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Avian orthoavulavirus 1, formerly known as avian paramyxovirus type-1 (APMV-1), infects

more than 250 different species of birds. It causes a broad range of clinical diseases and

results in devastating economic impact due to high morbidity and mortality in addition to

trade restrictions. The ease of spread has allowed the virus to disseminate worldwide

with subjective virulence, which depends on the virus strain and host species. The

emergence of new virulent genotypes among global epizootics, including those from

Egypt, illustrates the time-to-time genomic alterations that lead to simultaneous evolution

of distinct APMV-1 genotypes at different geographic locations across the world. In

Egypt, the Newcastle disease was firstly reported in 1947 and continued to occur,

despite rigorous prophylactic vaccination, and remained a potential threat to commercial

and backyard poultry production. Since 2005, many researchers have investigated the

nature of APMV-1 in different outbreaks, as they found several APMV-1 genotypes

circulating among various species. The unique intermingling of migratory, free-living,

and domesticated birds besides the availability of frequently mobile wild birds in Egypt

may facilitate the evolution power of APMV-1 in Egypt. Pigeons and waterfowls are of

interest due to their inclusion in Egyptian poultry industry and their ability to spread

the infection to other birds either by presence of different genotypes (as in pigeons)

or by harboring a clinically silent disease (as in waterfowl). This review details (i) the

genetic and pathobiologic features of APMV-1 infections in Egypt, (ii) the epidemiologic

and evolutionary events in different avian species, and (iii) the vaccine applications and

challenges in Egypt.

Keywords: APMV-1, Newcastle disease virus, phylogenetic analysis, deduced amino acid, cleavage site, fusion

protein, genotypes

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2021.647462
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2021.647462&domain=pdf&date_stamp=2021-07-15
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:amalaeidvet@gmail.com
mailto:smgalal@zu.edu.eg
mailto:shimaagalal@gmail.com
https://doi.org/10.3389/fvets.2021.647462
https://www.frontiersin.org/articles/10.3389/fvets.2021.647462/full


Mansour et al. Newcastle Disease Virus in Egypt

INTRODUCTION

Newcastle disease (ND) is a highly contagious notifiable viral
disease with significant clinical impact and heavy economic
losses to the poultry industry worldwide (1). It is on the list
A of OIE and ranked as the second-highest endemic disease in
many countries (2). In developing or developed countries where
chickens are raised in small household or commercial sectors, ND
has a significant economic impact on poultry sector due to high
mortality rates (up to 100%), decreased productivity, and disease
prevention and control expenses as well as trade restrictions (1).

Faulty vaccination programs and incorrect administration,
transport, and storage of vaccine, as well as concurrent infection,
may play a role in maximizing the losses and impact of
ND field challenge. Heterogeneous genotype cross-protection
is controversial. Repeated ND virus (NDV) infections even in
vaccinated birds could be attributed to improper vaccination
and immune suppression along with viral mutation (3). The
molecular epidemiology and sequence analysis of NDV in Egypt
are important to determine the current situation and available
control measures (4). In Egypt, NDV was firstly identified in
1947 (5) by virus isolation in embryonated chicken eggs (ECEs)
and then identification using hemagglutination inhibition (HI)
assay. Despite extensive vaccination programs against ND in
both commercial and backyard poultry flocks across Egypt, many
outbreaks have occurred since then, resulting in huge economic
losses. This raises the inquiries about the genetic diversity of
the indigenous strains as well as the feasibility of commercial
vaccines on protection against circulating NDVs (6). Besides,
mixed infections in birds with NDV, and other viral infections
such as infectious bronchitis virus (IBV), avian influenza viruses
(AIVs) (H5Nx or H9N2), or avian reovirus, usually aggravate
losses (4, 7–10).

The urgent and long-awaited questions had affirmative
answers: Do different genotypes change the keys to deal with
prevention of ND and change the strategies of making effective
vaccines in protecting against NDV? Are traditional vaccines on
their way to extinction? For better answers, there is a need to
analyze the outcome of available studies to achieve the most of
the divine gift that concerns natural lentogenic and avirulent
strains for protection against circulating velogenic NDVs. This
review provides a historical overview of NDV status in Egypt,
concerning the pathobiology and epidemiology of NDV and
timely genetic and evolutionary insights in the virus genome,
along with the background and rationale of vaccine strategies and
challenges, aiming to develop insights toward solving the NDV
endemic situation in Egypt.

ETIOLOGY

The avian orthoavulavirus 1, also known as NDV, is an enveloped,
negative-sense, single-stranded RNA virus that belongs to the
family Paramyxoviridae under the order Mononegavirales (11).
The viral genome is around 15,200 bp in length and encodes
for six different protein, namely, nucleocapsid protein (NP),
phosphoprotein (P), matrix (M) protein, large RNA polymerase
(L), fusion (F) protein, and hemagglutinin–neuraminidase (HN).

The F and HN surface glycoproteins are involved in the
antigenicity and pathogenicity of NDV (12). Two other proteins
(V and W) could also be coded through P protein mRNA
editing (13).

Based on the phylogenetic analysis of F gene sequences,
the NDV can be divided into two classes (I and II): class I
usually includes avirulent viruses, and their natural reservoir
is aquatic wild birds (14), whereas class II consists of at
least 20 genotypes (I–XXI, as genotype XV that contains
only recombinant sequences was excluded from the final
analyses) and includes both avirulent and virulent strains (15–
17). According to its pathogenicity, NDV is categorized into
five pathotypes: asymptomatic enteric, lentogenic, mesogenic,
neurotropic velogenic, and viscerotropic velogenic (18). One
major determinant of NDV virulence is the F protein cleavage
site (19). The lentogenic strains have a monobasic amino
acid (aa) motif 112GR/K-Q-GR↓L117, while velogenic and
mesogenic strains have a multi-basic aa motif, 112R/G/K-R-
Q/KK/R-R↓F117 (20).

Pigeon paramyxovirus type-1 (PPMV-1) is an antigenic
variant ofAvian orthoavulavirus 1 and is known to infect pigeons,
doves, wild birds, and domestic poultry. It induces nervous
manifestations similar to the nervous form of ND, with few
evident respiratory signs (21, 22). PPMV-1 can be differentiated
from classical NDV by HI test, monoclonal antibodies, and
restriction enzyme analysis of F gene. Phylogenetically, PPMV-1
isolates are classified as a distinct sub-genotype within genotype
VI of class II (sub-genotype VIb) (23). Four major panzootics
of ND have been reported in different avian species (24). The
third outbreak, mostly affecting pigeons and doves, was caused
by PPMV-1, which originated in the Middle East (Iraq) in the
late 1970s and then spread rapidly to Europe (25, 26). Now,
PPMV-1 is endemic in domestic and feral pigeons in many
areas of the world including the USA and Europe (27). Despite
the control measures, PPMV-1 remained enzootic in several
countries, including Egypt, causing economic losses (7, 22).

PATHOBIOLOGICAL AND
EPIDEMIOLOGICAL PERSPECTIVES OF
NEWCASTLE DISEASE VIRUS IN
DIFFERENT AVIAN SPECIES

The ND affects a wide range of domestic and wild birds,
with greatly varying pathogenicity, spanning from peracute
disease (with up to 100% mortality) to asymptomatic disease.
Such variability makes it challenging to sort ND as a single
clinicopathological entity. Over 250 species of birds are
susceptible to NDV infection. It is known that PPMV-1 attacks
mainly pigeons and less frequently chickens. In addition, there
are cases of virus infection in birds kept in captivity and wild
birds, including pheasants, partridges, falcons, swans, cockatoos,
blackbirds, and budgerigars (28–32).

In this review, we represent a nationwide prospective of NDV
in Egypt, including the ecology and prevalence in different avian
species (Figure 1), vaccine approaches, and molecular aspects of
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FIGURE 1 | The distribution of Newcastle disease virus (NDV) strains (sequences) in Egypt. (A) The geographical detection of NDV in different Egyptian provinces

(data obtained from GenBank in early December 2020). (B) The grouping of detected NDV strains according to year of detection and species of origin. Color codes

are indicated in the figures.

previously isolated NDV strains, which shall hopefully reveal the
potential causes of NDV emergence and dissemination in Egypt.

