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Abstract

Since the 1960s, laser therapies have played a critical role in the treatment of numerous retinal 

diseases. Significant advances have been made in laser technology and the molecular 

understanding of laser-tissue interactions over the past 55 years to maximize the therapeutic effect 

while minimizing side-effects. While pharmacologic therapies (e.g., anti-vascular endothelial 

growth factor or anti-VEGF) are playing a larger role, laser therapy remains an important 

treatment modality for proliferative diabetic retinopathy (PDR), diabetic macular edema (DME), 

sickle cell retinopathy, retinal vein occlusions, central serous chorioretinopathy, tumors, 

polypoidal choroidal vasculopathy, and retinal tears. With the development new laser technologies 

such as selective retinal therapy, subthreshold micropulse laser, nanosecond laser, photomediated 

ultrasound therapy, and navigated laser, the risk of adverse events has been significantly reduced. 

This review summarizes the latest developments in retinal laser therapy.
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INTRODUCTION

Laser photocoagulation has been widely used to treat many ocular diseases for over 55 

years. This method uses light to coagulate targeted tissue and achieve therapeutic effects[1]. 

Numerous research and clinical trials have proven its efficacy, particularly in retinal vascular 

disorders such as diabetic retinopathy, retinal vein occlusions, and choroidal 

neovascularization. Retinal laser therapy often utilizes 514 nm continuous wave (CW) argon 

or frequency doubled 532 nm neodymium-doped yttrium aluminum garnet (Nd: YAG) solid-

state lasers with pulse durations in excess of 50 milliseconds. However, safety is always a 

major concern of such laser treatment. It is reported that conventional laser therapy can 

cause adverse events such as enlarged retinal scars, subretinal fibrosis, decreased peripheral 

vision, decreased night vision, choroidal neovascularization, and reduced macular 

sensitivity[2–5]. Also, the efficacy of pharmacologic agents can sometimes surpass that of 

laser photocoagulation[6,7]. Moreover, it is reported that conventional laser can cause a 

transient up-regulation of vascular endothelial growth factor (VEGF) in the neurosensory 

retina, retinal pigment epithelium (RPE), and choroid in mice that may be responsible for 

decreased visual acuity due to PRP (panretinal photocoagulation) induced macular 

edema[8,9].

Despite these disadvantages, laser photocoagulation still has several advantages and remains 

an important therapy. Laser is cheaper and less invasive than anti-VEGF intravitreal 

injections. In addition, laser therapy often requires significantly fewer patient visits, which 

can be particularly important in resource limited settings and developing countries where 

patients and family members travel a day to see a physician and cannot do this every 4 

weeks. Laser therapy does not have the potential systemic cardiovascular side-effects, such 

as stroke, along with local risks such as endophthalmitis, cataract, and retinal tear or 

detachment. Also, laser photocoagulation can still be an important choice when other 

treatments demonstrate minimal effect or as combination therapy. Furthermore, laser 

parameters such as wavelength, power, spot size, and pulse duration can be altered to reduce 

the side effects of laser and even improve the outcome. In order to achieve such goals, new 

technologies like subthreshold micropulse laser, nanosecond pulse duration laser, photo-

mediated ultrasound therapy, and navigated laser have been developed recently. The aim of 

this review is to discuss these new technologies and future perspectives.

SELECTIVE RETINAL THERAPY

Conventional retinal photocoagulation laser therapy is thought to induce its therapeutic 

effect by targeting metabolically active photoreceptors, thereby decreasing the hypoxic drive 

and VEGF production[10,11]. After photocoagulation, pigment-epithelium-derived factor 

(PEDF) is reported to be upregulated, which can inhibit retinal and choroidal 

neovascularization by inducing apoptosis in activated vascular endothelial cells[12]. Also, it 

is reported that after the RPE is destroyed by the absorbed heat, a wound healing process 

starts. Then, RPE cells proliferate and migrate into the lesion site[13,14]. This process may 

provide a physical window through which oxygen may diffuse without being consumed by 

photoreceptors, thus increasing oxygen tension in the retina[15].
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Selective retinal therapy (SRT) was described to limit the induced damage to RPE and thus 

eliminate or reduce the risk of laser-induced adverse events caused by thermal damage to the 

surrounding tissue, particularly the neurosensory retina[16]. By decreasing the pulse duration 

of the laser to the microsecond regime, thermal effects to photoreceptors are minimized and 

the effect is noted at the RPE. Histologic analysis reveals that the damage in SRT lesions is 

primarily limited to the retinal pigment epithelium (RPE). Transient changes are noted in the 

outer segments of the photoreceptors that likely reflect their interdigitations with the RPE, 

but there is no permanent damage to the neurosensory retina that is noted[17].

