smears stained by
May-Gr€unwald and Giemsa (MGG) from WKM cell suspensions
(supplemental Figure 5). Most of the cells isolated from csf1rbD4bp

mutants resembled immature, undifferentiated cells. The morphology
of csf1rbD4bp mutant granulocytes was abnormal with a significantly
decreased frequency of lobulated mature cells that were much
smaller in size compared with WT cells.

Csf1a, Csf1b, and Il34 zebrafish proteins expand

adult myeloid cells in ex vivo culture

To investigate cell-autonomous effects of Csf1 and Il34 cytokines,
we performed in vitro experiments using recombinant ligand pro-
teins. Therefore, we isolated and seeded WKM cells from WT fish,
as published previously,56,60 with the addition of recombinant zebra-
fish Csf1a, Csf1b, or Il34 proteins. After 3 days in suspension cul-
ture, we prepared histological smears of myeloid cells for
enumeration. Specifically, we counted the number of monocytes, dif-
ferentiated macrophages, and granulocytes in proportion to other
cells (mostly immature blood progenitors and lymphoid-like cells). In
the presence of any of all 3 cytokines, suspension cells differenti-
ated toward the myeloid lineage to mostly become mature macro-
phages (Figure 4C). Strikingly, mature multinucleated osteoclasts
represented a major fraction of adherent cells. The addition of
Csf1a or Il34 to the ex vivo culture promoted the proliferation of
osteoclast progenitors and their fusion (Figure 4D).

Myelopoiesis is partially blocked in the

csf1rbD4bp mutants

Our results thus far have shown that embryonic granulopoiesis is
altered in csf1rbD4bp mutants. With the noted differences in the
composition of the individual hematopoietic populations between
WT and mutant animals, we were interested in characterizing these
changes at the single-cell level. We thus used scRNA-seq to profile
WKM cells isolated from 12-month-old WT, csf1raD5bp, and
csf1rbD4bp mutants.

Via unsupervised clustering of single-cell transcriptomes and based
upon known lineage marker genes, we named each cluster based
on likely cell-type origins (Figure 5A). The percentage of cells in
selected clusters of blood progenitors (BP), myeloid progenitors
(MP), monocytes/macrophages (M/M), and granulocytes (G) is
shown in a table (Figure 5B). We saw increased numbers of cells in
BP and MP populations for csf1raD5bp and surprisingly G for
csf1rbD4bp (Figure 5B; supplemental Figure 6A), whereas the num-
ber of M/M was decreased in csf1rbD4bp as expected.

Further, we picked out representative markers of hematopoiesis that
characterize BP (green), MP (blue), M/M (orange), and G (pink)
populations and created dot plot expression schemes showing their
relative expression and the percent of cells expressing them (Figure
5C). We observed deregulation in most of these markers in both
mutants. However, for csf1raD5bp mutant, the differences were more
prominent in progenitors (BP and MP), and for csf1rbD4b, they were
more prominent in differentiated myeloid cells (M/M and G). Addi-
tionally, we observed that the csf1rb gene was upregulated in the
csf1raD5bp mutant and vice versa. After a closer look at the discrep-
ancy between the decreased number of embryonic granulocytes
and peripheral neutropenia in adult csf1rbD4bp fish, we noted that a
high proportion of granulocyte-like cells accumulate in WKM (sup-
plemental Figure 6A). In addition, these cells aberrantly expressed

Figure 3 (continued) Tg(fms:GAL4;UAS:mCherry);Tg(mpx:EGFP): (Ea) whole embryo, (Eb) caudal hematopoietic tissue (CHT) region. (F) HCR WISH of 72hpf embryos

for csf1rb (red) and mpx (green). (Fa) whole embryo, (Fb) CHT region. All SBB staining and WISH bright field images were acquired on Zeiss AxioZoom.V16 with Zeiss