Chickens
Chickens are the most commonly affected avian species.
Clinically, five NDV pathotypes were categorized. Additionally,
in vivo testing in embryos or chickens/pigeons can be done
to determine strain pathogenicity, including mean death time
(MDT), intravenous (IV) pathogenicity index (IVPI), and
intracerebral pathogenicity index (ICPI). The MDT is the time
to death, measured in hours, after inoculation of ECEs. The
MDT for the NDV strains, <60, 60–90, or >90 h, was considered
velogenic, mesogenic, or lentogenic strains, respectively (2, 33).
The IVPI involves scoring illness (0 = normal; 1 = sick; 2 =

paralyzed or nervous signs; and 3 = death) after IV inoculation
of 6-week-old chickens. The velogenic strains have an IVPI score
of 2–3, mesogenic 0–0.5, and lentogenic of zero (34). Now, the
definitive in vivo assessment of NDV virulence is based on the

ICPI test. It is considered as the most sensitive and widely used
test for measuring the virulence in ten 1-day-old chicks (2, 35).
The ICPI involves scoring sick or dead (0 = normal; 1 = sick;
and 2 = dead). Scores with an ICPI of 1.5–2 is considered
velogenic, 1–1.5 mesogenic, and 0–0.5 lentogenic. ICPI score
of ≥0.7 is considered “notifiable” to the OIE (2). Particular
drawbacks of pathogenicity indices are in the interpretation
of pathotype results. A previous study (36) reported 10 NDV
isolates from pigeons to have ICPI values (1.2–1.45) and IVPI
values (0–1.3), classifying the isolates as virulent. However, MDT
was low (98 h) in lentogenic strains. Indeed, not all virulent
strains have an MDT <60 h. The in vivo tests on NDV isolates
from species other than chickens can present some problems
and may not produce accurate interpretations until passaged in
chickens or ECEs (37). The course of the NDV infection can
vary widely depending on the virulence of the virus. Several
studies were conducted in Egypt on the in vivo pathogenicity
of NDV field isolates (Table 1). Earlier, in a surveillance among
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TABLE 1 | Pathogenicity indices of NDV strains isolated from Egypt.

Year Origin of virus Pathogenicity index Pathotype References

MDT (h) IVPI ICPI

1986–1988 Chicken 1.5–1.8 2.3–3.7* Velogenic (38)

0.07–0.81 0.4–1.7* Mesogenic

– 0 Lentogenic

1996–2005 Chicken 36–57 – – Velogenic (39)

96–104 – – Lentogenic

2005 Chicken 60 2–3 – Velogenic (40)

2005 Chicken 55 2.5 1.75 Velogenic (41)

2006 Chicken 50–60 2.1–2.25 1.6–1.8 Velogenic (42)

2011–2012 Chicken – – 1.4–2 Mesogenic

Velogenic

(43)

2011–2012 Chicken – – 1.96 Velogenic (44)

2011–2014 Chicken ≤48 – 1.66–1.73 Velogenic (45)

108 – – Lentogenic

2012–2014 Chicken 48 – 1.625 Velogenic (46)

96 – 0.4375 Lentogenic

2013–2014 Chicken >1.5 Velogenic (46)

2014 Chicken 48 – 1.66 Velogenic (47)

96 – 0.44 Lentogenic

2012–2015 Chicken – – >1.5–2 Velogenic (48)

– – 0.5–1.5 Mesogenic

2014–2015 Chicken 48 – 1.1–1.89 Velogenic (49)

<60 – 0.9 Mesogenic

96 – 0.38 Lentogenic

2012–2016 Chicken – – 1.66–1.73 Velogenic (50)

2014–2017 Chicken ≤36–48 – 1.88–2.00 Velogenic (51)

2015–2018 Chicken – – 1.60–1.74 Velogenic (52)

2015–2019 Chicken – – 1.70–1.98 Velogenic (10)

2011–2014 Chicken – – 0.9 Mesogenic (53)

– – 1.88 Velogenic

2014 Wild pigeons 86 – 1.2 Mesogenic (54)

2015 Pigeon – – 1.31 Mesogenic (55)

2016 Pigeon 64–69 0 1.41–1.51 Mesogenic (56)

1976 Migratory birdsa 59.2–77.6 – 1.95–3.02* (57)

Unknown Quail 70–80 – – Mesogenic (58)

2016 Quail 64.1 1.79 Velogenic (59)

2016 Cattle egret 63.2 1.6 Velogenic

2016 Teal 63.8–65.0 1.72–1.83 Velogenic

NDV, Newcastle disease virus; ICPI, intracerebral pathogenicity index; IMPI, intramuscular pathogenic index; IVPI, intravenous pathogenicity index; MDT, mean death time.

*ICPI in pigeon squabs.
aThe author determined ICPI (1.95–3.02) and IMPI (0.14–1.95) in pigeons and IMPI (1.8–2.6) and cloacal MDT (39, 41, 42, 50, 59–109) in chickens.

more than 100 chicken flocks at Sharkia Province in late 1980s,
26 NDVs were isolated, velogenic (n = 15), mesogenic (n =

9), and lentogenic (n = 2) isolates, from vaccinated birds,
besides one mesogenic from egg shell and other lentogenic
from drinking water. The velogenic NDVs showed IVPI (1.5–
1.8) in chickens; however, higher figures of ICPI (2.3–3.7) were
recorded in pigeon squabs (38). The values of pathogenicity
indices of Egyptian NDV isolates (Table 1) revealed that the
majority of NDV strains were velogenic. The MDT (36–60 h),
IVPI values of 1.5–3, and ICPI scores (1.6–2.0) are indicative

for velogenic nature NDV isolates. However, for mesogenic
strains, the MDT and ICPI were >60 h and 0.5–1.5, respectively.
Besides, 96–108 h and 0.38–0.44 for MDT and ICPI, respectively,
indicate the lentogenic nature of strains. The aforesaid findings
are consistent with the sequence analysis of F protein cleavage
site. In contrast, Nagy et al. (51) characterized 13 NDV isolates
from vaccinated chicken flocks during 2014–2017; two of them,
Ck/ME3/Eg/16 and Ck/ME5/Eg/16, had the 112GRQGRL117
cleavage motif characteristic to lentogenic strains, although they
showed MDT <36–48 h and high ICPI (1.89–2.00) congruent
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for velogenic pathotype. Similarly, Naguib et al. (53) recorded
that the sequence of isolate R1973/11 represents a cleavage site
of lentogenic viruses; however, it had an ICPI of 1.88, clearly
categorizing the isolate as velogenic. The applied molecular
pathotyping by RT-qPCR using the primers and probes specific
for avirulent and virulent pathotypes revealed that two Egyptian
NDV isolates during 2011 were positive for lentogenic and
virulent pathotypes, indicating mixed infection.

In Egypt, NDV infection results in variable mortalities and
clinical findings. The clinical signs observed in commercial
broiler chickens were severe depression, green diarrhea, paresis,
and death within 48–72 h after the onset of the disease.
Other signs including severe conjunctivitis, facial swelling,
and birds standing dull with drooping wings were recorded
in many studies. Besides, a drop in egg production reached
50% in layer flocks. Necropsies revealed congestion of the
meningeal blood vessels and signs of septicemia in the form of
congested subcutaneous (SC) blood vessels; congestion of the
liver, spleen, and lungs; and gallbladder enlargement. Tracheitis
and airsacculitis were seen in the respiratory tract. Hemorrhages
on the tips of the proventriculus gland, greenish mucous content
in the gastrointestinal tract, elliptical raised ulcers in the intestine,
and enlarged hemorrhagic cecal tonsils were also observed (40,
110, 111). Variable mortalities (10–100%) were recorded in
backyard and commercial vaccinated and non-vaccinated broiler
poultry flocks (9, 49, 111–113). The clinical signs were respiratory
distress and elevated mortality with nervous manifestation
and deaths occurring with 24–48 h after the onset of clinical
signs (48).

