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Abstract
Objective  This review article gives an account of the development of the MR-encephalography (MREG) method, which 
started as a mere ‘Gedankenexperiment’ in 2005 and gradually developed into a method for ultrafast measurement of physi-
ological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concen-
tric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm 
isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which 
allows high acceleration in all three spatial dimensions.
Methods  The methodological section covers the basic sequence design as well as recent advances in image reconstruction 
including the targeted reconstruction, which allows real-time feedback applications, and—most recently—the time-domain 
principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data 
as a sparsifying transformation to improve reconstruction speed as well as quality.
Applications  Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-
effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic vari-
ability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly 
intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns 
of cardiac and breathing related pulsatility.
Discussion  MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows consider-
ably faster acquisition at the cost of reduced image quality and spatial resolution.

Keywords  Magnetic resonance imaging · Functional magnetic resonance imaging

Introduction

The following gives a narrative account of the development 
of the method over the years written by J. Hennig.

The idea to acquire images based on the sensitivity of 
coil profiles alone without any gradients came up during 
the preparation of the Mansfield lecture at ISMRM 2005 
in the Gleason Theater in Miami. My train of thoughts for 
the ultimate speed limit in MR was as follows: What does 
it take to encode an image? Gradients. Why is MR imag-
ing still so painstakingly slow? Because of gradients. So 
how could we get beyond all speed limits for fast imaging? 
By avoiding gradients. Therefore, where do we get spa-
tial information from? Put like that the answer was pretty 
obvious. Around that time multi-coil arrays with multi-
ple individual coil elements became available, so why not 
associate each voxel to one coil element in such an OVOC 
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(one voxel one coil)-experiment [1]? The spatial resolution 
of such an experiment is of course rather poor and given 
by the sensitive volume of each coil element, but the tem-
poral resolution suddenly becomes close to unlimited. The 
OVOC-principle can be applied to any part of the body, but 
we have more or less exclusively focused on brain applica-
tions. Applications for ultrafast BOLD-fMRI as well as 
measurements of breathing- and ECG-related pulsatility 
have been the main areas of application so far. Applied 
to the brain this measurement principle closely resem-
bles the principles of Electroencephalography (EEG), 
therefore, I named the new method MR-Encephalography 
(MREG). The basic principle is the same: measure signals 
within the sensitive range of a detector array. In EEG the 
array consists of multiple electrodes measuring the volt-
age induced by postsynaptic currents at the surface of the 
head, whereas MREG measures the MR-signal under each 
element of a multichannel coil (Fig. 1).

This way one can acquire MR-signals free from the speed 
limitations of gradient switching. The measured signals can 
be presented as signal traces of the individual channels 
(= coils) just as in EEG. Frequency analysis of the measured 
signals shows pronounced peaks corresponding to breathing 
as well as ECG-related signals. Especially the latter shows 
higher harmonics up to ±5 Hz due to the very spiky nature 
of ECG–related signal pulsatility. Signal peaks at higher har-
monics are spread out more and more due to imperfection in 
the periodicity of the ECG-pulse.

Figure 2 shows the result of such an experiment with 
visual stimulation by a flickering checkerboard. Frequency 
analysis of the measured signal traces at the stimulus fre-
quency shows increased signal amplitude in coil elements 
covering the visual cortex.

Compared to EEG a MREG-measurement has some 
intrinsic advantages with respect to localization of the 
signals: In EEG the problem of source localization is a 
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Fig. 1   Basic principle of OVOC-experiment. The signal of each coil 
is separately measured and recorded and can be displayed as multi-
channel signal display just as in EEG (top left). Fourier transfor-
mation of the signal time course reveals distinct peaks attributed to 

breathing and ECG-related signal pulsatility. Due to its very ‘spiky’ 
nature, especially ECG shows pronounced intensity at higher har-
monics. Only the spectrum from channel 10 is shown
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highly underdetermined inverse problem, which produces 
an infinite number of solutions depending on the chosen 
boundary conditions. In MREG we can use a conventional 
MR-image acquired prior to the experiment to set at least 
some boundary conditions to where the signal is coming 
from. A rather direct way to turn the signals into images is 
to multiply independently acquired coil images under the 
respective coil with the respective actual signal amplitude of 
the MREG-acquisition and then do a sum-of-squares com-
bination of the individual coil images (Fig. 3). This way 
one can ultimately reconstruct an image from a single data 
point. Chuck Mistretta, who has adapted this principle in his 
HYPR-scheme [2], was the first to point out that this way the 
signal to noise ratio of the resulting image does not depend 
on the acquisition time of the time-resolved scan, only on the 
template image. He also coined the term ‘Hennig limit’ for 
reconstructing an image from a single data point.

Of course, the spatial information about the location of 
the dynamic signal variation in such an OVOC-experiment is 
rather coarse, but with this approach an imaging speed in the 
megahertz range would be perfectly feasible using a stand-
ard analog-to-digital converter (ADC). There are no physi-
ologically meaningful signals at such high speed, so one 
can invest some of the speed gain into a little bit of spatial 
encoding. Initially the intention was not to make images in 
the true sense, but I thought it would be neat to acquire data 

under, e.g., some ‘depth encoding’ gradient, which encodes 
for the depth localization of some activation signal under the 
skull or by a tangential gradient which would give the lateral 
position with respect to the coil (Fig. 5 in [1]). In this context 
it would make a lot of sense to have the coordinate system 
of the gradients oriented locally to the geometry of each coil 
element rather than globally in the usual x, y, z-directions. 
This led to the concept of parallel imaging in non-bijective, 
curvilinear magnetic field gradients [3] which has become 
a fruitful field of research on its own, culminating in the 
84-channel matrix coil designed and built by Maxim Zait-
sev [4–6]. It has to be shamefully admitted that up to now I 
haven’t succeeded in bringing these two concepts together, 
still too busy optimizing each component on its own. Bring-
ing the concepts of local magnetic fields together with highly 
parallel coil arrays is a considerable technological challenge 
to be explored in the future development of the method.

A sum-of-square reconstruction of weighted template 
images is of course a rather crude way to exploit the infor-
mation content of the measured signals. It does not consider 
that the individual coil profiles show considerable overlap, 
which—together with the coil sensitivities—can be exploited 
using parallel imaging reconstruction. Data acquired with 
one or a few projections are highly undersampled and yield 
very poor image quality when directly subjected to SENSE 
reconstruction. Miki Lustig had published his seminal paper 
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Fig. 2   Relative signal intensity Ist of the spectral peak at the stimu-
lus frequency compared to baseline in a visual stimulation experiment 
in the individual coil elements of the 64-channel coils used. Sample 
images of coils with high intensity show that the respective coil ele-

ments cover the visual cortex. The relative change is rather small, 
since the activated voxels represent just a small fraction of the total 
signal in each coil
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on compressed sensing in 2007 [7] where he also mentioned 
in the discussion that this can be combined with parallel 
imaging, but I didn’t feel sufficiently confident with this 
new approach to use it for our specific problem. It was not 
quite clear to me, whether the very scarce but rather regular 
undersampled acquisition of a few projections would con-
form to the sparsity constraints which seemed to be essential 
for compressed sensing. I was lucky to know, however, J. 
Honerkamp, Professor for Theoretical Physics at Freiburg 
University, who had supported me a lot in the early days of 
setting up my group. He has published numerous papers and 
books on how to approach ill-posed inverse problems [8] 
using techniques like Tikhonov regularization [9]. So Thimo 
Hugger (publishing under his birthname Grotz), my first 
PhD-student working on MREG, implemented the image 
reconstruction as the regularized solution of an inverse 
problem to improve the spatial definition of our ‘images’. 
The result was what we aptly called the COBRA-sequence 
[10]—a highly undersampled radial acquisition technique 

