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Abstract: Nearly 25 percent of US children live within 2 km of toxic-waste sites, most of which are in
urban areas. They face higher rates of cancer than adults, partly because the dominant contaminants
at most US hazardous-waste sites include genotoxic carcinogens, like trichloroethylene, that are
much more harmful to children. The purpose of this article is to help protect the public, especially
children, from these threats and to improve toxics-remediation by beginning to test our hypothesis:
If site-remediation assessments fail data-usability evaluation (DUE), they likely compromise later
cleanups and public health, especially children’s health. To begin hypothesis-testing, we perform a
focused DUE for an unremediated, Pasadena, California toxic site. Our DUE methods are (a) comparing
project-specific, remediation-assessment data with the remediation-assessment conceptual site model
(CSM), in order to identify data gaps, and (b) using data-gap directionality to assess possible
determinate bias (whether reported toxics risks are lower/higher than true values). Our results reveal
(1) major CSM data gaps, particularly regarding Pasadena-toxic-site risks to children; (2) determinate
bias, namely, risk underestimation; thus (3) likely inadequate remediation. Our discussion shows that
if these results are generalizable, requiring routine, independent, DUEs might deter flawed toxic-site
assessment/cleanup and resulting health threats, especially to children.

Keywords: children; data-usability evaluation (DUE); environmental justice; Ninyo and Moore;
Pasadena; California; perchloroethylene (PCE); remediation; toxic waste; Trammell Crow;
trichloroethylene (TCE)

1. Introduction

By the year 2035, the US Environmental Protection Agency (EPA) projects (in its latest all-inclusive
report) that 350,000 of the nation’s toxic-waste sites will need remediation, including military, other
federal, state, and private sites [1]. Most are in densely populated urban locations whose residents
include disproportionate numbers of minorities and people living below the poverty line. Although
these near-toxic-site residents must confront statistically significant increases in cancer and other
diseases [2], children face the worst threats [3–6]. Roughly 25 percent of all US children live within
2 km of a toxic-waste site [7] (p. 159). Just at one of thousands of such US sites, in Portland, Oregon, up
to 25,000 people have been potentially affected by carcinogens that have no safe dose. Their death
rates from bile-duct, kidney, pancreatic, and stomach cancer are 200 percent to 800 percent higher,
depending on the cancer, than those of the unexposed population [8].

Across the US, tens of millions of people also are at risk because of contaminated drinking water.
In more than half the nation’s public-drinking-water systems, levels of the genotoxic carcinogen
trichloroethylene (TCE) exceed what is safe for children’s health [5,9].
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Why are children more vulnerable to such contaminants? Children and pregnant women are more
vulnerable than adults to toxic wastes because fetuses and children have special windows of increased
vulnerability during different developmental periods. Exposures during these critical windows could
cause permanent structural, organ-system, or functional deficits, such as TCE-induced heart defects
from maternal, first-trimester, pregnancy exposure. Fetuses and children also experience rapid growth
and development, thus a higher rate of cell division and differentiation, and have less developed
immunological and detoxification systems, and more efficient mechanisms for blood-brain transport of
contaminants—all of which may increase their susceptibility. Children likewise receive greater toxic
exposures, per kilogram of body weight than adults, because they take in proportionately more food,
water, and air. In addition, younger children have greater (than adult) pollutant exposures because of
lactation, hand-to-mouth activity, and a breathing zone closer to soil contaminants. Because children
have a longer lifetime to express pollutant damage, they also experience greater harm than adults from
contaminants [5] (pp. 15, 167–169, 202, 258–262).

Because of children’s increased susceptibility to genotoxic carcinogens like TCE, US EPA
recommends using age-dependent adjustment factors (ADAFs) to calculate children’s heightened risks.
The ADAF risk multiplier is 10 for children < 2 years of age, 3 for children 2 to <16 years of age, and 1
for children ≥ 16 years of age [5] (p. 183).

What can be done to protect the thousands of victims of toxic sites? To begin to answer this question, the
authors (1) document the flawed science, fraudulent cleanups, and underestimates of pollutant-risk that
appear to have harmed thousands of toxic-site victims. They also (2) conduct preliminary testing of one
hypothesis about how to help protect potential toxic-site victims by performing a focused data-usability
evaluation (DUE) of remediation documents for a prominent US toxic site. (A DUE assesses how
missing, questionable, or rejected data affect the data’s usability for the project; it evaluates whether
the provided data meet the data needs that are specified in the project’s conceptual site model (CSM).)
The authors’ hypothesis is that if routine, independent, pre-cleanup, remediation assessments/plans
for perchloroethylene (PCE)- and TCE-contaminated sites fail focused (limited-scope) data-usability
evaluations (DUEs), they are more likely to compromise later cleanup and public health, especially
child health.

The authors’ hypothesis focuses on PCE/TCE contamination because most US toxic sites contain
these chlorinated industrial solvents, and they are carcinogens, neurotoxins, and developmental toxins.
Although PCE/TCE have been extraordinarily useful as cleaners, degreasers, and solvents, as well as
ingredients in adhesives, clothing, foodstuffs, pesticides, pharmaceuticals, and textiles [5,6], either
PCE, TCE, or their breakdown products (such as vinyl chloride and dichloroethylene) are genotoxic
carcinogens, have no safe dose, and are much more harmful to children than adults [5,6]. US regulators
rank them in the top four-most-harmful toxins that pose “the most significant potential threat to human
health” [5,10]. US regulators also rank them in the top four-highest-exposure toxins “to which the
public is being exposed” [11].