National efforts to update the knowledge about NDV/AIV
prevalence and an active surveillance undertaken on 195 broilers
and layers farms from 18 Egyptian provinces resulted in 41/195
(21%) positive for matrix gene of NDV and 24/195 (12%)
positive for virulent NDV (44). During 2014–2015, the NDV
genotype VII was reported with a percentage of 37.8% (114).
There was a similar incidence of 37.5% in chicken flocks of
10- to 240-day-olds located in different districts of Sharkia
province (115). Lower prevalence (12.5–16.2%) was recorded
(49, 52, 116). A higher incidence of NDV with a percentage of
57.5% was detected during 2012–2015 (46) and 45.46% during
2019 (117). The highest incidence of NDV with a percentage of
86.2% was recorded in commercial chicken flocks during 2012–
2015 (48). Moreover, Moharam et al. (9) screened 26 chicken
flocks (backyard and commercial) during 2015–2016. Small-
scale holders including farms keeping layers (n = 9), broilers
(n = 4), or Balady chickens (n = 3) situated in provinces
Beheira and Monufia of the Nile delta region. Commercial
broiler farms were located in the provinces of Giza (n = 9) and
Monufia (n = 1). Although all flocks were ND vaccinated, a
virus was in both holders with a percentage of 84.6%. However,
virulent NDV was detected in 30.76%. A recent study was
conducted on 120 poultry flocks from 10 Egyptian provinces
in the Egyptian Delta region during 2015–2019. The highest
prevalence of virulent NDVwas reported in broiler flocks (41.1%;
37/90), followed by layer flocks (38.4% 5/13). Baladi and Sasso
chickens represented a confirmed NDV of 71.4% (5/7) and 33.3%
(1/3), respectively (10).

Regarding the prevalence of NDV according to localities,
several studies were conducted to investigate the geographic
prevalence of NDV in different provinces in Egypt. The overall
incidence of NDV in Egyptian provinces during 2012–2019
(Figure 2) ranged from 8.3% in Luxor to 100% in many
regions: Port Said, Damietta, Gharbia, Menofia, Qalubia, and
Minya (44, 46, 47, 52). The incidence of NDV in Sharkia
ranged from 14% (52) to 50% (10). No NDV was detected
in some provinces: Qaluibia, Menofia, Matrouh, Qena (52),
Giza (10), and Aswan (44). The variations mentioned above in
the prevalence of NDV along the Egyptian provinces could be
attributed to (i) individual concept of NDV surveillance either
in domesticated or wild, free-living, and migratory birds; (ii)
difference of testing procedures and sample size; (iii) variable
distribution of poultry farm population and levels of biosafety
and biosecurity; (iv) absence of efficient and reliable surveillance
systems that are needed to document the disease status of a
population at a given time; and (v) different factors like the
disease awareness of persons reporting suspect cases. In this
framework, and according the OIE, any national surveillance
scheme for an animal/avian infection may be constructed on two
different surveillance approaches: active as the regular periodic
samples’ collection by veterinary health authorities and passive
surveillance, which is distinct from active surveillance, as birds
are only tested if they show clinical signs, and then they are
detected and reported to the national authorities (118). Besides
mandatory standard parameters of ND prevalence, studies must
be approved and applied.

Migratory and Free Living Birds
Columbiformes birds including pigeons and doves can be
infected with NDV; however, the disease in pigeons is mainly
caused by pigeon-specific viruses, e.g., PPMV-1. Pigeons and
doves had been implicated as amplification or reservoir hosts,
as they were frequently infected with virulent strains of NDV
(119, 120). Since 1981, the clinical pictures in pigeons were
consistent with ND, and then the virus infection was serologically
confirmed in diseased pigeons along the Nile delta provinces
in 1984 (26). Compulsory vaccination of racing pigeons is
a local act in some countries. However, control of NDV in
wild pigeons is almost impossible (121). Thus, pigeons are
considered threatening carriers for the poultry industry (122).
Pigeons in Egypt are not regularly vaccinated. As described
by Mansour et al. (123), Elgendy et al. (124), and Rohaim
et al. (54), pigeons suffered from NDV and AIV infections.
In previous records of pigeons, the NDV infection caused a
variable range of mortalities and morbidities (125, 126). Abou
Hashem (127) did isolate 24 antigenically similar PPMV-1 viruses
from pigeons in the Egyptian provinces of Sharkia (n = 14)
and Dakalia (n = 10). Experimental IV or intraocular (IO)
inoculation of pigeons revealed diarrhea and nervous signs [3–
11 days post-infection (dpi)] followed by 100% death. The virus
was transferred by contact with birds and caused mortality
of 60–80%. The prevalence of PPMV-1 in Dakhlia province
showed 18/100 pigeons suffering from diarrhea and nervous
signs. When pigeons were infected experimentally with field
viruses, the re-isolation of PPMV-1 was up to 13 days pi; and
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FIGURE 2 | Summary of Newcastle disease virus (NDV) prevalence studies in Egypt according to geographical (Egyptian province) and time (year of detection) panels.

using HI, the relationship between PPMV-1 and the LaSota strain
was confirmed (128). Moreover, Amer et al. (129) explored the
virulence and transmissibility of NDV experimentally in pigeons,
as 5% of the infected birds showed greenish diarrhea and 95% had
positive virus isolation, with a detection rate of 70% in contact
pigeons. In Kafr El-Sheikh province during 2014, wild pigeons
showed dullness, lethargy, and neurological signs in addition
to petechial hemorrhages in the heart and brain, congested
lungs and liver, and enlargement of spleen upon necropsy.
Molecularly, the detected virus (Pigeon/Egypt/VRLCU/2014)
belonged to genotype VI, a well-known lineage representing
PPMV-1 in pigeons. Biologically, as shown in Table 1, the virus
had ICPI and MDT of 1.2 and 86 h, respectively (54). In 2014,
a pooled brain sample from three diseased free-living pigeons
(torticollis and whitish green diarrhea) in Desouk, Kafr El-
Shiekh province, Egypt, was identified by HI and partial F-
gene sequencing as genotype VI (130). One study focused on
the outbreaks of influenza and paramyxovirus co-infections
among clinically diseased pigeons (7), where mortalities varied
from 10 to 92.5% in both single and mixed virus infections,
with an indicative clinical picture of PPMV-1 and/or AIV, as
pigeons showed tremors (83.3%), torticollis (17.7%), wing and
leg paralysis (25%), and greenish diarrhea. Also, respiratory
signs were observed only in few naturally infected pigeons.
NDV was detected in 67.8% of diseased pigeons, mostly in
pigeons aged ≤1 month. Mesogenic NDVs are rarely traced
in prevalence along the history of ND. Nevertheless, Hamouda
et al. (131) utilized restriction fragment length polymorphism
(RFLP) to identify nine strains (mesogenic/lentogenic PPMV-
1); 27 (mesogenic/lentogenic NDV) in the Sharkia province, in
addition to one velogenic strain for each NDV and PPMV-1,

were also detected. In another study, brain samples were collected
from 12 pigeon farms with severe neurological symptoms and
greenish diarrhea and showed a mortality rate of 3.3–38.5%. The
ICPI values were 1.41–1.51, and MDT was 64–69 h (Table 1).
However, IVPI in chickens was zero, indicative of moderate
virulence (mesogenic nature) in chicken. Phylogenetically, all
tested viruses were in genotype VI (56). Viruses of genotype
VI had also been circulating in apparently healthy pigeons
(132, 133), and in the study of Sabra et al. (55), it was
confirmed that at least sub-genotype VIg is probably maintained
in healthy captive pigeons in Egypt, with an ICPI value of
1.31 (Pigeon/Egypt/Giza/11/2015).