using only 2–4 projections per time frame. The sampling 
scheme of COBRA is very similar to that of VIPR [11] and 
HYPR [2], all of which use an undersampled radial acquisi-
tion scheme (Fig. 4). In COBRA the same few projections 
are acquired again and again, and the image is reconstructed 
using regularization using a previously acquired reference 
image as template. VIPR uses a golden angle approach to 
radial sampling, where the acquired data can be binned 
together such that a tradeoff between temporal and spatial 
resolution can be made during reconstruction. VIPR recon-
struction does not require a template image as a constraint 
during reconstruction. HYPR uses the same acquisition 
scheme as VIPR but images are reconstructed by incremen-
tally adding multiple projections and using a constrained 
reconstruction based on the fully sampled dataset which 
results from all (or a large number of) projections.

Until then gradients had been used to merely improve 
the spatial localization of the signals and not necessarily to 
produce images. The COBRA-results were very encourag-
ing, however; quite accurate activation maps could be recon-
structed from as few as 3–4 projections (Figs. 7, 8 in [10]). 
The frequency analysis of the signal time courses clearly 
showed the quite strong signals from breathing and ECG 
pulsatility already observed in the OVOC-experiments. The 
high pulsatility of the ECG-dependent signals shows strong 
higher harmonics up to 5 Hz. Based on these findings we set 
our goal to develop spatial encoding schemes which allow 
3D-acquisition within a TR of not more than 100 ms which 
corresponds to a Nyquist limit of ±5 Hz.

VIPR and HYPR are typically applied in 3D-mode. 
Extending the COBRA-approach to 3D by acquiring one 
projection per excitation would not be very time efficient 
especially given the long echo times necessary to achieve 
BOLD contrast. Thimo Hugger together with Benjamin Zah-
neisen showed that multiple projections can be acquired in a 
single shot acquisition by connecting the ends of the single 
projections of a 3D sampling scheme which leads to a rosette 
trajectory [12, 13] (Fig. 4).

The resulting isotropic 3D-volumes showed very high 
sensitivity to detect functional activation. The quality of 
the underlying images is quite reasonable over most of the 
brain but shows pronounced signal loss in areas with strong 
susceptibility effects and field inhomogeneities, which can 
only be gradually improved using a field map correction. 
Closer analyses revealed that the main cause of the signal 
loss lies in the multiple self-crossings of the trajectory in 
the (nominal) center of k-space. Even small off-resonance 
effects lead to data inconsistencies with subsequent signal 
loss and potential artifacts.

As the next step, we, therefore, turned to a non-inter-
secting concentric shell trajectory [14, 15], which led to 
a considerable improvement of the point spread function 
compared to rosettes (Fig. 4 in [15]). The trajectory has an 

0 20 40 60 80 100 120 140 160 180 s

coil #47

coil #48

a b

c

Fig. 3   Activation ‘images’ at the top of the BOLD response (a) and 
during rest (b). Images are generated by sum-of-squares combination 
of reference images of all individual coil elements weighted with the 
actual signal intensity in each coil element. c shows individual sig-
nal time courses in two coils. Signals have been low pass filtered to 
reduce ECG-dependent flickering (solid lines in c). a Corresponds to 
the time indicated by the red vertical line in c, b to the time indicated 
by the blue vertical line
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isotropic PSF which is beneficial for brain wide studies as 
in resting-state fMRI (rsMRI). As shown in Fig. 6 in [15] 
images still show signal voids in areas of strong field inho-
mogeneity, but to a much lesser extent compared to rosettes. 
Since the non-intersecting trajectory avoids data inconsisten-
cies, field map correction works much better.

The isotropic trajectory shows isotropic sensitivity to sus-
ceptibility induced field gradients. It is known, however, that 
susceptibility induced field changes are strongest along the 
main direction of the field (z-direction). This follows from 
the Biot-Savart equation and is also demonstrated experi-
mentally by plotting the histogram of susceptibility induced 
field gradients in the x-, y- and z-direction (Fig. 5). Based on 
this consideration Jakob Asslaender came up with the idea 
to implement a single-shot stack-of-spirals trajectory, which 
is isotropic in x, y but shows a more benign off-resonance 
behavior in the z-direction [16]. At first sight it appears to be 
counterintuitive to use the z-direction—where susceptibil-
ity gradients are strongest—as the slowest encoding direc-
tion. The rationale is given by the monotonous trajectory 
along z which leads primarily to a susceptibility induced 
shift and only to a minor degree to some blurring and signal 
loss. The influence of off-resonance effects and suscepti-
bility gradients is discussed in detail in [16]. Due to the 
3D-acquisition inflowing blood is already at least partially 
saturated. A strong spoiler after the read out trajectory is 

used to minimize spin history effects from flowing blood. 
As shown in Fig. 12 no signals from vessels are directly 
observed, but—predominantly arterial—signals clearly still 
contribute to the observed signal variation. The observed 
pulsations are thus likely a combination of spin history 
effects (especially in CSF regions, where T2 is long) and 
actual local pulsatility [17]. The resulting sequence has 
meanwhile—with some modifications—become our work-
horse sequence for all MREG-applications described in the 
following chapters.

Figure 6 shows an example from mapping the BOLD 
response in the visual cortex and demonstrates the high sen-
sitivity of the technique and its ability to observe and charac-
terize individual activation time courses. Signal time courses 
have been sorted according to the mean arrival time over 
all 4 stimulation periods. Bolus arrival time was calculated 
using the procedure described in [13]: First PCA is applied 
on all activated signal time courses. Individual pixel time 
courses are then modelled by the first n PCA components, 
n = 10 was used here. Pixel timecourses have been smoothed 
and normalized for display. The considerable variability of 
the BOLD response in different voxels is clearly demon-
strated. In the dataset shown, the onset time of the BOLD 
response shows a regional variation with a general tendency 
for the BOLD response to arrive earlier in the central part 
of the visual cortex compared to the peripheral part. The 
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Fig. 4   Sampling schemes of COBRA (a) compared to VIPR (b) and 
HYPR (c). The lines under the trajectories indicate the reconstruction 
strategy: COBRA uses repetitive sampling of identical radial spokes 
with reconstruction of each individual timeframe to preserve the tem-
poral fidelity of the scan, VIPR is based on a sophisticated view shar-
ing scheme with a trade-off between temporal and spatial resolution 
(colored lines indicate combinations of data used for reconstruction 

of individual time frames), whereas HYPR generates images with 
high temporal resolution by weighting the final high-resolution image 
with the low-resolution image of individual time frames. Note that 
in all sampling schemes acquisition runs continuously, the collection 
into packages of 4 spokes is for visualization only. The dotted lines 
in the top left diagram in a illustrate how multiple radial spokes are 
converted into a single shot rosette trajectory
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shape of the HRF also shows a considerable variation across 
the activated region. These results are far from definite and 
were shown just for illustration of the capacity of the method 
to detect functional activity of single activations in single 
subject measurements. BOLD onset times between different 
pixels are very consistent within each activation period with 
some distinct variation between activations.