Despite of these advantages, SRT laser treatment still has certain limitations. One important 

limitation is the difficulty in determining the appropriate laser dose for each irradiation 

session because the lesion is invisible. Also, the melanin concentration varies approximately 

50%, even within the same retina[18]. Since the core mechanism of SRT is microbubble 

formation, a real-time feedback measurement technique able to detect microbubbles is the 

most effective solution. Fortunately, techniques like opto-acoustic (OA) and optical-

feedback techniques (OFT) can assist with this situation[19]. OA is an non-invasive device 

able to determine the temperature rise in real-time during photocoagulation by repetitively 

exciting thermoelastic pressure with nanosecond probe laser pulses and has been 

demonstrated in small clinical trials[19]. A corresponding automatic control system called 

temperature controlled photocoagulation (TCP) was also successfully used in rabbits. It is 

reported that the TCP can facilitate uniform retinal lesions over a wide power range[20]. The 

OFT is also an automatic system that can detect backscattered light generated by 

microbubbles and stop irradiation when a certain threshold is reached[21]. It is demonstrated 

that SRT with OFT could selectively target the RPE without damaging the neurosensory 

retina[17].

SUBTHRESHOLD MICROPULSE LASER

Previously, investigators have reported effective treatment of diabetic macular edema with 

low-intensity laser therapy[22]. Later, a technology called subthreshold diode micropulse 

(SDM) photocoagulation was introduced that applied micropulse 810-nm diode laser. Small 

clinical studies have demonstrated that SDM is effective for the treatment of DME and 

proliferative diabetic retinopathy without causing any adverse treatment effects or 

complications[23–25]. In order to further reduce the adverse effects in the neurosensory 

retina, a new technique called subthreshold micropulse laser was introduced. This short 

duration laser can still change the metabolic activity and gene expression of the retinal 

pigment epithelium, which has also been demonstrated at the histologic level[26, 27]. Also, it 

has been reported that short pulse duration laser induces fewer inflammatory cytokines in 

the neurosensory retina compared with conventional pulse duration laser. The levels of 

VEGF, interleukin 6 (IL-6), regulated upon activation normal T-cell expressed and secreted 

(RANTES), and monocyte chemotactic protein 1 (MCP-1) is significantly up-regulated after 

conventional laser treatment compared with short pulse laser, which may prevent macular 

edema caused by panretinal photocoagulation[28]. By decreasing the duty cycle of the laser, 

the laser energy is divided into numerous short repetitive pulses typically from 100 to 300 μs 

with 1700–1900 μs between each pulse in a total laser envelope of 200 to 300 milliseconds. 

As a result, the duty cycle of the laser can be decreased to as low as 5%−10% of the 
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conventional laser so the tissue can have time to release the heat accumulated in each laser 

pulse. The effective laser energy can be as low as 10% of the threshold and thus caused no 

damage to neurosensory retina (Figure 1)[29,30]. However, the mechanism of RPE 

destruction is also completely different in this case. Roider’s study demonstrated that 

microsecond pulses can induce intracellular microbubbles around the melanosomes, which 

leads to selective damage of RPE cells[31].

Subthreshold micropulse laser has been investigated in some small clinical trials in clinical 

applications including diabetic macular edema, branch retinal vein occlusion, and central 

serious chorioretinopathy (CSCR). It is reported that patients with diabetic macular edema 

can get equal or even better visual acuity as well as better preservation of electrophysiologic 

function after micropulse laser treatment compared with conventional laser therapy[30,32]. 

The same results can also be observed in other diseases. Patients with macular edema due to 

retinal vein occlusion got an improvement in both visual and anatomical outcomes, and 

patients suffering from CSCR observed a resolution of subretinal fluid[6,33]. During the 

follow-up period, the laser spot is barely recognizable even with fluorescein angiography or 

autofluorescence imaging.

NANOSECOND LASER

The idea of micropulse laser motivated the development of nanosecond laser, which delivers 

approximately 0.2% of the energy per pulse compared with conventional laser. In this case, 

the duty cycle is even shorter. Brinkmann et al demonstrated that the mechanism of 

nanosecond laser induced RPE cell damage is the formation of transient microbubbles 

around melanosomes after the boiling temperature of the intracellular plasma, which is 

similar to micropulse laser[34]. A research comparing the energy needed by 3-nanosecond 

pulse laser and CW argon laser to cause RPE damage found that the killing threshold of 3-

nanosecond laser is between 36 mJ/cm2 to 89 mJ/cm2, while the CW laser is 10346 mJ/

cm2[35]. Low level of laser energy can prevent thermal injury to surrounding tissue. Some 

pilot trials have demonstrated a favorable outcome of nanosecond laser therapy compared 

with conventional laser for treating diabetic macular edema[36]. Also, patients with age-

related macular degeneration (ARMD) had a 44% reduction in drusen area in the treated eye 

and 22% in the fellow eye. However, visual acuity did not improve within the 12-months 

follow-up period (Figure 2) [37]. It has been demonstrated that nanosecond laser can restore 

the expression of MMP-2, MMP-3 (matrix metalloproteinases) as well as several 

extracellular matrix (ECM) genes, including collagen, laminin and components of elastic 

fibers, and several integrin subunits. This occurs not only in the treated eye, but also in the 

fellow eye. The increase in these proteins may improve attachment of the overlying RPE to 

Bruch’s membrane (BM), inhibit the RPE detachment, and slow the atrophic process in 

ARMD[38].