To follow the transmission dynamics of avian avulavirus
(velogenic viscerotropic ND-genotype VII), intranasally (IN)
or intramuscularly (IM) infected 8-week-old non-vaccinated
native Egyptian Balady pigeons were kept in contact with non-
vaccinated commercial Arbor Acres broiler chickens (4 weeks of
age). The IM-infected birds had 100% mortality for chickens and
53.3% for pigeons, whereas the mortalities of IN-infected birds
were 70 and 6.6% for chickens and pigeons, respectively. The
viral shedding was higher in the oropharynx compared with the
cloaca for both IN- and IM-infected pigeons. The IN-infected
pigeons continued shedding the virus from the oropharynx
at 4–16 dpi, while IM-infected pigeons had no oropharyngeal
shedding at 11 dpi. Contact chickens had typical ND clinical
picture, with mortalities of 40–60% and with higher virus
shedding titers upon contact with IM-infected pigeons compared
with IN-infected ones (134). It is worth mentioning that PPMV-1
strains could be isolated from the intestinal tract of infected
pigeons suffering from greenish diarrhea. Those infected pigeons
enhance the spread of the disease due to potential exposure of
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other birds to contaminated food with the pigeon fecal material
(121, 135). Doves are common birds that come into contact
with chickens in Egypt, on either open rural farms or live bird
markets (LBMs), transmitting NDV to other bird species. When
doves were inoculated with NDV using several routes, they
were highly susceptible and showed nervous manifestations and
congested organs. They can also shed the virus and transmit
it to contact-susceptible chickens. The velogenic viscerotropic
NDV strain had been detected in cloacal swabs (15/140) from
free-flying doves in different localities in Egypt (136). During
2014–2015, NDV was detected in doves and characterized
as genotype VII from samples collected from Gharbia
(NDV/Dove/Bassioun/Egypt/MS2/2014KR082486) and Kafr
El-Sheikh (NDV/dove/Desouk/Egypt/MS5/2015KT006286).

Taken together, pigeons and/or doves play significant roles
in introduction, maintenance, transmission, epidemiology, and
distribution of emergent NDV viruses in Egypt. It is of high value
to track pigeons, at least those in close vicinity to poultry farms.
The disease caused by NDVs of pigeon origin varies according to
several factors, including host, environmental, and co-infection
scenarios as well as lack of hygienic precautions.

Quails had been introduced to the commercial poultry sector
in Egypt mainly for food consumption and were considered
carriers and/or susceptible hosts to NDV (58, 137, 138).
In Egypt, El-Zanaty and Abd El-Motelib (139) isolated the
viscerotropic velogenic ND from quails of the Assiut province.
In the Suez Canal University, a farm of 5,000 quails had
1.6% mortality; preliminary diagnosis suggested ND. Diseased
birds, 3 weeks old, showed mild respiratory and nervous signs.
Dead ones showed focal hemorrhagic lesions in the respiratory
system and hemorrhagic spots on the liver, spleen, kidneys,
and heart, without any obvious lesions in the digestive tract.
Seroconversion confirmed NDV antibodies (1:32–1:256). The
NDV was successfully isolated with a percentage of 75%.
Hemagglutination assay (HA) titers ranged from 1:8 to 1:2,048,
while MDT/minimal lethal dose (MLD) of three strains was
70, 80, and 75 h (mesogenic). The experimental ND infection
resulted in 25% deaths after 1 week (58). Aly (140) investigated
PPMV-1 isolates experimentally in quails and revealed that it
could cause mild infection with 5% mortality in quails, but
contact pigeons displayed greenish diarrhea and nervous signs
(25%) followed by deaths (20%).

Japanese quails in Egypt were also susceptible to infection with
NDV genotype VII, where the virus caused 33% mortality in
quails and 100%mortality in chickens, with a typical ND picture,
which was more severe in chickens compared with quails (141).
The low death rates accompanied with nervous involvement and
different shedding patterns are shared observations in partially
resistant birds such as pigeons (142), cormorants (143), and
ducks (144) upon infection with virulent NDV viruses. Also,
vaccination protected quails against NDV infection (145, 146).

Migratory and non-migratory free-flying wild birds can play
significant roles in NDV potentiation, transmission, and spread.
It is believed that most wild birds got NDV as a direct result
of spillover from domestic poultry species (24). Few exceptions
are noticed, as NDVs are endemic in migratory birds, such as
PPMV-1, which had taken wild pigeons as a reservoir/adaptation

host, which lead to (i) emergence of highly virulent forms of ND
in other avian species but not pigeons, (ii) global dissemination
of such viruses, and (iii) increasing threats to the commercial
poultry sector (23).

In 1976, 9/386 NDV isolates were identified from cloacal
swabs of migratory birds in Northern Egypt (Bahig, Burg El-
Arab, and Ikingi Mariut) (147). The MDT in chicken embryos
was 59.2–77.6 h. But the pathogenicity indices in pigeons were
0.14–1.98 and 1.95–3.02 for IM and IC applications, respectively.
Intracloacal application showed that all isolates are lethal to
susceptible chickens, which suffered from provoked neurological
signs and intestinal lesions (velogenic features of NDV) (57).
Most recently, Rohaim et al. (148) isolated and identified
vaccinal APMV-1 (5/297 oral and cloacal swabs) during a survey
of apparently healthy wild birds in eight Egyptian provinces
during early 2014 to late 2015. The APMV-1 isolate from teal
(NDV/Teal/VRLCU-EG/2015) had an MDT of 96 h and an ICPI
of 0.4375, harbored the GRQGRL motif at its F protein cleavage
site, and belonged phylogenetically to genotype II (100% identity
with the LaSota vaccinal strain), which collectively indicate its
lentogenic nature and highlight the potential reverse spillover of
NDV live vaccines from domestic poultry to wild birds (148).
Furthermore, El Naggar et al. (59) also characterized NDV
(4/112) of wild bird origin in Egypt. Teal (n = 2), quail (n = 1),
and cattle egret (n = 1) tested positive for NDV, whereas house
sparrow samples were negative. The ICPI and MDT ranged at
1.6–1.83 and 63.2–65 h, respectively (Table 1), suggestive of the
velogenic potential of the four isolates. They were molecularly
clustered into VII genotype and had the RRQKRF polybasicmotif
at the F protein cleavage site. Under experimental conditions,
the previously mentioned four isolates did cause a pantropic
infection in chickens, and the LaSota-vaccinated one failed to
survive the disease (59).

Ducks/Aquatic Birds
Waterfowls, including ducks and geese, are less susceptible to
NDV infection (24), as many NDV strains of different virulence
had been isolated from either diseased or clinically healthy
ducks, which raise the question of whether ducks/geese are
only natural reservoirs or susceptible host to NDV (60, 61).
Thus, the interest on natural infection of those birds with
NDV has greatly increased (62–65). Prolonged viral shedding
of waterfowl increased the risks of NDV of waterfowl origin
(66). In Egypt, IM inoculation of Muscovy ducks with NDV
genotype VII leads to only 5% mortality accompanied with
higher and prolonged cloacal shedding compared with tracheal
one. In contrast, IN inoculation did not cause deaths in ducks
but elevated the tracheal shedding. The contact chicken had
severe symptoms with very high mortality rates, emphasizing
the fact that ducks are effective carriers of NDV (67). Besides, a
virulent NDV of genotype VII was identified in 2/6 duck farms
during 2017–2018 (68). Unexpectedly, NDV was also seen in
co-infection reports, including two duck farms, but consistent
with worldwide NDV reports from ducks (1, 64, 69). The role
of ducks as a carrier of virulent NDV in Egypt remains to be
investigated (68).
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MIXED NEWCASTLE DISEASE VIRUS
INFECTION

Mixed (co)-infection is defined as simultaneous infection of
the same host with two different pathogens in the same time
frame, a common event that is frequently occurring among
birds, especially in intensive rearing systems and/or in developing
countries. Several factors can control the outcome of co-
infection, which could be either synergistic or antagonistic. This
includes the interaction time, host immunity, and environmental
conditions as well as biological activities of infectious agents.
Viral–bacterial or viral–viral co-infection is highly common
under poor biosecurity levels, which are frequently observed
in Egypt. On the other side, viral interference is defined as a
phenomenon in which initial virus infection prevents secondary
homologous or heterologous virus by (i) blocking cellular
receptors, (ii) competition on metabolic products required
for viral replication, and (iii) initial sensitization of the host
through virus-induced immune responses. Viral interference
could interfere with proper diagnosis, as it could lead to
undetectable/very low virus titers and atypical pathognomonic
lesions (70, 71).