Axiocam 105 color camera and processed using the Extended Depth of Focus module in the ZEN Blue software. FIJI and Adobe Photoshop were used for image

processing. Fluorescence images were taken on Dragonfly 503 microscope (Andor) using Zyla-4.2 sCMOS camera with magnification 310 and processed with the Fusion

software, FIJI, and Adobe Photoshop.
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Figure 4. csf1rb is indispensable for definitive granulopoiesis. (A) Number of neutrophils in adult Tg(mpx:EGFP) 5 WT and Tg(mpx:EGFP);csf1rbD4bp 5 csf1rbD4bp

fishtails. Neutrophils were manually counted in the area of the yellow square. WT n 5 14, csf1rbD4bp n 5 10. The level of statistical significance was determined by an

unpaired 2-tailed t test. *P , .04. (B) FACS analysis of WKM cell suspension from WT, csf1rbD4bp, and il34D5bp adult zebrafish. WKMs pooled from 2 fish in 3 biological

replicates, and 1 representative plot is shown for each condition. The numbers in FSC/SSC plots represent the mean percentage with SD in the gates of myeloid cells (pink

gate), progenitors (blue gate), and lymphoid and small progenitor cells (green gate). The percentage of WKM cells in the myeloid gate is also shown in the bar graph on the
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progenitor, migration, and inflammation markers (Figure 5C; supple-
mental Figure 6B-C).

Discussion

Differentiation, survival, and maturation of myeloid cells are tightly
controlled by extrinsic factors, such as cytokines. CSF1, CSF2 (also
known as granulocyte-macrophage-CSF, GM-CSF), and CSF3
belong to the most prominent ones. The critical role of CSF1 signal-
ing on proper macrophage cell differentiation and survival was
shown in mice mutants that lack CSF1R or CSF1.9,61,62 Interest-
ingly, CSF1, CSF2, and CSF3 triple-mutant mice are not
completely devoid of macrophages or granulocytes.62 This indicates
that the role of these factors can be replaced by other cytokines,
such as IL-6 or IL-34.4,63,64 Although CSF signaling has been his-
torically studied mainly in mammalian and bird animal models and
many transgenic and mutant lines are available, zebrafish have
recently become a popular alternative model organism for modeling
hematopoietic human diseases.

Here, we studied the in vivo function of zebrafish Csf1 receptor
paralogs (csf1ra and csf1rb) and their ligands (csf1a, csf1b, and
il34) to describe their involvement in fish myelopoiesis and to char-
acterize their diversification.

Our findings demonstrate that Csf1 receptors and Csf1 ligands
subfunctionalized during embryonic myelopoiesis. We and others
show that both receptors are involved in myelopoiesis, and Csf1ra
is required for pigmentation48 whereas Csf1rb was shown to be
expressed and involved in HSPCs and myeloid differentiation.44

In mammals, CSF1R is expressed in erythro-myeloid progenitors
(EMPs) and serves as their marker.65 Although CSF1R is not
required for EMP formation,66 it is necessary for their late differentia-
tion into myeloid lineages.67,68 In zebrafish, the role of Csf1ra/b in
EMP remains unclear due to the limited number of tools available to
distinguish EMPs from HSPCs.

Additionally, we show that only the Csf1a ligand is important in the
development of embryonic macrophages, while both Csf1a and
Csf1b are involved in pigmentation. This is consistent with previous
studies demonstrating the role of Csf1a/b in adult pigment
patterning.15,69

To get detailed insight into the involvement of Csf1 signaling in
embryonic and adult macrophage development in zebrafish, we
decided to study Csf1 ligand and receptor mutants. Zebrafish
csf1ra, csf1rb, and il34 mutants have been previously described for
the lack of microglia.42,49 It was shown that macrophages develop,
migrate, or proliferate aberrantly in il34D5bp mutants43,49 and
csf1raV614M;csf1rbD4bp double-mutant fish,70 whereas they develop
normally in csf1raV614M (known as panther)42,43 and csf1rbsa1503

mutant44 embryos. The status of macrophage development in
csf1rbD4bp single-mutant animals has remained unnoticed.

In contrast to these studies, we demonstrate that the number of
embryonic macrophages in the CHT of csf1raD5bp and csf1rbD4bp

mutant embryos is decreased. We suppose that the discrepancy in
the number of embryonic macrophages between csf1raV614M and
csf1raD5bp or csf1rbsa1503 and csf1rbD4bp could be explained by the
fact that csf1raD5bp and csf1rbD4bp mutants have stronger pheno-
types because they carry frameshift mutations with a premature
stop codon. This has also been shown in another panther mutant
with a C-terminal deletion (csf1raj4blue).48,71,72 To test the receptor-
ligand specificity and in order to see the effect of csf1a overexpres-
sion, we chose the panther mutant (csf1raV614M). Even though this
mutant has a weaker phenotype, it is suitable for such an experiment
because it still possesses a substantial amount of embryonic macro-
phages that might be expanded. On the other hand, the csf1raD5bp

animals have a very small embryonic macrophage pool that might
have been difficult to expand, and therefore, an outcome of such an
experiment could not be evaluated. In other experiments, we used
either csf1raD5bp single-mutant or both (csf1raD5bp and panther)
mutants alongside to compare their phenotypes. Surprisingly, mac-
rophage expansion is diminished in both csf1raV614M and csf1rbD4bp

mutants after csf1a microinjection. Therefore, we hypothesize that
Csf1a drives macrophage development via either of both Csf1ra or
Csf1rb receptors.