The development of MREG didn’t take place in a vacuum, 
but was accompanied by various approaches of other groups 
to drive the speed limits of (f)MRI. At the time of the origi-
nal conception of the principles of OVOC in 2005, Steve 
Wright had just published his single echo acquisition [18] 
which is based on an array of 64 strip-like coils arranged row 
by row such that gradient encoding for 2D-imaging had to be 
applied only in the direction of the strips, the 2nd direction 
was resolved by the coil array alone. Indeed later I learned 
that the principle of OVOC had been published already in 
1988 by Hutchinson [19]—long before the advent of multi-
coil arrays and parallel imaging. The paper presented purely 
theoretical simulations based on expected individual coil 
profiles placed within each pixel of a MR-image ignoring 
the practical problem of how to actually place an RF-coil 
within the tissue. Coupling between coils was ignored but in 

the discussion a number of quite up-to-date measures were 
described to minimize coupling between coil elements. It 
even mentioned that with a proper solution to the coupling 
problem one might be able to ‘…employ a nest of large 
overlapping detectors in which case the signal-to-noise ratio 
might be largely preserved…’. This barely missed the inven-
tion of the phased array published by Peter Roemer 2 years 
later in 1990 [20].

In parallel to my own work Fa-Hsuan Lin worked on what 
he called Inverse Imaging (InI), the publication of which 
in fact preceded the first MREG-paper and won him the 
Rabi-Award in 2006 [21–25]. In contrast to our isotropic 
approach he used standard parallel imaging with gradient 
encoding in the y–z-(sagittal)-plane and pure coil encoding 
in the x-direction, which resulted in a very anisotropic PSF, 
but still achieved very short acquisition times. A generalized 
version of InI has been suggested by Boyacioğlu [26].

Cartesian single-shot 3D acquisition—echo volumar 
imaging or 3D-EPI—has been around a long time [27] and 
also been used for fMRI [28]. It doesn’t quite reach the tem-
poral performance of MREG, but in combination with con-
trolled aliasing and multi-slab acquisition short repetition 
times down to 371 ms have been reached [29]. A ‘virtual’ 
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Fig. 5   a Field map and (b) map of susceptibility induced field gradient over the brain. c Shows the histogram of the pixel count as a function of 
the field gradient clearly demonstrating the dominance of susceptibility effects in the z-direction



91Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108	

1 3

increase in temporal resolution by time shifted acquisition 
has been demonstrated in [30].

As time went by, simultaneous multi-slice (SMS)-EPI 
was introduced [31–34], which doesn’t quite match the tem-
poral performance of MREG but yields much better image 
quality [35] due to the rather benign artifact behavior of the 
Cartesian k-space trajectory [33, 36–38].

Most recently other groups have been working on ultra-
fast spiral imaging. A repetition time of 200 ms at 2.8 mm 
isotropic resolution has been reported using a T-Hex single-
shot spiral trajectory [39] and 3.5 ms/slice could be achieved 
with 2D-spiral imaging using a dedicated gradient coil [40].

Materials and methods

The k-space trajectory currently used is shown in Fig. 7. It 
consists of a stack of 21 spirals inscribed within a sphere. 
The distance between spirals increases with distance to the 
k-space center, individual spiral elements are sampled with 
variable density. Details about the construction of the trajec-
tory are given in [16].

In a typical acquisition a total of 14,908 data points are 
sampled with a bandwidth of 200 kHz leading to a total 
acquisition time of 74.54 ms. Echo time is 33 ms (k-space 
origin is reached at the beginning of the central spiral seg-
ment). With a TR of 100 ms the flip angle is adjusted to 21° 
corresponding to the Ernst angle for gray matter.

Data are acquired with a 64-channel headcoil, of which 
40 coil elements cover the brain. Based on the reconstructed 
volume of size 64 × 64 × 64 the undersampling factor is ~ 18 
or 2.6 per direction. Direct application of parallel recon-
struction using eg non-Cartesian SENSE shows some arti-
facts due to the high undersampling factor; therefore, a regu-
larized reconstruction is used. Nominal spatial resolution is 
3 mm isotropic, but the actual resolution is lower and ani-
sotropic due to the nature of iterative reconstruction of the 
highly undersampled acquisition. Details are found in [16].

For reference a standard double echo gradient echo 
sequence is typically performed prior to the MREG-acqui-
sition, which is used to calculate coil sensitivity profiles 
as well as a 3D fieldmap. Example settings at 3 T are: 
FOV = 192 mm: TR = 1000 ms, TE1 = 2.3 ms, TE2 = 4.6 ms, 
α = 50° and 64 slices (slice thickness = 3 mm), which yields 
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Fig. 6   Color-coded image display of four consecutive activation peri-
ods of visual stimulation with a flickering checkerboard (20 s on–20 s 
off). Each frame shows normalized signal amplitudes in activated 
voxels (thresholded at t values > 30). The number in each frame repre-
sents the mean and standard deviation of the BOLD arrival time over 
the activated signal time courses. The BOLD arrival time is meas-
ured as the time at which the signal reaches half its maximum in each 
stimulation period. The yellow bar at the bottom indicates the stim-

ulus-on period, which starts 1  s into each frame (vertical red lines). 
The BOLD arrival time map representing the mean arrival time over 
4 stimulation periods is shown on top right, the color bar represents 
the BOLD arrival time in seconds. At bottom right three signal time 
courses at different BOLD arrival times are displayed. Numbers in 
each frame represent the mean BOLD arrival time and standard devi-
ation for each stimulation period. The mean arrival time over all 4 
periods is 5.99 ± 1.25 s
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a 3D-dataset of identical matrix size as the MREG-data in 
in 64 s.

Coil sensitivities are calculated by employing the method 
by Walsh [41] from the same dataset. For fieldmap calcula-
tion coil images are combined voxelwise based on the maxi-
mum intensity of the absolute values over all coils, the field 
map is then calculated from the phase difference between the 
two echoes. Phase unwrapping is performed with PRELUDE 
[42] provided by the FSL toolbox (https​://www.fmrib​.ox.
ac.uk/fsl).

Reconstruction

Using the notation from [43] the general signal equation is 
written as

where s represents the measured signal in all coils, E is the 
forward operator representing the measurement process and 
m is the image to be reconstructed. Equation (1) is solved 
by regularized iterative reconstruction minimizing the cost 
function f(m):

Here, Ψ indicates some (optional) sparsity transform such 
as total variation (TV) or wavelet transform, n could be 1 
or 2 representing L1- or L2-Norm. Data in most practical 
applications are reconstructed without additional sparsity 
transform, i.e., Ψ corresponds to the identity matrix.

The reconstruction framework for iterative reconstruc-
tion had already been set up for the previous trajectories. A 

(1)s = Em,

(2)f (m) = ∥Em − s∥2 + �
n
n
∥Ψm∥n

n
.

detailed description is found in [12]. The forward operator 
E is implemented as an operator that first multiplies the 
image with the coil sensitivities and thereafter performs 
a non-uniform fast Fourier transformation (NUFFT) with 
min–max interpolation [44]. Off-resonance correction is 
performed in a segmented approach described by Sutton 
[45].