In Egyptian commercial poultry flocks, the disease outbreaks
have increased during the last decade with high moralities
and variable clinical pictures, especially respiratory signs.
Lentogenic/velogenic NDV and high-pathogenicity AIV/low-
pathogenicity AIV (LPAIV/HPAIV) are frequently reported from
poultry, particularly in endemic areas, including Egypt. Both
viruses share the same primary replication sites in the upper
respiratory tracts of birds. Accordingly, both viruses could
enhance or worsen the outcome of infection. Besides, co-
infections with IBV were reported and represented significant
alterations in the clinical picture, severity, and mortality rates
(4, 72). Notably, a triple avian influenza subtypes (H5N1, H9N2,
and H5N8) co-infection was also detected (68).

Variable NDV co-infection with other viruses was recorded
(Figure 3). In Sharkia province, concurrent infection of NDV/H9
was detected in 5/50 flocks (10%) through 2012–2013 (73), 1/42
flocks (2.4%) during 2012–2014 (74), and 2/7 samples (28.6%)
during 2013–2018 (75). Thirty percent of mixed infection of
NDV/H5 was recorded in 2014–2015 (115).

During 2012–2014, mixed infection of NDV with IB (2.3%),
NDV/IB/H5 (1.2%), and NDV/IB/H5/H9 (1.2%) was recorded
(4). Sooner, increased rates of NDV/IB co-infection (10.8%)
and NDV/IB/H9 (5.8%) were reported during 2014–2015 (116).
Interestingly, Zaher and Girh (76) reported higher incidence of
NDV/IBV co-infection with a percentage of 46.67%. In broiler
and layer chickens, the co-infection was 48.1% (38/79) and 45%
(32/71), respectively. In pigeons, NDV/H5 co-infection (51.6%)
was recorded during 2013–2015. The co-infections appeared to
predominate especially with foreign breeds of pigeons (63.6%),
between 1 month and 1 year of age (55%), in summer (71.4%)
and 60% in the closed rearing system (7).

During 2016–2017, respiratory viral pathogens were screened
among poultry flocks (n = 50), commercial broilers (n = 39),
commercial layers (n = 11), quails (n = 4), Bluebird (Sialis, n
= 1), and Greenfinch (Chloris chloris, n = 1). Results revealed

that the incidence of single ND infection was 33.3%. Concurrent
infection of NDV/H9N2 was reported with a rate of 7.7% in
commercial broilers and 27.3% in layers. Other mixed infections,
i.e., NDV/H5N1, ND/H5N1/H9N2, and ND/IB/H5N1/H9N2,
were also observed (2.6% each). Mixed ND/IB/H9N2 infection
was observed in three separate farms (9.1% each) (8).

At the period of 2017–2018, poultry flocks (n = 39) showed
severe respiratory signs: 32 chicken flocks (19 broiler, seven
native broiler, four commercial layer, and two breeder farms),
six duck farms, and one flock of outbred turkeys. Out of
39 farms, nine samples were positive for vNDV. In chicken
farms, various virus combinations with NDV were detected:
H5N1/H5N8/H9N2/IBV/NDV or H5N1/H5N8/H9N2/NDV
or H5N8/H9N2/IBV/NDV, and H5N1/H9N2/IBV/NDV or
H5N8/H9N2/NDV. Two duck farms revealed mixed infection of
H5N1/H5N8/H9N2/NDV (68). More recently, the co-infection
rate of NDV/H9N2 (2/120; 1.6%), NDV/H5N1 (1/120; 0.8%),
NDV/IBV (2/120; 1.6%), and NDV/IBV/H9N2 (1/120; 0.8%)
was recorded in 120 commercial farms or backyard houses in 10
Egyptian provinces during 2015–2019 (10).

Moreover, other mixed infections of NDV with avian
astrovirus (3.8%) or avian reovirus (19.2%) were also identified
(9). Earlier, in surveillance among more than 100 chicken flocks
at Sharkia province in late 1980, mixed NDV with IB, reo, or pox
viruses was recorded among examined flocks (77).

SEQUENCE, PHYLOGENETIC, AND
DEDUCED AMINO ACID ANALYSIS

Sequence and Phylogenetic Analysis
A total of 408 Egyptian NDV F protein strains were obtained
from the GenBank to be included in our analysis (335 from
chicken, 52 from pigeon, 17 from other avian species, and
four of unknown origin). The last ones were considered to
be of chicken origin. The official molecular NDV reports
started in Egypt as early as 2005 (41). However, the National
Center for Biotechnology Information (NCBI) database had
other Egyptian NDV strains that are assumingly from 1976,
mid-1990s, and early 2000s. Consistent with the second NDV
outbreak in Egypt (VII), poultry researcher focused more on
NDV starting from 2011, with maximum detection in 2012 and
2014–2016 (Figures 1A,B). All recorded sequences belonged to
NDV class II.

However, only 136 had a complete F protein gene, as also
most of the sequences came from NDV strains of chicken
origin (n = 117), followed by pigeon (n = 14), and finally few
sequences from teal (n = 3), quail (n = 1), and cattle egret
(n = 1). A pilot phylogenetic tree was constructed based on
the recommendations of Dimitrov et al. (17), from which these
criteria were mainly included: (i) alignment using complete F
protein nucleotide sequences, (ii) construction using maximum
likelihood method using the general time-reversible (GTR)
model with Gamma distribution (G), (iii) application of the
model with 1,000 bootstrap replicates and values of ≥70 were
indicated above the tree branches, and (iv) involvement of
independent strains with no obvious epidemiologic link.
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FIGURE 3 | Summary of Newcastle disease virus (NDV) co-infection records with different infectious agents in Egypt.

Chicken (broiler, layer, and breeder) is hugely involved in the
poultry industry of Egypt, with an investment of nearly LE18
billion at that time of recording (78). Large industrial farms
follow a strict vaccination program with intensive biosecurity.
However, backyard/family farms do not usually vaccinate their
birds and either treat their diseased ones symptomatically or
submit them for slaughter. Such a discrepancy in NDV control
strategies and weak governmental imposition of field regulations
contribute significantly in disseminating the NDV. In this regard,
following the molecular pattern of NDV in chicken is of
great value.

The NDV F sequences from chicken origin are grouped under
the VII.1.1 or II genotypes. Genotype VII was reported from
different parts of the world and was dominantly circulating in
Egypt since 2011 (79) and was found across almost the whole
country (Figures 1A,B). Previously, complete F strains were
classified as VIIb (9) or VIId (6, 50). Recent literature started to
follow the new classification system and predominantly described
VII.1.1 from chickens (10, 51, 80). Some partial F sequences
were identified as VIIj (81), or generally as VII (79, 111), and
most surprisingly as genotype VI (39) or I (accession number
KR535623). However, studied sequences were too short to be
considered for conclusive genotypic taxonomy. Since the VII.1.1
included anyhow previously characterized members of VIIb,
VIId, VIIe, VIIj, and VII1, we could assume that all previously
speculated NDVVII strains from chicken are actually one genetic
linage of viruses or one genotype known as VII.1.1, which is
responsible for the second epizootic outbreak/wave of NDV
in Egypt, and still endemic in Egypt since then (Figures 4A,
5B). Meanwhile, NDV genotype II from chicken was initially
described in 2005 (41) and 2006 (42), when it was responsible
of the first reported NDV outbreak in Egypt. Subsequently, it
was displaced by genotype VII. Nevertheless, genotype II is still

existing but to a lesser extent (51) (Figures 4A, 5A). Pigeons are
brought in Egypt for several reasons, including passion, gaming,
investment, and meat production. They are mostly raised in
spindly wooden columns that look like a medieval siege tower.
Unfortunately, pigeons are a high potential source of NDV
spread at least to commercial/backyard poultry sector due to their
migratory behavior, free-living system of rearing, close contact
with other birds in or out LBMs, and reluctance of owners to
vaccination. Despite being a carrier reservoir for NDV (134),
NDV strains of chickens were more pathogenic and transmissible
to chickens compared with those from pigeons (82). The NDV
surveillance system in the pigeon is quite weak and does not
reflect the actual situation.