Besides the role of Csf1 signaling in macrophage differentiation, we
noticed that it might also be involved in zebrafish granulocyte differ-
entiation. Despite decades of CSF1R research, only sparse evi-
dence exists linking CSF1R signaling to granulocyte differentiation
in mammals.73 Strikingly, we show that csf1rbD4bp and also il34D5bp

mutant zebrafish embryos have major defects in granulopoiesis, and
the overexpression of il34 in WT animals leads to granulocyte
expansion. Further, we show that the pool of embryonic granulo-
cytes cannot be expanded in the csf1rbD4bp mutants by il34. This
implies that Il34 plays a previously unknown role in the regulation of
embryonic granulopoiesis, and it can act through Csf1rb, providing
a novel Csf3r alternative pathway that is important for granulocyte
differentiation. Recently, the expression of CSF1R has been
detected in a subset of human fetal granulocytic progenitors and
granulocytes.74

As a next step, we decided to examine adult macrophages in recep-
tor mutant animals. In contrast to defects in embryonic macrophage
myelopoiesis, we did not see any evident myeloid defects in WKM
of adult csf1raD5bp mutants when examined histologically and by
FACS. Nevertheless, the scRNA-seq analysis of csf1raD5bp mutants
revealed that there is a slight downregulation of macrophage-
specific markers, such as mfap4, mhc2dab, or mrc1b, and an

Figure 4 (continued) right. (C-D) Ex vivo culture of WKM cells treated with Csf1a, Csf1b, or Il34 proteins. (C) After 3 days in culture, smears of suspension cells were

stained on microscopic glass slides with May-Gr€unwald and Giemsa (MGG), and the number of differentiated cells (monocytes, macrophages, and granulocytes) was

counted. The graph on the bottom shows the mean percentage of cells with SD. The level of statistical significance was determined by an unpaired 2-tailed t test. *P , .04.

The scale bar on the microscopic image is 20 mm. Results from 3 biological replicates. (D) After 3 days in culture, adherent cells on the dish were washed with PBS, stained

with MGG, and the number of small, medium, and large osteoclasts was counted in 20 fields of view with a magnification 320 objective. The graph on the bottom shows

the mean percentage of cells with SD. Results from 2 biological replicates. The scale bar on the microscopic image is 50 mm. Fluorescence images were acquired on Zeiss

AxioZoom.V16 with Zeiss Axiocam 506 mono camera and ZEN Blue software. ImageJ and Adobe Photoshop were used for image processing. Bright-field images of ex vivo

cultures were acquired on Leica DM 2000 microscope with Zeiss Axiocam 105 color camera.
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Figure 5. Single-cell RNA sequencing (scRNA-seq) of adult WT, csf1raD5bp, and csf1rbD4bp WKM cells shows differentially expressed hematopoietic genes.

(A-C) WKMs of 1 to 2 animals were pooled for each sample. (A) Clusters in Dim plots represent individual selected populations of WKM hematopoietic cells. The identity of

each cluster is based on likely cell origin according to lineage marker gene expression. Green, blood progenitors (BP); blue, myeloid progenitors (MP); orange, monocytes/

macrophages (M/M); pink, granulocytes (G); gray, other cells (OC). (B) Table representing the percentage of cells in each population for WT and respective mutants. (C)

Dot plot visualization of scRNA-seq gene expression in individual populations of WKM hematopoietic cells of WT and respective mutants. The color of each dot represents

the level of expression (also depicted in the histogram), and the size of the dot shows the percentage of cells expressing each individual gene.
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upregulation of progenitor-specific markers, such as myb, cebpa,
and gata2b, and the overall number of blood and myeloid progeni-
tors is elevated as well; however, the other populations are mostly
unchanged. Despite these less severe phenotypes in adult WKM
cells, we hypothesize that besides Csf1ra role in the development
of embryonic macrophages, it also plays a minor role during adult
hematopoiesis, as previously not shown. The decreased number of
monocytes/macrophages was also observed in csf1rbD4bp mutant
using scRNA-seq. In addition, markers specific to macrophage host
defense/phagosome and antigen presentation are decreased
(mrc1b, nccrp1, and mhc2dab) in this mutant. These observations
led us to the conclusion that Csf1rb is equally important during
embryonic as well as adult macrophage development.