Various penalty terms for iterative reconstruction have 
been explored, most often used is Tikhonov regularization 
which is based on a linear conjugate gradient (CG) algo-
rithm with L2 norm and L1-norm regularization. The lat-
ter uses a non-linear conjugate gradient algorithm, which 
takes much longer but leads to better image quality by 
its edge-preserving nature. Transformation in the wavelet 
domain did not improve performance, most likely due to 
the non-random sampling trajectory.

Global frequency changes during the acquisition of the 
time series are corrected by the “dynamic off-resonance 
in k-space” (DORK) approach suggested by Pfeuffer [46], 
corrections of field inhomogeneities based on the sepa-
rately acquire field map.

Image reconstruction takes about 50 s per volume per 
core without off-resonance correction and up to 10 times 
longer with off-resonance correction depending on the 
number of time segmentation steps used. Even on a com-
puter cluster with multiple cores total reconstruction time 
of the 3–10,000 time frames typically acquired within an 
experimental session takes several hours or even days if 
the slower L1-reconstruction is used.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 kz

kx

ky

kx

Fig. 7   Projections of the actual k-space trajectory onto the kx-kz-resp. kx-ky-plane

https://www.fmrib.ox.ac.uk/fsl
https://www.fmrib.ox.ac.uk/fsl


93Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108	

1 3

Real‑time implementation of MREG using targeted 
reconstruction

The application of the ultrafast data acquisition achieved by 
MREG to real time-feedback applications appears to be very 
attractive, since it could reduce the long response delays 
associated with standard acquisitions. However, the long 
reconstruction times necessary seem to defy such an appli-
cation. Given this challenge in a collaboration with Rainer 
Goebel from Maastricht Bruno Riemenschneider came up 
with the concept of targeted reconstruction [43, 47].

Formally the resulting 3D-image m in Eq. (1) is associ-
ated to the measured signal by the pseudoinverse:

If one wants to reconstruct summed data from an arbi-
trary subvolume of the total image m, this can be derived by 
forming the scalar product of m with a vector V containing 
arbitrary voxel weights representing the subvolume. Using 
basic properties of the scalar product this yields

where

is a linear combination of lines of the complete reconstruc-
tion matrix, weighted by V. This means that the time con-
suming iterative reconstruction to form the pseudoinverse 
has to be performed only once, all following signals from 
the desired subvolume can then be calculated as a scalar 
product, which is fast. Implementation is pretty straightfor-
ward for calculation of single pixel time courses (Fig. 4 in 
ref. [43]). Reconstruction over larger ROIs with considerable 
phase variations is more challenging. In fully reconstructed 
datasets absolute values of pixel intensities are used to form 
ROI signals. The targeted reconstruction algorithm works 
inherently on complex data, so any dephasing over a ROI 
will lead to signal loss. This can be avoided by including a 
static phase correction which leads to near-perfect retrieval 
of ROI time courses (Fig. 8).

In the actual implementation it was demonstrated that sig-
nals from up to 30 predefined subvolumes can be calculated 
within the repetition time of 100 ms.

Time‑domain principal component reconstruction 
(tPCR)

The targeted reconstruction algorithm is very efficient 
for reconstructing signal time courses within predefined 
ROIs, but it doesn’t help to accelerate the time consuming 

(3)(E ∗ E)−1E ∗ s = m.

(4)
⟨m,V⟩ =

�
(E ∗ E)−1E ∗ s,V

�
=
�
s,E(E ∗ E)−1V

�
= ⟨s, v⟩,

(5)v = E(E ∗ E)−1V ,

framewise reconstruction used for full reconstruction. Fei 
Wang has developed a method to accelerate the recon-
struction by first performing a principal component analy-
sis (PCA) on the raw data, then reconstructing each PCA 
component followed by recombination of all components 
to yield the full 3D-time series [48]. At first sight this time-
domain principal component reconstruction (tPCR) seems 
to increase the computational burden by the additional effort 
to perform PCA on the coil-wise raw data. The rationale 
why this may still reduce overall reconstruction time was 
the insight that higher PCA-components contain less and 
less relevant information and may thus be reconstructed 
with fewer iterations. In simulation experiments as well as 
experimentally it could be demonstrated that the number 
of iterations necessary for reconstruction is higher for the 
low order PCA-components but decreases quickly for higher 
order components. For frame-wise reconstruction the num-
ber of iterations remains constant as individual timeframes 
are highly similar to each other. As a result the overall num-
ber of iterations necessary for tPCR is considerably reduced.

For a linear reconstruction algorithm the recombined 
PCA-components should be exactly identical to the result 
of frame wise reconstruction. Since iterative reconstruction 
introduces some nonlinearity in the reconstruction process, 
this is not necessarily the case for tPCR. The results of the 
simulations shown in [48] indeed demonstrate that tPCR is 
not only faster but also reduces the reconstruction error. This 
can be explained by the fact that PCA represents the densest 
expression of data leading to an overall increase of sparsity 
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Fig. 8   Signal time course over the visual cortex generated as the sum 
of the magnitude signals of a fully reconstructed dataset (black) com-
pared to the complex sum reconstructed with targeted reconstruction 
without (blue) and with (red) correction for static phase (same data 
as in Fig.  5 in ref. [43] were used). Reference signal and complex 
sum with phase correction are nearly identical, the red line has been 
slightly shifted in the plot for clarity
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of components and thus to a reduced regularization error. 
This is supported by the fact that the improvement is larger 
for reconstruction with L1-Norm compared to L2-Norm.

A breathhold paradigm was used for experimental dem-
onstration in [48]. tPCR works equally well for task fMRI 
as well as resting state fMRI. Figure 9 demonstrates results 

from a resting state examination showing practically identi-
cal RSNs for frame wise reconstruction compared to tPCR, 
but with a reduction in overall computation time of a factor 
of ~ 5 for tPCR.

As a next step we are currently looking into how many 
PCA-components are actually necessary to reliably detect 

Fig. 9   Comparison of ICA-
based RSN-analysis for frame-
wise reconstruction (fwR) with 
temporal principle component 
reconstruction (tPCR). Detected 
default mode network (DMN), 
auditory, and primary visual 
networks are virtually identical 
for both reconstruction modes

DMN auditory visual
fwR      tPCR fwR      tPCR fwR      tPCR

0 1 2 3 4 5     1/s

resp. ECG
1st     2nd                       3rd harmonic

Fig. 10   Image representation of frequency spectra of signal time-
course as a function of the percentage of PCA-components used in 
the final reconstruction. The horizontal axis represents frequency, the 
vertical axis represents the percentage of PCA-components used in 

the final recombination of the PCA-components. Signal intensities are 
scaled in arbitrary units, the yellow bands represent physiological sig-
nals as indicated at the top
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activation. Figure 10 shows as a preliminary result the global 
frequency spectrum as a function of the percentage of com-
ponents used. The main effect of leaving out the higher order 
components is a reduction of the noise level in between the 
peaks of the physiological signals while the signals them-
selves stay (nearly) constant. Only towards the very low 
end when < 5% of the components are used the physiologi-
cal signals suddenly vanish. Figure 11 demonstrates that 
this also applies for the detection of RSNs. ICA-analysis 
of a dataset with a varying percentage of components used 
shows hardly any change in the detected networks even when 
much < 10% of the components are used (movie in supple-
mentary materials). A thorough analysis of the sensitivity 
to detect RSNs as well as in task based fMRI is currently 
under way. It should be noted that the gain in computation 
speed does not directly scale with the percentage reduction 
of components, since more iterations are required for the low 
order components (s.Fig. 2 in [48]). Still a reduction of com-
putation time by another factor of 5 appears to be feasible. 