The low number of NDV/pigeon paramyxoviruses detected
in pigeons reflected a high level of genetic diversity. At first,
Rohaim et al. (54) reported the PPMV-1 from a single case
(one diseased pigeon; KU522142) in 2014 and was classified
as VI (sub-genotype VIb). Consequently, two investigations in
clinically affected pigeons recorded partial F protein sequences of
PPMV-1.Mansour et al. (7) found three different NDV genotypes
during 2013–2015 (Ia, II, and VI), where the VI sequences
belonged to VIb.2, a newly emerged cluster that was described
mainly in Europe, while KU522142 clustered with VIb.1/re,
another classical pigeon NDV lineage from Europe. The same
genotype (VIb.2) was also found in 2016 and was renamed
as VIg (56). Complete F protein gene sequences of VIg were
also defined in apparently healthy pigeons in 2015 (55). Based
on the classification system of our study, complete F protein
sequences from pigeons clustered into four groups: the newly
proposed genotype XXI (XXI.1.1; n = 7), VI (n = 1), VII.1.1
(n = 5), and VII.2 (n = 1). The XXI.1.1 separated basically
VIg strains from the VI genotype. The sequence, KU522142,
remained in VI and assigned in the sub-genotype VI.2.1.1.2.2,
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FIGURE 4 | The phylogeny of Egyptian Newcastle disease viruses (NDVs) (A) full F protein gene or (B) full HN protein gene of different Egyptian isolates. The

maximum likelihood (ML) tree was built based on the general time-reversible model with a discrete gamma distribution at 1,000 bootstrapping. All genotypes are in

Newcastle disease virus (NDV) class II and were assigned with Roman numerals, as suggested by Dimitrov et al. (17). The taxons of F protein gene tree were

compressed for better presentation. Sequences from Egypt are labeled with a red circle.

while VII.1.1 and VII.2 were seen also in 2015 (83) and described
in Figures 4A, 5B–E. Other strains that had a partial F protein
gene (identified as genotypes I and II plus unidentified ones)
need further confirmation/analysis following complete F protein
gene sequencing.

Other birds, including wild ones, are considered as another
introducing, disseminating, and maintaining factor of NDV in
Egypt due to their migration or involvement in LBMs. They are
also involved directly or indirectly in the wild–domestic–human
interfaces, imposing the importance of continuous surveillance

of pathogens. All five complete F protein gene sequences from
quail (n = 1), Cattle egret (n = 1), and teal (n = 3) belonged to
genotype VII.1.1 (59) except one sequence from teal (148), which
was in genotype II (Figures 4A, 5A,B). Another 12 NDV partial
F protein sequences from passerines (n= 1), dove (n= 2), house
sparrow (n= 3), cattle egret (n= 2), white wagtail (n= 1), white-
throated kingfisher (n = 1), and hoopoe (n = 1) were found in
genotype VII, while ostrich (n= 1) was placed in genotype II.

For the HN protein, a total of 46 complete gene sequences
were collected and involved in the phylogenetic tree (Figure 4B)
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FIGURE 5 | Continued.

FIGURE 5 | The detailed full F protein gene-based phylogenetic tree of

Egyptian Newcastle disease viruses (NDVs), representing various detected

strains from different bird species, which belonged to different lineages, as (A)

genotype II, (B) genotype VII.1.1, (C) genotype VII.2, (D) genotype VI.2.1.1.2.2,

and (E) XXI.1.1. The construction of the tree was done by using the maximum

likelihood (ML) method, general time-reversible model, and bootstrap values of

1,000 (17). Sequences from Egypt are labeled with a red circle.

to collect some evolutionary criteria for an important NDV
surface protein in Egypt. Both Egyptian HN and F protein
followed the same phylogenetic topology. They were found in
genotypes VII.1.1 (strains from chicken mainly, teal n = 2, quail
n = 1, and cattle egret n = 1), II (one sequence from chicken),
and VI or XXI.1.1 (strains of pigeon origin).

Deduced Amino Acid Analysis
The F protein cleavage site (112-117) is considered
a major determinant factor that plays a role in virus
pathogenicity/virulence (19). However, other factors, for
example, the HN stem region and globular head, are also
involved (12). All isolates of Egyptian NDVs had an F protein
of 552aa length. The deduced aa analysis showed the relative
stability of F protein cleavage site in the Egyptian NDV isolates
overtime, which tend to be genotype-specific, not species-
specific. NDV isolates in VII.1.1 and VII.2 (from chicken,
pigeon, teal, quail, or cattle egret) had the velogenic motif
RRQKRF except one chicken isolate that had the RRKKRFmotif.

Genotype II strains had either the velogenic motif RRQKRF
(in chicken and pigeon) or the lentogenic motif GRQGRL (in
chicken and teal). Pigeon NDV strains in XXI.1.1 had the
velogenic KRQKRF motif, while pigeon strains in genotype VI
and I had the velogenic RRQKRF and lentogenic GKQGRL
ones, respectively. Two strains from pigeon (MF614961) and

Frontiers in Veterinary Science | www.frontiersin.org 11 July 2021 | Volume 8 | Article 647462

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Mansour et al. Newcastle Disease Virus in Egypt

chicken (MK604215) also had the lentogenic motifs GRQGRL
and GKQGRL, respectively (unidentified genotype; not in
Supplementary Tables 1, 2). The previously mentioned 12 NDV
partial F protein sequences from wild birds had all RRQKRF
residues at their cleavage site, except the ostrich isolate, which
had the RNQGRL motif. As previously reported, aa changes in
the cleavage site affected the fusion efficiency of the F protein
(84), gradual dominance of virulent strains in quasispecies
(85), and virulence of the virus (ICPI decreased in Q114R
mutant viruses) as reported by Samal et al. (86). However,
the clinical pathogenicity of the virus under natural conditions
is usually influenced by other viral, host, and environmental
factors. Interestingly, Nagy et al. (51) reported high pathogenicity
indices in lentogenic motif harboring NDV isolates of chicken
origin, emphasizing the importance of following the OIE
recommendations in determining virulence regarding NDV of
field origin.

The F protein signal peptide (1–31) was highly variable
among the Egyptian strains, consistent with the findings of
Orabi et al. (6). Other regions, including the fusion peptide
(117–142); heptad repeats a, b, and c (HRa 143–185, HRb
268–299, and HRc 471–500); transmembrane (TM) domain
(501–522); and cytoplasmic (CT) tail (523–553) were subjected
to aa analysis, where several mutations were reported, which
might affect the folding and fusion activities of the protein
as described in the fusion peptide (87, 88) or the HRa, b,
and c (89). The HRa is also supposed to include a potential
antigenic epitope (90, 149–163); however, the Egyptian NDV
isolates had only few reports of aa substitutions in this epitope
(V168I and D170N). The TM domain affects the structural
confirmation of the F protein, F–HN protein interaction, and
fusion activity (91). Also, mutant CT domain modulates the F
protein biological characters, virulence, and pathogenicity (92).
D170N was reported in VII.2 and VII.1.1 (one pigeon and four
chicken strains, respectively), which is a neutralizing epitope (93).
Also, residues D479 and S486 are critical for the fusogenic activity
(94) (Supplementary Tables 1, 2).