Additionally, csf1rbD4bp adult fish have a lower number of myeloid
cells in WKM and also fewer mpx1 cells in the periphery. Since the
majority of myeloid cells in WKM are neutrophils,75,76 we attribute
the reduced number of myeloid cells to the loss of mature, physio-
logically normal granulocytes. However, surprisingly, our scRNA-seq
data indicate that csf1rbD4bp mutants have more granulocytes in
WKM. We explain this discrepancy by the fact that csf1rbD4bp gran-
ulocyte progenitors cannot fully differentiate and migrate, and
progenitor-like early and also late granulocytes accumulate in WKM.
This is proven by scRNA-seq marker gene expression profiling and
also by FACS and histological staining of WKM cells, demonstrating
that csf1rbD4bp fish have a high proportion of small cells with abnor-
mal morphology and low granularity. Using scRNA-seq analysis, the
predicted granulocyte population of csf1rbD4bp WKMs showed an
overexpression of myb, cbfb, spi1b, and cebp markers, known to
play essential roles in progenitor hemostasis.77-81 Further, we
observed deregulated expression of chemokine and inflammation
markers (il34, itgb2, mmp13a, il6r, and ifngr1) and markers con-
nected to granulocyte migration (cxcr4b, ifngr1, and cxcl8b).82,83

Abnormal activation of the zebrafish ifngr1 signaling has been previ-
ously shown in neutropenic zebrafish.84

Next, we have shown that csf1r paralogues have functionally
diverged in teleost evolution. Consistent with previous findings,44

we suggest that the function and expression of csf1 receptor
paralogues is mostly nonoverlapping. At the single-cell level, using
scRNA-seq analysis of adult WKM cells, we showed that there is
no expression overlap between csf1ra and csf1rb and that csf1rb is
highly expressed in blood and myeloid progenitors as well as in a
small subset of monocytes/macrophages and granulocytes. In con-
trast, the csf1ra expression is restricted only to a subset of mono-
cytes/macrophages. In correlation with these expression data, we
also demonstrated that mutation in csf1ra primarily affects embry-
onic macrophage development, while the mutation in csf1rb is
equally important during embryonic as well as adult development of
both macrophages and granulocytes. Based on our scRNA-seq
results, we assume that the nonoverlapping expression of Csf1ra
and Csf1rb implicates their diverged roles during adult zebrafish
hematopoiesis. It seems probable that Csf1rb, at least partially,
takes over the function of Csf1ra in adulthood. This is also sup-
ported by the recently described role of Csf1rb in zebrafish HSPCs
and adult microglia.44

Regarding ligand-receptor signaling specificities, we found that Csf1a
acts via both Csf1ra and Csf1rb and that the granulocyte-related

function of Il34 is executed via Csf1rb. In contrast, Csf1b has no
function during embryonic myelopoiesis, and it expands xanthophores
instead, together with Csf1a. Importantly, based on the fact that there
is low expression of csf1rb in the skin, we assume that the Csf1-
dependent xanthophore expansion is mediated via Csf1ra.

In addition, our ex vivo experiments suggest that recombinant
Csf1a/b and Il34 cytokines are functional in ex vivo cultures and
drive WKM-derived myeloid cell differentiation toward monocyte/
macrophage and osteoclast fates. However, terminal granulocytic
differentiation is not affected by Csf1r ligands.

In summary, we demonstrate that zebrafish continue to provide new
biological insights relevant to disease. Using a wide range of conve-
nient in vivo and ex vivo tools, it is possible to characterize new
exciting roles of cytokines under steady-state as well as nonsteady-
state conditions. Myeloid cells, including neutrophils and macro-
phages, are critical actors in cancerogenesis,85-87 and the CSF1
pathway is a promising target for clinical treatments.24,88 Here, we
performed a detailed characterization of Csf1 signaling in zebrafish,
making it suitable for preclinical disease modeling in the high-
throughput discovery of new therapeutics.
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