PHOTO-MEDIATED ULTRASOUND THERAPY (PUT)

Recently, our group developed a novel, selective, non-invasive technique using synchronized 

ultrasound bursts and nanosecond laser irradiation called photo-mediated ultrasound therapy 

(PUT). With the help of HIFU (high-intensity focused ultrasound), the laser energy level can 
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be further decreased. PUT takes advantage of the high native optical contrast among 

biological tissues and has been demonstrated to treat microvessels without causing collateral 

damage to the surrounding tissue[39]. By changing the wavelength of the laser beam, PUT 

can selectively target different tissue. The mechanism behind PUT is also microbubble 

formation. PUT has demonstrated significant promise in pre-clinical animal models 

including rabbits and has significant potential for clinical translation in the near future.

NAVIGATED LASER TREATMENT

Conventional laser, particularly panretinal laser photocoagulation, can take a long time and 

can be painful to patients and fatiguing to physicians. The introduction of pattern scanning 

laser systems such as PASCAL (Topcon Medical Laser Systems, Inc.; Tokyo, Japan) allow 

delivery of various predetermined laser spot patterns that significantly reduce treatment time 

and the patient’s perception of pain. However, a reduction of pulse duration to 10–30ms is 

needed to deliver an array of laser spots within the eye fixation time[40–43]. This reduction in 

pulse duration results in burns of a decreased spot size and thus necessitates more treatment 

spots to be placed in an eye. The under-treatment due to insufficient laser treatment may be 

responsible for the decreased efficacy that has been reported in some clinical trials.

Photography-based navigated laser photocoagulation with retinal eye tracking (NAVILAS; 

OD-OS GmbH, Berlin, Germany) has also been introduced. This system has the ability to 

decide the laser treatment spots with image guidance before treatment, and then the laser 

beam is precisely delivered to the predetermined treatment pattern with continuous 

monitoring o eye movement, which allows for a prolonged pulse duration. NAVILAS has 

been successfully used in both focal and panretinal treatment and also as a part of combined 

therapy[44–47]. With the help of such navigated technology, laser photocoagulation can be 

more accurate and effective but also less painful to patients[48].

CONCLUSION

Lasers play a critical role in the in the management of diseases of the vitreous, retina, and 

choroid. Retinal laser therapy has significantly advanced for more than 55 years since it was 

first described in 1961. Improved understanding of laser-tissue interactions and more 

selective laser techniques have optimized clinical outcomes while reducing side effects and 

collateral tissue damage. Selective and shorter pulse duration retinal therapy can 

significantly reduce the laser energy required while optimizing the therapeutic effect on 

targeted tissue. The mechanism of some ultrashort pulse duration laser is microbubble 

formation, and thus other techniques such as HIFU can be used to enhance it and reduce the 

required laser energy further, such as with photo-mediated ultrasound therapy. With the 

development of these new technologies, retinal laser therapy has become more efficient and 

effective with less pain and adverse events. Continuing innovations in laser technology and 

progress in understanding laser-tissue interactions make us believe that laser therapy will 

continue to play a critical role in treating retinal disease for many years to come.
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Figure 1. 
(A) Fundus color photography of the barely visible mETDRS burn endpoint immediately 

after treatment. (B) Fundus color photography of an HD-SDM nonvisible endpoint 

immediately after treatment. From: Randomized Clinical Trial Evaluating mETDRS versus 

Normal or High-Density Micropulse Photocoagulation for Diabetic Macular Edema Invest.
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Figure 2. 
Pre-treatment (left side) and 12-month post-treatment (right side) physical and function 

changes in the treated eye (OD) in a 72-year-old participant using laser protocol 1. From top 

(a,b) retinal pigment epithelium (RPE) layer maps from spectral domain optical coherence 

tomography (OCT), (c,d) fundus photos, (e,f) auto-fluorescence (FAF) images, (g) visual 

acuity (VA) changes and (h) visual function changes at the points of worse visual sensitivity 

defect. Note the reduction in para-foveal drusen and hyper-fluorescence on the FAF image 
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and the improvement in both VA and flicker sensitivity, especially at the worst location of 

the 3° ring.
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