Activation studies

Having resolved many of the technical aspects associated 
with the fast image acquisition and reconstruction, there was 
great excitement to investigate how MREG could improve 
the results of practical fMRI applications. Following the 
analysis of simple fMRI paradigms such as visual or motor 
tasks, it became immediately obvious that MREG led to the 

detection of much stronger functional activations compared 
to EPI [15]. A broad range of fMRI applications could ben-
efit from this improved sensitivity, ranging from research 
into subtle brain activity changes that could now be more 
easily detected, to clinical functional mapping scans that 
might potentially be considerably shortened without having 
to sacrifice statistical power.

Yet, it is actually not trivial why the high temporal resolu-
tions achieved by MREG should yield higher fMRI sensitivi-
ties. While it had long been recognized that fMRI analyses 
would benefit from shortened TRs, this tendency had been 
expected to break down as TRs reached below ~ 1 s [49]. 
This is because TRs much lower than the T1 relaxation time 
(~ 1300 ms in gray matter at 3 T) only allow partial recovery 
of the longitudinal magnetization, necessitating the use of 
lower flip angles and yielding a lower MR signal ampli-
tude (and corresponding lower SNR) which more or less 
balances out the improved sampling efficiency of 3D-acqui-
sitions. However, statistical power in fMRI is only partially 
dependent on image SNR, since noise in fMRI time series 
is actually a combination of both thermal noise, on which 
SNR is based, and physiological noise, which depends on 
MR signal strength [50]. Analysis of the signal variation 
observed in MREG demonstrates that contributions from 
ECG-pulsatility contribute a large part of the physiologi-
cal noise. Figure 12a shows the maximum intensity projec-
tion (MIP) through a 4.8 cm thick slab at the height of the 
visual cortex, and Fig. 12b shows the corresponding MIP 

100 %

50 %

10 % 0.1 %

2 %

5 %

Fig. 11   ICA reconstruction of the default mode network using a different percentage of the PCA components. In the example shown even 2% of 
the components deliver nearly identical networks compared to full reconstruction. Only at 0.1% network reconstruction breaks down
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of the pixel-wise temporal noise measured as the standard 
deviation of the signal timecourse after linear detrending. 
Although no vessels are seen in (a), vascular signals clearly 
stand out in (b) due to their high pulsatility. A plot of the 
signal intensity of the frequency peak at the ECG-frequency 
against temporal noise shows a clear correlation (e). Filter-
ing out the ECG-peak at 1.2 ± 0.1 Hz from the frequency 
spectrum leads to pronounced reduction of vascular signals 
(c), which are, however, still clearly visible. A plot of the 
reduction of temporal noise after filtering (f) shows that 
this alone reduces temporal noise by up to 50%. In spite of 
the reduction, vessels are still clearly visible in (c). After 
low-pass filtering with a cut-off of 1 Hz most (but not all) 
vascular signals vanish.

This clearly demonstrates that at the typical spatial reso-
lutions employed in MREG (3 mm isotropic), physiological 
noise dominates over thermal noise, so that even significant 
reductions in SNR will only result in small degradations in 

temporal SNR (tSNR) [51]. Indeed, we investigated BOLD 
activations associated with interictal epileptic discharges 
recorded with simultaneous EEG; such studies often show 
low sensitivity, yet are highly clinically relevant for the pre-
surgical evaluation of focal epilepsy patients. Compared to 
conventional EPI acquisitions, MREG only resulted in a 
18.4% reduction in tSNR, and this was more than compen-
sated by the increased statistical power from the high tem-
poral resolution, resulting in a much increased detectability 
of epileptic brain areas (Fig. 13; [52]).

As for why a higher temporal resolution yields higher 
fMRI sensitivity, this is primarily because the higher number 
of time points directly leads to higher noise degrees of free-
dom in the fMRI time series analysis, yielding more reliable 
estimates of statistical parameters. The same effect arises 
when increasing the length of the scan, but this is of course 
a more expensive alternative. A key point, however, is that 
a longer scan yields additional fMRI time points that are 

std(IECG)
(a.u.)

IECG(a.u.)
0.5

0.6

0.7

0.8

0.9

n0/nfilt

IECG(a.u.)

fe

a b c d

Fig. 12   a Maximum intensity projection (MIP) through a 4.8 cam 
thick slab at the height of the visual cortex, (b) corresponding MIP of 
the pixel-wise temporal noise measured as the standard deviation of 
the signal timecourse after linear detrending. c MIP of the pixelwise 
temporal noise after filtering out the ECG-peak at 1.2 ± 0.1 Hz from 

the frequency spectrum. d MIP of the temporal noise after low pass 
filtering with a cutoff frequency of 1 Hz. e Plot of the signal intensity 
of the frequency peak at the ECG-frequency against temporal noise 
shows a clear correlation e. f Reduction of temporal noise after filter-
ing out the ECG. Peak alone (corresponding to c)
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largely independent of the initially acquired time points, so 
that the increase in degrees of freedom matches the increase 
in the number of time points, i.e., a doubling of the scan 
length, for example, yields a doubling of the degrees of 
freedom. In contrast, additional time points resulting from 
a higher temporal resolution are not independent of each 
other. As BOLD time series primarily measure vascular 
signals that are physiologically sluggish, neighboring fMRI 
time points exhibit a high degree of correlation, especially at 
high temporal resolutions. As such, the increase in degrees 
of freedom is actually lower than the increase in the number 
of time points. The statistical analysis must then correctly 
model the time series autocorrelations and degrees of free-
dom to avoid any overestimate of the statistical parameters 
and corresponding loss of specificity. The groundwork for 
such modeling had been established early in the history of 
fMRI by Worsley and Friston [53]. Yet, the proposed models 
and subsequent implementations in fMRI statistical analy-
sis packages only considered temporal autocorrelations in 
conventional, low temporal resolution fMRI data. Initial 
activation studies using fast fMRI data thus reported very 
large statistical scores that were, however, somewhat inflated 
[15, 28].We thus started to perform subsequent data analyses 
using the FMRISTAT toolbox, which is not widely used, 
but which allows modeling the noise as a spatially varying, 
high-order autoregressive process [54, 55]. This provided 

a well-fitting model of MREG time series autocorrelations 
while reducing the inflated statistical scores, which were 
nevertheless still ~ 60% higher than the scores obtained with 
conventional EPI [52]. An even higher detectability could 
be obtained using the ability of MREG to characterize the 
region- and patient-specific hemodynamic response function 
at high temporal resolutions [56]. This higher sensitivity 
notably allowed the detection of widespread cerebral areas 
associated with epileptic discharges [57–59]. However, there 
was still some evidence of bias in the statistical analysis 
[60]. It is only recently that analysis methods better suited 
to fast fMRI have emerged, which now allows to take full 
advantage of high temporal resolution data in fMRI activa-
tion studies [34, 61, 62].