Why are some of the deadliest waste-site toxins, PCE and TCE, precisely those to which the public—and
especially young children—are most exposed? One reason is inadequate attention to nearly a century of
PCE/TCE health warnings. By 1920, PCE and TCE were high-production-volume chemicals [12] that
had already killed both farm animals [13] (p. 119) and experimental animals used in very low-dose
studies of PCE as an antihelminthic [14]. Although the 1930s medical literature, including The New
England Journal of Medicine, warned against PCE/TCE medicinal use, workplace exposure, and industrial
poisoning, use of PCE and TCE for anesthetics and medications continued through the 1970s. By
1945 states, like California, had adopted PCE regulations [12,14], and US National Cancer Institute
experiments had shown that chlorinated solvents can cause liver cancer in animals [13] (pp. 119–120).
Shortly after, UK scientists warned that TCE groundwater pollution already was a persistent problem,
that even tiny concentrations were toxic [13,15,16].
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By 1948, California’s Public Health Director cautioned that, without better groundwater regulations,
chlorinated solvents like PCE and TCE would cause “a backlog of water pollution over the State . . . a
plague comparable to the air pollution in Los Angeles” [13] (p. 107). By the early 1950s, sensitive analytic
methods had made PCE/TCE groundwater regulations feasible. Yet, because US regulators faced
pressure from industrial-solvent producers/users, the US did not propose PCE/TCE drinking-water
regulations until 2011—more than 50 years later [5,13]. The same apparent pressures continue
today [13,14,17]), halting US EPA’s planned, 2016 ban on many TCE uses [9,18]. Nevertheless, safety
and liability concerns have caused declines in US PCE/TCE production that, 40 years ago, was 340
million and 272 million kilograms/year, respectively [12,19].

These declines began partly because the 1971 deaths of three young children drew widespread
international attention to PCE/TCE health and regulatory concerns. The children were the first in
a score of child leukemias and deaths, all in one neighborhood of Woburn, Massachusetts [20–22].
Soon other apparent PCE/TCE-caused child cancers appeared, e.g., [23–27]. Because PCE and TCE
are volatile organic compounds (VOCs), their groundwater contamination and carcinogenic-soil
vapors/gases can travel underground for scores of meters—then migrate laterally and vertically,
contaminating drinking water and causing carcinogenic “vapor intrusion” into homes/buildings
located above or near the subsurface toxins. PCE/TCE contamination thus has claimed thousands
of victims, especially children, in areas such as St. Louis Park, Minnesota [28]; Rockton, Illinois [29];
Lise, Illinois [30]; Franklin, Indiana [31–33]; Riverside, Ohio [34]; Dayton, Ohio [35]; Cape Cod,
Massachusetts [26,36]; Dracutt, Massachusetts [37,38]; Endicott, NY [39]; N. New Jersey [26]; Pompton
Lakes, NJ [9,40]; Dover, Delaware [41]; Wake Forest, North Carolina [42–44]; Camp LeJeune, North
Carolina [26,41,45,46]; Jacksonville, Florida [41]; Fort McClellan, Alabama [41,47,48]; Oklahoma
City [41,49] Scottsdale, Arizona [50]; Tucson, Arizona [26]; Yuma, Arizona [41]; Los Angeles [51,52];
China Lake, California [53]; Mountain View, California [54]; San Francisco, California [53,55–57];
Portland Oregon [15,58]; Whidbey Island, Washington [59]; Mountain Home, Idaho [41]; and Denver,
Colorado [26].

Why does PCE/TCE harm continue, despite nearly a century of health warnings? One reason is that there
are no inexpensive, timely, and effective PCE/TCE-remediation technologies [60,61]. Instead, cleanup
requires at least year-long groundwater/soil/soil-vapor sampling, using multiple lines of evidence
to avoid “false negatives” that arise from fluctuations in variables such as temperature, barometric
pressure, soil moisture, soil type, and wind [62,63]. Remediation is difficult because PCE/TCE can
form dense, non-aqueous phase liquids (DNAPLs), heavier-than-water contaminants that sink very
deeply into soil and groundwater. Scores of meters deep, these DNAPLs produce carcinogenic vapors
that intrude into surface buildings [63]. Yet because their depth makes removal difficult and costly,
DNAPLs often cause long-term contamination of soil, groundwater, and surface buildings [64,65].
Given the economic incentives for inadequate PCE/TCE-assessment/remediation, there is a need to test
our hypothesis that DUEs might help deter flawed cleanups.

To begin to test this hypothesis, the article conducts a focused DUE for a Pasadena, California, US
Navy toxic site, the US Naval Ordnance Test Station (see the authors’ Figure 1). It is listed as the Naval
Information Research Foundation, Envirostor ID 19970020, on the DTSC list of hazardous- waste sites
<https://www.envirostor.dtsc.ca.gov/public/profile_report.asp?global_id=19970020>.

https://www.envirostor.dtsc.ca.gov/public/profile_report.asp?global_id=19970020
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Figure 1. Map of the former US Naval Ordnance Test Station, Pasadena. (Map is from US Army Corps
of Engineers, Draft Site Investigation Report, NIRF Under Sea Center Site Inspection, Figure 1.4).