The HN protein of NDV is a surface glycoprotein that
mediates several functions, including (i) attaching of NDV to
cellular sialic acid receptors (95), (ii) promoting F protein
fusion activity (96), (iii) facilitating the NDV budding by its
neuraminidase (NA)-mediated receptor cleavage (97), and (iv)
determining NDV tropism and virulence (98). Structurally, the
NDV HN protein consists of CT tail, N-terminal TM domain, a
stalk region, and a C-terminal globular head. The HN stalk forms
an interaction with the F protein through a stretch of amino acids
(aa positions 74–110) that forms two conserved heptad repeats
(HRA and HRB) (99).

The HN protein length of Egyptian NDV isolates was 572aa
except the parent NDV isolate (II) from 2005 (FJ939313), which
was slightly longer (578aa). The NDV HN length affects the
replication and biological properties of the virus as extended HN
showed increased HA titer and receptor binding but impaired
NA, fusion, and replication abilities. However, the virulence of
virus was not changed (100). TM and stalk domains of the
Egyptian NDV strains were highly conserved among genotypes
(for example, VII.1.1, XXI.1, VI, and II), with few substitution

mutations, which may affect the structure and activity of the HN
protein (99, 101).

Major epitopes in the C-terminal head of HN were
also investigated. As it is basically involved in antibody
recognition (102), a single aa change in that major linear
epitope 345PDKQDYQIR353 (1/1–4) allows the escape of its
corresponding antigenic variant from neutralizing monoclonal
antibodies, which was reported at least at position 347 (103,
104). It might explain the high virulence of chicken VII.1.1
isolates in chickens compared with others. Other antigenic
epitopes within the HN protein were compared as shown in
Supplementary Tables 3, 4.

Amino acid residues involved in receptor recognition (95),
HAD ability, NA activity, fusion activity (105), interaction
with F protein (106), head–stalk linker region (107), and
predicted B-cell epitope (108) were highly conversed with few
exceptions. Due to the intensive unplanned vaccination in Egypt,
selection/vaccination pressure could explain the occurrence of
such aa substitutions in the epitopes of Egyptian NDV HN
overtime, which in turn may affect, to different levels, the vaccine
efficacy, induced immunity, and virus shedding in birds as a
result of antigenic variability (108). HN protein is a determinant
viral factor for thermostability, as mutant NDV viruses (S315P
and I369V) were more thermostable and possessed more HA
titers and NA fusion activity (109).

VACCINATION STRATEGIES AND
CHALLENGES

Besides good biosecurity regimens, the control of ND principally
accounted for mandatory preventive vaccination of flocks
and hygienic culling of infected birds. In Egypt, many NDV
commercial traditional/classical genotype II vaccines are used
in the Egyptian poultry field such as (i) live seed virus vaccine
strains of LaSota, Hitchner, VG/GA, clone 30, PHYLMV, and
others or (ii) inactivated (killed) virus vaccines, mainly the LaSota
one (153). Recently, several recombinant and novel inactivated
(Genotype VII; GVII) vaccines were introduced gradually to
cope with the continuous evolution and spread of velogenic
NDV-GVII (154, 155). ND is endemic in Egypt, and there
is an enormous pressure from the field circulation of diverse
genotypes II, VI, and VII; massive poultry production; and
direct and/or indirect contact with free-living and migratory
birds, which generally represent a significant challenge to poultry
holders. Currently applied vaccination strategies are relatively
effective in preventing severe illness and death of infected birds
but may fail to prevent infection or shedding of the virus. In
Egypt, the main goal of scientists and poultry producers is to
minimize the economic impact of NDV infections. Accordingly,
innovative vaccination strategies were applied to potentially
increase protection and reduce viral shedding, and presumably
the spreading and the transmission of the virus. Here, we
reviewed all studies related to development of ND vaccine
technology and strategies. The extent to which heterologous
vaccines can protect against different genetic variants of NDV is
still controversial. The applied preventive programs in Egyptian
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provinces include live (genotype II) and inactivated vaccines
(genotypes II/VII). Proper vaccines and the design of efficient
vaccination programs shall give the best protection against
clinical disease and prevent/reduce either mortality or virus
shedding in vaccinated flocks.

Over the past 25 years, many vaccination practices were tested
experimentally in Egypt (Supplementary Table 5). Some studies
were designated to evaluate different vaccines and/or vaccine
regimens applied in Egypt. Upon evaluation, the ND live virus
vaccine protected from clinical disease (90%) and deaths (80%) in
case of homologous challenge with GII of VG/GA live strain (77)
and HB1 with LaSota live strains (156) but only 75% protection
rate from clinical disease and deaths as reported by Lebdah
et al. (157). These protection percentages were raised up to 100%
upon inclusion of inactivated vaccines with HB1 and LaSota
live vaccines (156, 157). However, the results of Mohamed et al.
(158) were drastic when they used DNA vaccine containing F
and HN antigens in one dose (30–40%); then they improved the
protection to 90–100% by introducing two or three vaccine doses
at 1 week apart.

In most broiler chicken farms, it is recommended to
administer several doses of live attenuated vaccines that should
be primed as early as possible (159, 160). This could begin directly
after hatching (at 1 day old) with HB1, followed by a booster dose
of LaSota or Clone 30 vaccine two times at 2 weeks apart. As a
result of insufficient protection of live vaccines in some intensive
rearing localities, inactivated vaccines are usually included at the
seventh or 14th day of age to maximize the protection. Day 1
recombinant vaccine application is still of limited use (153, 161).

After the involvement of new velogenic genotype VII of
NDV (79), many studies were performed to evaluate the existing
regimens to protect against the circulating field viruses, develop
vaccine preparation, and update virus vaccine seeds (155, 158,
162–165). Three schemes of vaccination were proposed; the first
included a heterologous vaccine regimen (massive genotype II
vaccines) against challenge velogenic NDV genotype VII. The
use of multiple live vaccines (genotype II; HB1, LaSota, and
clone 30) induced lower protection that ranged from 72 to 93.4%
(159, 166). In addition, programs included both inactivated and
live genotype II-based vaccines; 100% of birds were completely
protected frommortality upon heterologous virus challenge with
genotype VII (45, 167). However, Nemr (168) and Shahin et al.
(160) recorded 93.66 and 96% protection, respectively. On the
other hand, trials to use only one shot of inactivated genotype
II vaccine was contradictory, as Sediek et al. (169) recorded
extremely low protection (33.3–46.7%). Meanwhile, Kilany et al.
(162) reported 80% protection against heterologous challenge.
Regarding the tracheal and cloacal shedding, all aforementioned
studies revealed variable quantitative (0.6–6.6 log base 10 and two
higher challenge up to 8.5) positive shedding from the second
day up to 10th day post-challenge with genotype VII–velogenic
NDV (Supplementary Table 5), which establishes the field virus
transmissibility particularly after heterologous vaccination and
non-strict hygienic measures.

In an unprecedentedly swift response to develop and
manufacture an anti-NDV–genotype VII vaccine, inactivated
virus vaccine was prepared from currently circulating velogenic

NDV genotype VII, national and regional companies and
academic institutions are exploring the numerous strategies.
Subsequently, the second vaccine scheme was anticipated to be
based only on homologous vaccination tested experimentally
since 2015. Regarding the use of one killed vaccine S/C in
chickens containing GVII strains, the results revealed 100%
protection against clinical signs and mortality post-challenge
with a similar genotype (162, 164, 168), which was accompanied
with reduced viral shedding to <2.2 till the 10th day post
virus challenge. Other findings included the stoppage at the
fifth day (165) or the complete absence of virus shedding
(154). Nevertheless, Sedeik et al. (169) used an inactivated NDV
genotype VII vaccine to immunize the birds against a challenged
virus from the same genotype, where they showed protection of
only 53.3% with presence of clinical signs and virus shedding.
The low protection was explained by using an inactivated vaccine
prepared from a Korean NDV strain (KBNP-C4152R2L strain,
INC., Korea) that is different from the circulating NDV strains
in Egypt, which was used as a challenge virus. Conversely, a
mucosal inactivated vaccine containing genotype VII failed to
protect when used once (0%), which increased to 60% upon
booster/second vaccination and 100% when inactivated oil-based
vaccine was applied with the mucosal one (163).