Resting‑state networks

More than high statistical power, MREG opened up novel 
opportunities for the characterization of BOLD time series 
that had not been previously accessible at lower temporal 
resolutions. While fMRI signals have long been considered 
to be slowly varying in time, there was now the possibil-
ity to explore whether faster BOLD fluctuations could be 
physiologically meaningful. In addition to cardio-respiratory 
pulsations, which are no longer aliased at high temporal 
resolutions [63], high-frequency signals may also include 

Fig. 13   BOLD activation maps associated with left frontal epileptic 
spikes in a patient with focal cortical dysplasia with a previous frontal 
resection that did not result in seizure freedom. While the EPI map 
shows a small activation near the resection border, the MREG map 

reveals a much larger activated area extending into parietal regions. 
In the left upper corner a typical epileptic spikes is visible in the 
EEG trace over the left fronto-temporal area as well as a voltage map 
derived from this spike. (Fig. 5 from Jacobs et al. [52]) adapted from
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BOLD-related temporal variations, for example due to fast 
transients in the hemodynamic response, which have long 
been described as potentially more direct reflections of neu-
ronal activity than the slow hemodynamic peak [64–66]. 
Moreover, there is evidence that the hemodynamic response 
can actually rise and recover much faster than previously 
thought, particularly during the resting state, which would 
then manifest as BOLD fluctuations at higher frequencies. 
We thus investigated high-frequency functional connectiv-
ity within known resting-state networks [67]. Even when 
the MREG time series were bandpass-filtered between 
0.5–0.8 Hz, thus completely removing the slow 0.01–0.1 Hz 
fluctuations typically associated with BOLD signals (and 
also avoiding frequency bands associated with respiratory 
and cardiac pulsations), strong connectivity was observed in 
primary visual and motor networks (Fig. 14). Moreover, the 
high-frequency networks were much more stable than the 
corresponding low-frequency networks. This was especially 
the case when considering connectivity patterns calculated 
over small time windows, as short as 30 s. This follows from 
the fact that a time window must be of sufficient length to 
cover at least one full cycle of a given oscillation, and there-
fore, slow oscillations require longer windows [68]. Fur-
ther investigations using independent component analysis 
revealed that a more reliable extraction of functional connec-
tivity patterns in short time windows could be obtained with 
MREG in all common resting-state networks (Fig. 15; [69]).

As resting-state networks could now be characterized 
in short time intervals, this may suggest that MREG could 
be used to dramatically shorten the length of resting-state 
fMRI scans without sacrificing sensitivity. However, func-
tional connectivity is known to vary over time, even during a 
supposedly stable resting state. These dynamic connectivity 

fluctuations could be potentially relevant biomarkers of 
brain function and can only be captured over the course of 
several minutes [70]. High temporal resolution fMRI can 
nevertheless be highly beneficial, since it can reliably meas-
ure functional connectivity variations occurring over short 
time scales, even as these fast fluctuations occur as part of a 
longer scan overall [71, 72].

To facilitate the investigation of fast BOLD fluctuations, 
it was then natural to combine MREG with simultaneous 
EEG, whose high temporal resolution would provide useful 
baseline recordings of cerebral activity. While simultane-
ous EEG-fMRI had been previously almost exclusively used 
with EPI, it was quickly established that fast acquisitions and 
spiral trajectories did not cause additional safety issues [40, 
73], nor prevent an effective removal of MR gradient arti-
facts from the EEG [74, 75]. As a starting point, we focused 
on the default-mode network (DMN), which is associated 
with the brain’s baseline state, giving it a central role as 
a hub of global brain activity [76]. Time-varying correla-
tions between BOLD and EEG oscillations closely tracked 
dynamic DMN connectivity, supporting the neurophysi-
ological origin of fMRI dynamic connectivity [77]. A case 
report in an experienced meditator who experienced a state 
of so-called “content-free awareness” further suggested that 
dynamic EEG and DMN connectivities were modulated by 
the state of consciousness [78]. We thus expect fast fMRI to 
keep playing an important role as the field of dynamic con-
nectivity analyses continues to grow.

While resting-state functional connectivity is based on 
time series correlations, which are undirected measures, one 
may wonder whether it may be possible to infer the direc-
tionality of the connections from the fMRI data. In particu-
lar, high temporal resolution fMRI can allow the detection 

Fig. 14   Resting-state connectivity in the primary motor cortex in the 
0.01–0.1 Hz (top row) and 0.5–0.8 Hz (bottom row) frequency bands. 
While the connectivity calculated over the full-length scan (left col-
umn) involves the same motor areas in both frequency bands, the con-
nectivity calculated over 30-s time windows (right columns) is highly 

variable in the 0.01–0.1 Hz band, also involving spurious regions out-
side motor areas. The calculated sliding-window connectivity is much 
more reliable in the 0.5–0.8 Hz band (adapted from Fig. 4 from Lee 
et al. [67])



99Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108	

1 3

of small propagation delays of neuronal activity. This was 
well demonstrated by Fa-Hsuan Lin using inverse imaging, 
where time delays of hundreds of milliseconds in visual and 
motor areas could be clearly resolved at the group level [79]. 
In individual subjects, the spatial variability of the hemody-
namic response function is, however, a major confound [80], 
but the results nonetheless showed that at the group level, 
inferences on hemodynamic delays could still be reliably 
performed [79]. Using MREG, we could thus characterize 
the dynamic lag structure of the DMN [81, 82].

Yet, there was still interest in inferring directed connec-
tions from fast fMRI data independently of hemodynamic 
delays, which would allow the analysis to be performed at 
the individual level. We thus developed a method to esti-
mate the directed effective connectivity from the undi-
rected covariance matrix of the BOLD time series [83]. 
The method is based on the fact that so-called “collider” 
structures, in which two uncorrelated variables contribute 
to the activity of a third variable, lead to specific entries 
in the inverse covariance matrix. With the aid of a sparsity 
prior, it then becomes possible to identify a unique directed 

network structure that best explains the observed data. We 
could additionally show that the estimation was much less 
sensitive to hemodynamic variability than lag-based meth-
ods, and that the connectivities were more consistent when 
calculated using high-frequency than low-frequency BOLD 
fluctuations [84]. The measurement of these high-frequency 
temporal signals crucially depended on the high temporal 
resolution provided by MREG.

MREG‑based imaging of physiological brain 
pulsations

Hans Berger, during his development of electroencepha-
lography in early 1900s, described three basic brain waves 
within the brain: “eine pulsatonische, eine respiratorische 
und vasomotorische Bewegung” [85]. In 1995 Bharat Biswal 
connected the vasomotor waves as a phenomenon related to 
the spontaneous functional connectivity fluctuations in pri-
mary sensory cortices [86, 87]. Over decades, the two other 
physiological brain pulsations, i.e., the cardiorespiratory 
pulsations, have largely been regarded as noise that obscures 

Fig. 15   Common resting-state 
networks extracted by ICA 
from EPI (top) and MREG 
(bottom) data using various 
time window lengths (shown in 
the multiple columns). Images 
with a red background denote 
that a component correspond-
ing to the given network could 
not be found. For time window 
longer than 300 s, all networks 
could be successfully detected 
with both sequences. However, 
for shorter time windows, the 
detection is only reliable when 
using MREG data. (adapted 
from Figs.  7, 8 from Akin et al. 
[69])



100	 Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108

1 3

and aliases over cued and spontaneous brain activations in 
the fMRI BOLD signal [88–90].