Although the Pasadena site is not on the Superfund list, its cleanup must follow Superfund
remediation rules, partly because its carcinogenic industrial solvents are up to 744,000 times
above allowed levels (see the authors’ Table 1). From World War II through the mid-1970s, the
site was used for secret, classified development/testing/manufacturing of weapons, especially
Polaris (nuclear) missiles, torpedoes, anti-submarine/other classified weapons, and fire-control
systems [66–68]. The toxic site’s main “risk drivers” are PCE and TCE, followed by carbon
tetrachloride (CT) and dibromochloromethane. Other site contaminants include lead, mercury,
cadmium, hexavalent chromium (from the onsite foundry and weapons-fabrication shops); dioxins and
furans from the site’s 5 former incinerators; Total Petroleum Hydrocarbons (TPH) from diesel/motor
oil/gasoline/solvents in underground-storage tanks; semi-volatile organic compounds such polycyclic
aromatic hydrocarbons (PAHs), especially benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,
and dibenz(a,h)anthracene; PCBs; radioactive materials; weapons’ propellants such as perchlorate;
and fire-fighting contaminants such as polyfluoroalkyl substances (PFAS) [68] (pp. 12–14).

Since the Navy left the site 45 years ago, prospective purchasers hired consultants to assess site
toxicity/needed remediation. After each assessment, each deal fell through [66]. Hence the site has
never been cleaned up—only walled and paved over [68] (pp. 8, 134). However, in 2007 Ninyo and
Moore did risk/remediation studies for the largest US commercial developer, Trammell Crow [69]. It
now hopes to purchase the site and build shops and 550 small apartments on it [68] (pp. 1–2, 41).

Although thousands of people will live on the redeveloped toxic site, the developer will do no
preconstruction groundwater testing; remove only 11 small, localized, metals-hotspots [70] (p. 8), [67]
(pp. 20, 29); and leave most carcinogens, including TCE/PCE, “in place” onsite [70] (pp. 4, 8). After
residents, including children, move into the 550 apartments, the developer says he can test indoor air,
then do any needed PCE/TCE cleanup at that time. However, he admits that this later cleanup could
cause “more than a year” of higher cancer rates for site residents. [67] (pp. 35–43).
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Table 1. Onsite Perchloroethylene (PCE): Up to 5 Orders of Magnitude above Allowed Levels [67,71].

Sample Location
Identifier

PCE (ug/L)
Concentration

/0.00046 ug/L (Screening Level) =
Times above Allowable Limit To Be Removed?

NMSV10-5 342 743,480 yes

V9-15 137 298,000 no

VD2-30 122 265,217 no

V-5-15 79 172,000 no

V9-10 39.1 85,000 no

V10-5 36.3 79,000 no

NMSD3-60 22.3 48,480 no

V6-15 20.5 45,000 no

VD1-20 20.4 44,347 no

NASD3-113 17.9 38,913 no

V2-15 16.7 36,304 no

NMSV12-15 14.5 31,522 no

NMSV15-15 14.2 30,870 no

NMSV11-15 13.5 29.348 no

V18-15 13.5 29,348 yes

NMSV14-15 11.6 25,217 no

VD1-30 10.8 23,500 no

V8-15 10.5 23,000 no

NMSV2-15 10.2 22,174 no

V2-5 9.47 21,090 no

V18-5 8.32 18,090 no

NMSV13-5 5.51 11,978 no

NMSV4-15 1.29 2804 no

All Ninyo and Moore’s perchloroethylene (PCE) samples violate allowed levels, including the 25% of samples listed
above [71], yet only two of these PCE locations will be removed, as they are in metals hotspots, the only areas to
be removed.

Will the developer’s minimal toxic-site cleanup and reliance on land-use controls protect public
health [72]? One way to begin to answer this question is to test the authors’ hypothesis.

The research findings of this hypothesis-testing article are significant for at least 5 reasons. (1)
They may help prevent PCE/TCE health harm, like that suffered by 60 Indiana youngsters who
have been diagnosed with, or died from, rare TCE/PCE-associated blood/brain cancers from a local
toxic site [31,73,74]. (2) As US EPA has recommended since the 1980s [74], the findings also may
provide an economical, noninvasive, early-warning method, a focused DUE, to help avoid wasting
money on ineffective toxics’ cleanups. (3) The findings likewise may help deter scientific fraud in site
remediation [75–81], like the fraud that has just occurred in San Francisco’s Hunter’s Point [55–57,82,83].
(4) They also may promote more timely remediation of the world’s largest cleanup, the US legacy from
the Cold War [75]. (5) Given difficulties policing cleanup contractors, the findings likewise may help
reduce legal/financial liability for toxic-waste sites [80] (p. 625), [81].