The Third Scheme was based on the conjunction of GII
and GVII to get the benefit from a gift of naturally attenuated
viruses of genotype II (Lentogenic vaccines) and broaden the
scope of immunity by inclusion of killed genotype VII. The trials
of Bastami et al. (170) of mixed use of different permutations
from live vaccines, HB1 and LaSota with either native or foreign
inactivated genotype VII to protect chickens against challenge
with virulent GVII-NDV, had a range of 90–100%. The best
trial gave 100% protection from deaths and the lowest shedding
(22.2%) when primed at day 5 of age with simultaneous live HB1
and native inactivated and then two doses of live LaSota (10th and
21st days of age). Also, 100% protection with non-significance as
low as less than one log10 was reported by Hassan et al. (167)
when using Live LaSota (clone 79) (genotype II) in WOW (water
in oil in water inactivated vaccine) (VIIj) against a virus challenge
by velogenic ND (VIIj). In another study, even with more than
five doses of both live (GII) and inactivated (GVII), the virus
was detected in tracheal swabs of chickens through 3–5 days
post-challenge with velogenic NDV genotype VII (159). This
establishes that not only the diversity of vaccine and field viruses
or number of doses but also efficient administration, dose, and
other factors may limit the scheme’s efficacy. In a different study,
both live LaSota and inactivated genotype VII could not fully
protect against challenge with velogenic genotype VII from teal
(NDV/Teal/Egypt or egret, and NDV/Cattle egret/Egypt; 60 and
40%, respectively). However, the virus was shed from challenged
chicken (4–6 dpi), which set the need for more epidemiological
investigations of the impact of non-chicken strains of NDV
genotype VII (59).

Concerning PPMV-1, limited investigations
(Supplementary Table 6) were set to evaluate the vaccine
strategies against the virus. Studies concluded that complete
protection could be achieved using a homologous inactivated
vaccine with good adjuvant to be administered either SC or
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IM. Amer (171) prepared inactivated cell culture PPMV-1,
which induced HI antibodies (GMT: 64) on the third week
post-vaccination. Amer et al. (172), Khedr et al. (173), and
Soliman et al. (174) succeeded in protecting 100% of challenged
pigeons using inactivated PPMV-1 vaccine. Combined live
HB1 or LaSota vaccines with inactivated PPMV-1 gave high
protection (100%). It was proved that both virulent NDV and
PPMV-1 circulate among pigeons in the Sharkia province of
Egypt (131), necessitating the review of vaccine strategy of both
viruses at risk.

Despite the diversity of virulent genotypes reported along
the recent history of the disease in Egypt, all NDV strains are
clustered into one serotype. This explains that under laboratory
conditions, a vaccine prepared from any strain or genotype
can induce antibodies to protect birds (decrease/prevent the
clinical signs and deaths) against challenge with the virulent
viruses (149–152, 175). However, other components such as
cellular immunity should be taken into consideration, as it
is not defined by serotype and could not be achieved by
using inactivated vaccines, which is an available option for
genotype VII.

Successful protection against circulating diverse NDVs in
Egypt is amultifactorial issue. Under experimental and some field
vaccination programs containing NDV genotype II, the vaccine
could provide good protection (96–100%) against infection
with heterologous Newcastle viral strain (genotype VII) and
reducing the amount of viral shedding (45, 155, 159, 160, 176).
However, upon field conditions, multiple factors could contribute
to a considerable reduction in the effectiveness of vaccination,
including (i) the frequent incidence of NDV infection, even in
vaccinated birds, as being vaccinated does not prevent infection
or virus shedding; (ii) improper vaccination; (iii) immune
suppression of infectious or non-infectious origin; (iv) faulty
program that may cause loss of cell-mediated immunity; and (v)
prejudging viral mutation/changes in the genomic sequence of
the virus, which can lead to presence of many serological variants
(3, 159). Also, other factors include insufficient biosecurity
procedures and the probable threats for disease transmission
from wild/migratory birds to domesticated birds and vice versa.
Strict and improved biosecurity must be at the solution’s core
to minimize the environmental virus load and halt its mutation.
Contingent to the presented data, it is essential to have a more
detailed analysis of the biological and antigenic characters of
currently circulating NDV strains and the efficacy of commonly
used NDV vaccines for protection against the NDV isolates in
a frame of national plan utilizing the accumulated knowledge
and unifying the system of investigation for better controlling the
NDV in Egypt.

CONCLUSION

ND is a highly prevalent viral disease, which is caused by various
strains of NDV. The disease has potential intercontinental
endemicity that further leads to economic crises due to
high morbidity and mortality, long-lasting limitations on
international trading operations, and increased costs of
veterinary management. As a result of its extensive spread,

countries like Egypt is trying to manage effective preventive
and control measures, which preferably includes (i) culling and
slaughter, (ii) active surveillance in domestic and wild birds,
(iii) intensive biosafety measures, and (iv) strong vaccination
programs. In Egypt, it is difficult to control the backyard/rural
breeding of birds, which makes it relatively problematic to
follow such regulations. Culling is not always an option due
to the lost cost. The reliance on genetically dissimilar vaccines
may not eliminate the persistent NDV viruses in commercial
poultry sector, probably due to the presence of some antigenic
variations. However, it is not the sole cause of vaccination
unreliability in immunocompetent birds (177), particularly
in several Egyptian studies in current commentary revealed
protection with heterologous and mixed genotype with both
live and inactivated vaccination (159). In accordance with field
isolates, the usage of vaccine matched strains will probably help
in extra control of NDV (178) with priming of live lentogenic
strains to induce specific cell-mediated immunity, which could
not be induced by a homologous one being inactivated virulent
genotype VII. The NDV epidemiological gap in Egypt is still
expanding with time, and accordingly, we advise the following
recommendations for better outcomes:

(1) Following the OIE recommendations for identification
of isolated NDV strains, which includes using at least
two pathogenicity indices (ICPI and MDT at best),
plus sequencing F protein cleavage site or monoclonal
antibody HI matching using a reference panel (2). This
shall avoid mischaracterization of the pathogenic nature
(velogenic/mesogenic/lentogenic) of the isolated strains,
especially with increased detection of lentogenic strains that
possess a velogenic motif at their F protein cleavage site.

(2) For NDV isolates from birds rather than chicken,
pathogenicity indices shall be performed in both actual
bird of origin and chicken, as different indices may implicate
the adaptation of the virus in both hosts, despite the close
genetic relatedness (179).

(3) Full epidemiological data should be reported in future
studies, including size of investigated flock, age of birds, the
total number of raised birds, morbidity and mortality, the
scientific name of bird involved, type of production, history
of vaccination, and province (geographical site) in Egypt.

(4) We also advise to use the criteria proposed by Dimitrov
et al. (17), particularly regarding full F protein sequencing
and epidemiological parameters. Partial F protein sequence
misleads accurate characterization, in either phylogenetics
or detection of emergent and/or antigenic escape mutant
NDVs. When possible, also the HN protein should be
fully sequenced.

(5) We encourage broader observations of NDV viruses in free-
ranging, aquatic, and migratory birds in Egypt and also not
to ignore the possibility of viral or bacterial mixed (co)-
infection in flocks under study.

(6) Application of biosecurity is a compulsory solution
since vaccination alone cannot completely prevent field
virus shedding.

(7) When applied, we advise to prime live lentogenic
(genotype II) with a subsequent inactivated (homologous or
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heterologous) vaccine to achieve specific cell-mediated and
humoral immunity and to broaden the scope of protection.
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