However, the physiological noise structure in even rela-
tively slowly sampled (TR > 1 s) fMRI BOLD signal has 
gained increasing interest in both physiological and clinical 
viewpoints. Heart rate variability and respiration has been 
shown to be modulating cognitive performance and brain 
activation responses [91, 92]. Standard deviation as well as 
variance of the BOLD signal itself has been shown to cor-
relate significantly with pathological conditions like Alzhei-
mer’s disease [93–96], small vessel disease [97], stroke [98], 
and chronic kidney disease-related changes in brain [99].

The interest in brain pulsations as a source of valuable 
new information have surged after the discovery of the 
glymphatic brain clearance system in 2013 by Nedergaard 
[100]. The glymphatic mechanisms have been shown to be 
a key element in several major forms of neuropathology 
including Alzheimer’s disease, stroke, trauma, and epilepsy 
[101–109]. The glymphatic brain clearance is driven by 
vascular pulsations that convect both brain metabolites and 
waste along CSF water in paravascular spaces in humans 
and mice [110, 111].

Glymphatic brain research has mostly focused on follow-
ing contrast media flow along periarterial CSF spaces in 
mice in vivo microscopy and MRI techniques [100, 110, 
112]. In humans the contrast media has been injected in lum-
bar intrathecal space or directly into brain interstitium via 

capillary blood brain barrier-opening in therapeutic AD and 
ALS studies [113–115]. The human interstitial brain tissue 
has been shown to become cleared from contrast media in 
clearly supra-diffusive speeds by the glymphatic mechanism 
[113–115].

Although the contrast media studies precisely map the 
epitope paravascular convection of foreign materials in the 
glymphatic system of the brain, the invasive nature of these 
studies makes them less feasible for routine large scale clini-
cal settings. Instead of invasive MR-contrast media injec-
tions, different novel approaches in estimating brain water 
molecule transport have emerged and these could give 
information on how different diseases affect the glymphatic 
mechanism [116–118].

Ultrafast scanning as a tool for physiological pulse 
mapping.

With the emergence of ultrafast scanning sequences like 
MREG it now became possible to detect physiological 
brain pulsations over the whole brain with critical sam-
pling rates < 300 ms thatavoid pulse aliasing [72, 119]. 
As can be seen from the MREG BOLD signal in Fig. 16, 
both the cardiac and respiratory present clear brain pulsa-
tions that can be separated from the very low frequency 
(VLF < 0.1  Hz) pulsations and also from 1/f thermal 
noise. The fast scanning offers a clear measurement of the 

Fig. 16   Example of human full band MREG signal with FFT power 
spectrum presenting three main physiological pulsations in the spec-
trum peaks. MREG signal was further band passed for quantification 
and mapping into anatomy. The VLF band and representative signal 

in orange, respiratory pulsations in green and cardiac pulsations in 
red, respectively, overlaid over MNI 152 space. Please also notice the 
harmonic power spectrum peaks over the full 5 Hz power spectrum 
highlighting the precision of the MREG signal
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pulsations that may offer an alternative and more accurate 
physiological image contrast, along with the previously 
stated increases in statistical power.

In microscopical in vivo imaging the main drive of the 
glymphatic convection has been related to cardiovascular 
pulsations. In humans; however, the known three sources 
of brain pulsation introduce a more macroscopical scale 
effect that can also be detected by fast MRI scanning 
[119–121]. The cardiovascular pulsation induces a cen-
trifugal pulse in the brain directed from the center outward 
in sync with the cardiac cycle, and the respiration induces 
a more centripetal pulse extending from the brain surface 
towards the center. Both of these pulses also affect the 
CSF spaces throughout the brain, most remarkably in the 
ventricles [119]. The very low frequency (VLF) vasomotor 
waves then present slowly moving patterns of seen over 
brain cortex that can also be seen in conventional fMRI 
BOLD signals [72, 122–124].

It seems that the source of the detected MREG signal 
changes in cardiorespiratory frequencies originate from vas-
cular as well as extravascular sources like the water move-
ment impulses that the physiological pulses induce inside the 
brain [125]. The BOLD signal is reflecting spin coherence 
from intra and perivascular water protons as they are being 
modulated by regional deoxyhemoglobin (Hb) concentration 
(2/3) and blood volume (1/3) as a slow response to neuronal 
activity [126]. In contrast to previous beliefs during the birth 
of theories on BOLD signal origins, the glymphatic research 
clearly shows that the water (and the molecules/aggregates 
it carries) does not stand still in paravascular space but is 
driven by physiological pulsations.

The cardiovascular impulses introduce propagating waves 
of spin coherence perturbations that traverse the very liq-
uiform brain tissue which are captured by the MREG sig-
nal. Both echo-volumar imaging (EVI) as well as MREG 
have detected a drop in arterial signal intensity upon arterial 
impulse arrival and this impulse amplitude reduces when 
moving along the tissue [72, 119, 127]. This signal change in 
the (peri)arterial areas is dominated by the cardiac impulse 
by flow effects. As the arteries continuously have > 97% 
SpO2 saturation, the BOLD effect from Hb is minimal.

Towards the capillaries and especially in the veins/ven-
ules, the [Hb] concentration increases and BOLD effect 
starts to dominate. Similarly the cardiac flow impulses 
become weakened into a more laminar steady state flow that 
enables better gas exchange between tissue compartments.

The respiration related pressure changes in the thorax are 
the main driver of both the intracranial CSF flow and venous 
blood return. The incompressible skull along with the only 
incompressible venous sinuses in the body surrounded by 
dura mater around the brain and spinal cord introduce unique 
pressure conductance environment for the CNS venous 
sinuses. This unique physiological construction makes it 

possible that the pressure changes in the thoracic area are 
readily conducted into the brain and spinal veins [108].

While the inspiration draws venous blood from the brain, 
the cerebrospinal fluid produces a counter inflow as the rigid 
cranial volume stays constant [120, 121]. The same mecha-
nism may take place in the penetrating paravenous space and 
cortical veins creating efflux waves leading waste material 
out of the CNS. The respiratory pulsation affects both the 
venous blood oxygenation and volume and thus affect T2* 
weighted BOLD signal in MREG measurements; the route 
is reverse to normal activation hyperemia but is based on 
known venous blood flow physiology and it has now become 
more accurately accessible via fast scanning sequences.

Clinical relevance of physiological pulsations

Early MREG experiments have given encouraging results 
with respect to clinically feasible diagnostic markers. In line 
with previous analyses of BOLD signal variance, we have 
been able to show with three distinct datasets that the brain 
BOLD signal variance is altered in Alzheimer’s disease [93, 
94, 96, 97, 99]. An example is shown in Fig. 17.

Furthermore, the source of the abnormal variance seems 
to be the cardiovascular rather than any other pulsation 
source. A novel approach in analyzing the physiological 
brain impulse propagation in the brain—based on optical 
flow analysis—was able to detect markedly altered variance 
also in the propagation of cardiovascular brain impulse in 
Alzheimer brains [128]. Further analyses indicate more pro-
nounced abnormalities in the directionality and magnitude 
of brain pulsations as well (Rajna et al., submitted).