2. Materials and Methods

Recall that a DUE assesses whether the provided data meet the data needs specified in the
project’s CSM. To begin preliminary testing of the authors’ hypothesis, the article conducts a focused
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or limited-scope DUE of two sets of remediation-assessment materials, both authored by Ninyo and
Moore for developer Trammell Crow. The first set of materials is the 500-page Remedial Investigation.
It argues for redeveloping the toxic site before doing any groundwater testing or removal of the
site’s main risk drivers, carcinogenic VOCs; instead it argues for removing only 11 small, localized
metals-hotspots [67,70]. It claims that although site TCE, PCE, and other VOCs are nearly a million
times higher than allowed (see the authors’ Table 1), they present an average, indoor-air, lifetime risk
of only about 1 cancer in every 3000 persons exposed [67]. (However, the study’s source data show
that the outdoor/ambient-air, lifetime risk is as high as 1 cancer in every person exposed [67,84] (see
the authors’ Table 2), an apparent DUE problem [85]). The Remedial Investigation also says that if
carcinogenic vapors enter future apartments, they can be remediated later [67] (p. 34), [86] (p. 4651).

The second set of site-assessment materials is the Removal Action Workplan, also roughly 500 pages.
It evaluates 3 post-construction, site-remediation approaches. Alternative 1 is no action. Alternative
2 is preconstruction removal of only 11 localized metals-hotspots then, if needed, post-construction
remediation of PCE, TCE, and other carcinogenic solvents—which the developer admits could
cause “more than a year” of high cancer risks to residents while carcinogens are being reduced [67]
(pp. 35–43), [86] (p. 50). Alternative 3 is like alternative 2, but it includes remediation of PCE, TCE
and other carcinogens during site construction. Although the developer admits alternative 3 “would
eliminate any potential” threats to health, he plans to use the riskier alternative 2, as he says alternative
3 “would be a costly and time-intensive process” [86] (pp. 47, 51). [81].

Table 2. Cancer Risk from Site Industrial Solvents, Outgassing into Ambient Air [67,71].

VOC Carcinogen 1
Maximum in

Soil Gas, 1

µg/L

Screening Level 1 (SL),
µg/L

(10−6 Risk)

(Maximum in Soil Gas ÷ SL) 2

= How Many Times above
Government Limits?

Excess Cancer
Risk 2

1,1-Dichloroethane 3 1.56 0.0018 867 8.67 × 10−4

1,1-Dichloroethylene 1.95 0.073 27 2.67 × 10−5

1,1,1-Trichloroethane 0.063 1 0 6.30 × 10−8

cis-1,2-Dichloroethylene 2.53 0.0083 305 3.05 × 10−4

Carbon Tetrachloride 28.4 0.000067 438,801 4.39 × 10−1

Chloroform 1.12 0.00012 333 9.33 × 10−3

Dibromochloromethane 0.998 0.00013 7677 7.68 × 10−3

Dichlorodifluoromethane 9.32 0.1 93 9.32 × 10−5

Trichlorotrifluoromethane 17.6 31 0 5.68 × 10−7

Tetra/Perchloroethylene (PCE) 342 0.00046 743,478 7.43 × 10−1

Toluene 0.244 0.31 0 7.87 × 10−7

Trichloroethylene 8.59 0.00048 17,896 1.79 × 10−2

Trichlorofluoromethane 14.7 1.3 11 1.13 × 10−5

Xylenes, total 0.718 0.1 7 7.18 × 10−6

Given lifetime exposure, TOTAL = certainty of cancer = 1
1 Contaminant list, maxima in soil gas, and screening levels are from [67]. 2 To determine excess cancer risk,
Department of Toxic Substances Control (DTSC) mandates dividing the maximum contaminant level by the screening
level (1.0 × 10−6, a one-in-a-million cancer risk)—and then multiplying this ratio by 1.0 × 10−6 [67]. 3 For the majority
of site industrial solvents (VOCs), that were tested using adequate detection limits, all samples (those not shaded
above) violate allowed levels of the contaminant.

Note that no site-remediation materials include either a data-usability evaluation (DUE) or a current
Data Quality Analysis (DQA). In 2006, an earlier prospective site purchaser performed a brief DQA
of his partial soil-sample set [67] (pp. 2–3). However, site documents include no current DQA of
2007–2019 data, and no one has ever conducted a DUE. DQA is analogous to data verification,
evaluating the analytical quality of data in themselves, whereas DUE is analogous to data validation,
assessing data quality, in light of project needs [87] (p. 3). DQA thus assesses the precision, accuracy,
representativeness, comparability, completeness, and sensitivity of a specific data set, whereas DUE
assesses the adequacy of all data sets for a specific project, like site remediation [74,85] (pp. 1, 10).
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DUE especially evaluates “how missing, questionable, or rejected data affect the data’s usability” [88]
(pp. 9, 48, 42)—and whether any bias “affects the usability of the data for the intended purpose” [85]
(p. 18). Determinate bias is directional, reporting risks that, overall, are lower/higher than true values.
Indeterminate bias is not directional but shows “conflicting bias” or “poor analytical precision,” so that
because some reported risks are lower, and some higher, than true values, the over- and under-estimates
balance out, in terms of the overall risk-data directionality [85] (pp. 17, 35–43).