Intractable epilepsy has been shown to be related to 
AQP4 water channel absence from the perivascular astro-
cytic endfeet lining the perivascular glymphatic space [129]. 
The AQP4 molecule is a key molecule for the glymphatic 
clearance of the interstitial space as the removal of b-amy-
loid in AQP−/− knockout mice is reduced by 60% [130]. 
The brain signal variance was shown to be altered in intrac-
table epilepsy patients in the respiratory frequency range 
[131]. Intracranial EcoG needle measurements in intracta-
ble epilepsy patients have also demonstrated a strong drive 
of brain activity LPF, MUA by respiratory brain pulsations 
[132].

Interestingly the MREG data was able to show individual 
abnormalities of brain signal variance in two consecutive 
scans compared to age-matched control population. We have 
enlarged the MREG scan population into a two-center study 
and detected a repeated abnormality of epileptic brain pul-
satility abnormality > 6 standard deviations above normal 
mean values (Kananen et al., submitted) (Fig. 18). This in 
practice means that individual-level changes can be seen 
in patients, which has not been possible with prior BOLD 
scanning methods. The critical sampling rate of the MREG 
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signal ensured separation of pulsations and offers needed 
statistical power that enables individual level diagnostic 
capability. Furthermore, spectral entropy of the MREG and 
other multimodal data (EEG, NIRS) obtained simultane-
ously suggest a spectral entropy alteration in intractable 
epilepsy [133].

Discussion and outlook

The concept of MREG originally formulated as a mere 
‘Gedankenexperiment’ has come a long way since its 
original conception. Originally it was meant to produce 

Fig. 17   Example of optical flow analysis of MREG cardiac pulse 
propagation over the brain from the Alzheimer brain analysis reveal-
ing momentary pulsation abnormality occurring during the cardiac 
impulse arrival in the brain. The abnormality is highly variable over 
time and space and affects the BOLD signal variance significantly, 
see also [81]. Due to critical 10 Hz sampling rate of the MREG, the 

abnormality can be quantified with unprecedented spatiotemporal 
precision. To see how the cardiac impulse propagates over the brain 
in video, please see also: https​://www.newsc​ienti​st.com/artic​le/mg231​
30864​-200-best-look-yet-at-how-our-brain​s-sewag​e-syste​m-flush​es-
out-waste​/

Fig. 18   The respiratory pulsa-
tion power is altered signifi-
cantly in epilepsy. Top: the 
mean of control and patient res-
piratory brain pulsation power. 
Bottom: the significant pulsa-
tion power changes (p < 0.05 
FSL randomize TFCE-corrected 
for voxel-level). Right panel: 
patient examples showing indi-
vidual patient’s increase > 10 
standard deviations above 
control (n = 100) respiratory 
pulsation power

https://www.newscientist.com/article/mg23130864-200-best-look-yet-at-how-our-brains-sewage-system-flushes-out-waste/
https://www.newscientist.com/article/mg23130864-200-best-look-yet-at-how-our-brains-sewage-system-flushes-out-waste/
https://www.newscientist.com/article/mg23130864-200-best-look-yet-at-how-our-brains-sewage-system-flushes-out-waste/


103Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108	

1 3

time series signals from rather large volumes selected by 
coil sensitivity profiles alone, but it quickly evolved to 
produce quite decent looking 3D-datasets in a time, that 
is still short compared to ‘proper’ imaging. It has to be 
said that with the parallel development of compressed 
sensing the boundary between the concepts of MREG and 
‘proper imaging’ have been smeared out, indeed MREG 
can be regarded as a rather extreme implementation of 
compressed sensing with a high total undersampling factor 
of 18 for a 3D-acquisition. There is no magic associated 
with the ultrafast sampling speed of MREG. The key factor 
is to use a trajectory which allows isotropic undersampling 
in all three spatial dimensions. The undersampling factor 
of 2.6 in each direction is still within the theoretical lim-
its demonstrated by Wiesinger [134]. Other trajectories 
offer similar acceleration, amongst the three types we have 
used (rosettes, concentric shells, stack-of-spirals) the latter 
offers the most benign artifact behavior. One lesson we 
learned in going through various types of trajectories is 
that intersections (like rosettes) are problematic and may 
easily lead to artifacts.

With rectilinear trajectories one gradient (normally called 
the readout gradient) is almost by definition the ‘lazy’ one 
contributing little to acceleration, which has to be made up 
in the other dimensions.

Simultaneous multi-slice (SMS)-InI has reported a short 
TR of 100 ms but at the cost of even lower spatial resolution 
of 5 mm compared to MREG [135].

SMS-EPI has quite dramatically improved acquisition 
speed in conventional fMRI. Multiband excitation in com-
bination with blipped z-gradients allows unprecedented 
acceleration in the z-direction. The rectilinear k-space 
trajectory yields good image quality and benign artifacts 
but allows only modest in-plane acceleration. The lowest 
reasonable TR before through-slice artifacts start creeping 
in has shown to be in the range of 400–600 ms [34] at a 

spatial resolution of 2.5 × 2.5 mm (in plane) and 3 mm slice 
thickness. It has indeed been a quite tantalizing problem to 
find a compromise between the high temporal resolution of 
MREG and the better image quality and spatial resolution of 
SMS-EPI. A combination of a stack-of-spiral trajectory with 
multiband excitation [136] has shown to bring some at least 
nominal improvement in spatial resolution, further improve-
ments have been shown with a rotated stack-of-spirals partial 
acquisition by the same group of authors [137]. We have 
pursued a segmented approach that shows some improve-
ment in image quality at longer TR of ~ 300 ms at still mod-
erate spatial resolution of 3 × 3 × 3 mm3 (Fig. 19). As an 
alternate approach to improve image quality and to introduce 
spin-echo contrast we have implemented a spin-echo based 
MREG. This allows maintaining a still short TR of ~ 250 ms 
at the cost of lower SNR [138] (Fig. 20). We are still work-
ing towards our next goal which would be ~ 2 mm isotropic 
resolution at < 200 ms repetition time. We suspect that this 
will require not only methodological improvements, but also 
improved hardware including coil arrays with more elements 
as well as faster gradients. At the current status MREG is the 
method of choice for applications, where acquisition speed 
is the primary objective, if one can live with lower imaging 
speed, SMS-EPI wins out by its superior image quality. For 
higher fields like 7 T or beyond, rectilinear trajectories seem 
to become a necessity.

It would be actually quite tempting to try out MREG 
on low field systems, where it may offer decent anatomi-
cal imaging at unprecedented imaging speed. This would 
require a low field magnet with still high gradient perfor-
mance—a not too common combination.

So far we have distributed the method to ~ 20 research insti-
tutes worldwide. The main obstacle to a more widespread dis-
tribution most probably lies in the long reconstruction times 
and necessity to perform reconstruction on a separate hard-
ware. The improvement in reconstruction by tPCR together 

1-shot 2-shot 3-shot
a b

Fig. 19   a Result from 1-shot, 2-shot, and 3-shot segmented MREG 
acquired with TR of 96, 180, and 264  ms, respectively, shows 
improvement in image quality of segmented acquisition. b Compari-

son of seed-based RSN for 1-shot (top) and 3-shot (bottom) trajecto-
ries shows nearly identical results
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with new concepts for system architecture may change this in 
the not too distant future.
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