Regarding methods, the article conducts a “focused” or limited-scope DUE [88] (p. 41). That is, it
limits itself to the DUE sub-methods most critical for detecting determinate and false- negative bias that
could cause risk underestimates and human-health harm. The first DUE sub-method is (1) comparing
Pasadena remediation-investigation data with the project’s conceptual site model (CSM) [89], to identify
any potential data gaps [85] (pp. 6, 40), [74] (p. 23). The second DUE sub-method is (2) determining the
directionality of any data gaps, so as to determine potential determinate bias (and risk underestimation)
because of such preceding gaps [85] (p. 18).

The first sub-method of the DUE, data-gap identification, examines the 6 main risk factors of the CSM:
site contaminants, sources of environmental releases, toxin-transport pathways, exposure pathways,
exposure areas, and receptors (potential risk victims) [89]; [74] (p. 18); [85] (pp. 6, 40), for all of which
toxic-site, risk/remediation plans are supposed to provide risk/toxicity data. Because any data gaps in
these 6 areas could compromise later cleanup, the goal of this first sub-method is to assess whether
the data-sampling tables (in site-remediation documents) cover all aspects of the CSM, needed for
remediation [89]; [74] (p. 23); [85] (pp. 6, 40). The four main steps in this first sub-method are (1)
identifying data needs in the 6 CSM risk factors; (2) locating all data sets for these 6 risk factors such as
sources, pathways, etc.; (3) comparing data needs in (1) with reported data in (2) to discover possible
gaps; and (4) assessing the potential for each data gap, if any, to positively or negatively affect later
remediation and human health [74,85].

The second DUE sub-method, determining directionality of any data gaps, so as to assess any
determinate bias, includes 3 main steps. These are (1) identifying each data gap, if any; (2) using site
data to determine whether reported risk values are lower/higher than they likely are and whether
assessors ignored any above-allowed-level risks; and (3) assessing each data gap for its contribution to
risk under/over-estimates, thus to directionality and determinate bias [74,85].

3. Results

To assess potential CSM data gaps, the first DUE method followed the four main steps, outlined
above. Subsequent sections use these steps to survey the three apparent CSM remediation-data gaps.
These are failure to calculate groundwater risks, airborne risks from carcinogenic vapors/particulate matter
(PM) and most risks to receptors/victims, especially site-resident and area-resident children.

3.1. Data Needs in the Conceptual Site Model (CSM)

The CSM reveals 4 sets of data-assessment needs. These are soil-contaminant-transport
mechanisms, exposure media, exposure routes, and potential receptors. CSM soil-transport data are
needed for mechanisms of (1) direct contact, (2) airborne PM, (3) volatilization to vapor, (4) storm-water
runoff, and (5) migration to groundwater. CSM exposure-media data are needed for (6) soil, (7) air,
and (8) groundwater. CSM data for contaminant-exposure routes are needed for soil (9) ingestion, (10)
inhalation, and (11) dermal contact; (12) air inhalation; and groundwater (13) ingestion, (14) inhalation,
(15) dermal contact. Finally, CSM data are needed for potential receptors (16) commercial/construction
workers and site residents, and (17) area residents [89].

3.2. Three Apparent Conceptual Site Model (CSM) Data Gaps in Site Risk/Remediation Documents

Given the 17 CSM data needs, site-remediation assessments appear to fully cover 5 of 17 needs.
That is, no obvious data gaps appear in remediation-investigation data for (1) direct-contact exposure
to (6) soil through routes of (9) ingestion, (10) inhalation, and (11) dermal contact.
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However, the first and likely greatest data gap is no coverage of 6 CSM areas of groundwater risk.
These are exposures through (4) storm-water runoff and (5) contaminant migration to (8) groundwater,
via routes of (13) ingestion, (14) inhalation, and (15) dermal contact by receptors. A second and partial
data gap is incomplete coverage of 4 CSM-data needs. These are exposure to (2) PM and (3) contaminant
soil vapor in (7) air, through the route of (12) inhalation. A third and partial data gap is incomplete
coverage of two CSM-data needs, risks to receptors/victims, (16) site workers and residents, and (17)
area residents [89]. Should these data gaps be closed?

3.3. The First, or Groundwater Exposure-Route, Data Gap

As already noted, although the CSM shows (8) groundwater is a potential exposure medium, there
are no site groundwater-risk data/samples. Because remediation documents claim groundwater risks
are “unknown” [86] (p. 36), they are not included in the site Human Health Screening Evaluation [67]
(see the authors’ Table 3). Subsequent sections show that assessors/regulators have offered five
attempted scientific justifications for the groundwater-data gap—all of which appear to fail.

Table 3. Human-Health-Risk Calculations in Remediation Documents [67,71].

Cancer from
Indoor-Solvent-

Gases

Cancer from
Ambient-Air

Solvent-Gases

All Threats,
Ambient Air

PM

All Threats,
Drinking Water,

Groundwater

Birth Defects,
Developmental

Disabilities

Adult site
resident

Cancer risk = 1
in 2900 1

No risk calculation,
but risk = 1, certainty 2

No risk
calculation No risk calculation NA

Adult site
worker

No risk
calculation No risk calculation 3 No risk

calculation No risk calculation NA

Adult area
resident

No risk
calculation No risk calculation No risk

calculation No risk calculation NA

Child site
resident

No risk
calculation 4 No risk calculation 4 No risk

calculation No risk calculation No risk
calculation

Child area
resident

No risk
calculation 4 No risk calculation 4 No risk

calculation No risk calculation No risk
calculation

1 Ninyo and Moore [67] calculation for adults. 2 The authors’ calculation, in preceding Table 2, is for adults.
3 This risk is high for site construction workers, given no pre-construction carcinogenic-solvent removal.
4 This risk could be 10 times higher for children ages 2 and younger, than adults, given the age-dependent
adjustment factor (ADAF) [5]—which must be applied to all genotoxic carcinogens such as trichloroethylene,
benzo(a)pyrene, dibenz(a,h)anthracene, methylene chloride, benz(a)anthracene, benzo(b)fluoranthene, chrysene,
indeno(1,2,3-cd)pyrene.

3.3.1. Justifying CSM Groundwater-Data Gap (8) by Ignoring Groundwater Evidence

Project regulators Nicholas Ta and Patrick Hsieh of California DTSC defend the groundwater-
data gap, saying “There is no data indicating groundwater at the site is contaminated or that the site is
the source of groundwater contamination” [90] (p. iii). Yet this claim is doubtful for 5 reasons.

First, DTSC itself said site-groundwater contamination is likely and criticized failure of site
documents to test groundwater. DTSC’s official evaluations of site documents say groundwater is
likely a VOC “source” and should be tested, preconstruction, given known contaminant migration,
e.g., VOCs at the deepest levels tested, 46 m [67] (pp. 20, 39); [70] (pp. 1, 8–10); [86] (pp. 31, 36, 44).

Second, state data also indicate site-groundwater contamination—as the closest state-ground
water-monitoring well (well 1), less than 2 km down-gradient from the site, is contaminated with the
site’s 3 risk drivers, CT, PCE, and TCE (see the authors’ Tables 1–5). PCE levels are four times higher
than US EPA’s Maximum Allowed Contaminant Levels (MCLs) for drinking water [91].

Third, DTSC’s inductive experience suggests site-groundwater contamination. DTSC says
“most sites” with chlorinated-VOC soils have groundwater “impacts” that require testing [62,92,93],
partly because chlorinated-VOCs do not attenuate or become reduced, as petroleum-based VOCs do
(according to the Johnson and Ettinger model). Thus, chlorinated VOCs can have far worse impacts on
groundwater and indoor air than formerly thought—and than site documents claim [94] (p. 2ff.).
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Table 4. Carbon Tetrachloride (CT): Up to 5 Orders of Magnitude above Allowed Levels [67,71].

Sample-Location
Identifiers

CT (ug/L)
Concentration

/0.000067 ug/L (Screening Level
= Times above Allowable Limit To Be Removed?

NMSD3-113 28.4 424,000 no
NMSD3-84 24.3 363,000 no
NMSD3-150 20.6 307,463 no
NMSD3-150 18.5 276,119 no
NMSD2-150 13.2 197,015 no
NMSD2-130 12.9 193,000 no
NMSD2-150 9.83 146,700 no
NMSD3-60 8.39 125,224 no
NMSO1-85 7.53 112,388 no
NMSD1-99 5.95 90,806 no
NMSD2-63 2.67 40,000 no
VD1-30 2.27 34,000 no
NMSD2-130 2.27 33,881 no
NMSV7-5 1.82 27,164 no
VD3-20 1.45 21,642 no
VD3-30 1.42 21,200 no
V2-5 1.39 21,000 no
NMSV6-5 1.38 20,600 no
V8-15 1.36 20,300 yes
VO12-15 1.19 18,000 no

60% of the 101 Ninyo and Moore [94] carbon tetrachloride (CT) samples violate US Environmental Protection
Agency (EPA) allowed CT levels, and 40% of Ninyo and Moore [94] CT samples used tests that were 3000 times
too lenient to detect effects higher than allowed levels. The values above represent 30% of the CT samples known
(through properly sensitive tests) to violate US EPA CT allowed levels. Most illegal levels of CT will not be removed
because they are not in one of the 11 small, localized metals-hotspots [67,70], the only spots onsite to be removed.

Table 5. Onsite Trichloroethylene (TCE): Up to 4 Orders of Magnitude above Allowed Levels [67,71].

Sample Location
Identifiers

PCE (µg/L)
Concentration

/0.00048 µg/L (Screening
Level) = Times above

Allowable Limit
To Be Removed?

NMSD3-113 8.59 1790 no
NMSD3-84 6.99 14,600 no
NMSD3-150 2.92 6100 no
NMSD3-60 2.39 5000 no
NMSD3-150/QC8-SV 1.83 3813 no
NMSD3-60/QC7-SV 1.52 3170 no
V5-5 0.811 1700 no
NMSV15-15 0.704 1500 no
V5-15 0.496 1033 no
NMSD2-150/QC6-SV 0.496 1033 no
NMSD2-150 0.384 800 no
NMSD2-130 0.288 600 no
NMSD2-92 0.091 190 no
VD1-30 0.049 102 no
NMSD2-63 0.047 98 no
NMSD2-63 DUP 0.036 75 no

17% of the 101 Ninyo and Moore [94] trichloroethylene (TCE) samples violate US Environmental Protection Agency
(EPA) allowed levels, and 83% of Ninyo and Moore [94] TCE samples used tests that were 250 times too lenient to
detect effects higher than allowed levels. The values above represent 100% of the samples known (through properly
sensitive tests) to violate US EPA allowed TCE levels. Most illegal levels of TCE will not be removed as they are not
in one of the 11 small, localized metals-hotspots [67,70], the only areas onsite to be removed.

Fourth, the developer’s own site-geology data suggest groundwater contamination. Site soil is
sandy, promoting downward migration of heavier-than-water solvents and DNAPLs [67] (p. 8).
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Fifth, groundwater contamination is likely as the developer’s documents admit that higher-
than-allowed levels of chlorinated solvents are “in all [site] areas and . . . depths” [86] (p. 26), from
0.15 to 46 m below ground surface, the deepest level tested [86] (p. 26); [71,93], at up to 744,000 times
above allowed levels (see the authors’ Tables 1–5). Site-sampling thus confirms sandy-soil migration of
VOCs. For all these reasons, this attempted justification, for the groundwater-data gap, fails.

3.3.2. Justifying Groundwater Data Gap (8) by Promising Post-Construction-Groundwater Testing

State developers/regulators also attempt to justify the groundwater-data-testing gap by saying
groundwater testing will be done post-construction, after onsite multi-story apartment buildings cover
virtually the entire site. DTSC officials Ta and Hsieh say testing can be done later because “in-situ
remedial technologies can be used to remediate subsurface soils and groundwater, even without
physical access to the surface area over a release” [90] (p. iii).

However, such onsite, no-surface-access soil remediation would be difficult if not impossible
because the site is highly and widely contaminated, and most soil sources of toxins have not been, and
will not be, located/removed [67] (pp. 20, 28–29, 38–39); [70] (pp. 1, 8–10); [86] (pp. 31, 36, 44). Moreover,
given the “widespread” extent/depth of the far-above-allowed levels of site contaminants [66,67]
(see the authors’ Tables 1–5), source remediation likely would structurally compromise the newly
constructed apartments, all built on contaminated soil [90] (p. 12).

In addition, the later-remediation argument does not justify pre-construction groundwater-data
gaps because the site’s high levels of industrial solvents, with higher concentrations at deeper soil
levels [67,71], strongly suggest DNAPLs, for which the site has never been tested. Experts agree that
DNAPLs could not be located and removed post-construction, especially without full access to the
area over the contaminants [95–97]. If not, pre-construction groundwater testing—to close data gap
(8)—is needed to avoid precluding soil and groundwater cleanup, especially DNAPL cleanup.

3.3.3. Gaps in Groundwater-Risk Data for CSM Area (4), Storm-Water Runoff

Because site assessors erroneously claim (see Section 3.3.1) there is no evidence of groundwater
contamination, site documents have a data gap regarding (4) storm-water-runoff-contaminant risks to
groundwater [86] (p. 7). This data gap seems serious and unjustified for at least four reasons.

First, site documents reveal above-allowed-level contaminants throughout the site, many within
6 inches of the surface [93]. Once the site’s asphalt cap is removed, these shallow-soil toxins could
contaminate runoff. Second, some storm-water runoff migrates, recharging groundwater [98].

Third, site documents admit that “numerous” storm-drain samples exceed allowed contaminant
levels [86] (p. 35), including for dioxins, polyaromatic hydrocarbons (PAHs), semi-volatile organic
compounds (SVOCs), volatile organic compounds (VOCs), and metals (see the authors’ Tables 1, 4
and 5). Although most storm drains have not been tested below 1.5 m [93,99], because site documents
admit that storm-drain contaminants extend deeper than 9 m, contaminant-runoff has already migrated
deep into soil, likely into groundwater [86] (p. 35).

Fourth, the storm-water-runoff, groundwater-data gap also seems serious and unjustified, as only
11 small, localized metals-hotspots will be removed before construction, leaving all other contaminants
onsite [70] (p. 8); [86] (pp. 20, 29, 35), to contribute to groundwater risks from storm-water-runoff. As
Section 3.3.1 showed, because surface contaminants already have migrated into storm-water drains
and the deepest levels tested (45.7 m), storm-water could again contaminate site/groundwater. If so,
storm-water runoff seems to be an unjustified data gap.

3.3.4. Gaps in Groundwater-Risk Data for (5) Migration of VOCs

VOC migration to groundwater also is a key data gap for all the reasons given in Section 3.3.1,
such as sandy soil, down-gradient well contamination, and contaminant-discovery at the deepest
site-soil levels tested. Also, industrial solvents PCE, CT, and TCE are site “risk drivers” (see the authors’
Tables 1, 4 and 5) [67] (p. 34); the greater their concentrations, the more likely their migration.
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3.3.5. Risk-Data Gaps for Ingestion, Inhalation, and Dermal Contact from Groundwater

Another groundwater-risk data gap concerns exposure routes of (13) ingestion, (14) inhalation,
and (15) dermal contact. These data gaps are difficult to justify, as site groundwater could pose a
health risk, given that wells very close to the toxic site are used for drinking water. In addition,
groundwater/drinking water has been one of the most common exposure routes for PCE/TCE, as in
Woburn, Massachusetts; Franklin, Indiana; Camp LeJeune, North Carolina; etc. (see Section 1).

As the US National Academy of Sciences warned, people are exposed to “VOCs in water by three
major routes: inhalation, skin contact, and ingestion . . . showering, bathing, and drinking water” [100].
Because VOCs like TCE volatilize quickly in hot water, TCE exposure from a 10-min shower can cause
risks as high as drinking TCE-laden water [101]. Such risks argue for closing the site data gaps for
groundwater-risk exposure via ingestion, inhalation, and dermal contact.

3.3.6. Data Gaps for Groundwater Ingestion/Inhalation/Dermal Contact Risk Harm to Children

The groundwater-ingestion/inhalation/dermal-contact data gap also is hard to defend, given no
safe doses of PCE breakdown products like TCE and vinyl chloride; they cause immediate DNA
damage at any dose. Their genotoxic carcinogenicity means that children—ages 2 and younger—face a
10-times-higher-cancer risk than adults, even from the tiniest dose [102,103]. For instance, the TCE
drinking-water MCL is roughly 5 ppb [104], but US EPA warns that 0 is the only safe dose [5] (p. 7).
The US Agency for Toxic Substances Control (ATSDR) warns that for “minimal risk” of permanent
heart malformations, other birth defects, and immune-system harm, daily TCE-drinking-water intake
should be 0.5 ppb TCE—10 times lower that what is allowed, and the daily inhaled/airborne dose
should be no higher than 0.4 ppb—about 2 ug/m3 [5,102,105].

Yet there is no way to protect children from TCE, except through site preconstruction
testing/remediation. Why not? As already shown, leaving a groundwater data gap precludes
later soil cleanup, once buildings are onsite. Preceding sections also argue that the groundwater-data
gap is serious, causing incomplete human-health risk assessment (see Section 3.4) [67] (the authors’
Table 3).

3.4. The Second, or Airborne Exposure-Route, Data Gap

Besides the groundwater-data gap, site documents reveal partial data gaps for CSM exposure route
(12), inhalation, through (7) air, via (3) contaminant volatilization to soil vapor. This gap arises—as the
health-risk calculation includes only indoor risks from VOC vapor intrusion—no other risks, as from
ambient-air, soil-gas exposure. Yet carcinogenic-gas risks are extraordinarily high, up to nearly 750,000
times above allowed levels [67] (see the authors’ Tables 1, 4 and 5).

3.4.1. Airborne-Exposure Data Gaps for Outdoor/Ambient-Air VOCs

The assessors’ justification for ignoring soil-gas exposures—and leaving data gaps—is their claim
that “VOCs in outdoor (ambient) air emanating from soil are not expected to pose a health risk” [67]
(p. 31). Yet federal regulators clearly say (3) ambient soil gas presents health risks. Why?

First, the ambient-air-VOCs data gap in site assessments ignores the child-health alerts of the
US ATSDR. ATSDR has repeatedly warned that ambient air is one of the two “most important routes
of exposure” to TCE “for most members of the general population,” especially for “people living in
the vicinity of a hazardous waste site” [5] (pp. 9, B-1). ATSDR likewise cautioned that in much of
the US, TCE ambient-air levels can cause developmental harm, heart defects, central-nervous-system
abnormalities, and other problems. It warned that because TCE can be absorbed from the atmosphere
and concentrated in foods, “acceptable ambient air [TCE] levels may still result in food levels that
exceed acceptable limits” [5] (pp. 9, B-1, 261, 334). Given such warnings, the ambient-air-VOCs data
gap should be closed.
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Second, the ambient-air-VOCs-data gap should be filled, given high VOC-soil-gas concentrations,
up to nearly 750,000 times above allowed levels (see the authors’ Table 1). All other things being
equal, the higher the site-soil-gas VOC concentrations, the higher the VOC-outgassing to ambient
air [106]. Site source data also show that the outdoor/ambient-air, lifetime risk is as high as 1 cancer
in every person exposed to only 2 of 11 VOC contaminants, PCE and CT. Once one considers the 9
additional VOC contaminants, whose concentrations exceed allowed levels, site cancer risks increase
further—showing a data gap that should be filled [67] (see the authors’ Table 2).

Third, site-VOC levels present a health risk and data gap because, at other vapor-intrusion sites,
outdoor-VOC concentrations are elevated above regulatory standards. Recall (from Section 3.3.6) that
ATSDR says that to avoid permanent heart and other birth defects, airborne/inhaled TCE should be
no higher than 0.4 ppb. [5]. Yet “mean TCE levels in ambient outdoor air across the US are generally
between 0.01 and 0.3 ppb, although mean levels as high as 3.4 ppb have been reported” [5,107] (p. 9),
and ambient-air VOC risks are often 65–700 percent higher than allowed levels [108–110]. Thus, US
ambient-air TCE levels are extraordinarily close to what causes heart defects (0.4 ppb). This closeness
argues for assessing onsite ambient-air TCE and other VOC risks, not ignoring them and leaving a
data gap, as Pasadena-remediation documents have done.

Fourth, the outdoor/ambient-air, soil-gas data gap needs filling because most onsite VOC sources
and DNAPLs have not been located and will not be removed [67] (pp. 20, 28–29, 38–39); [70] (pp. 1,
8–10); [86] (pp. 31, 36, 44). Yet just from the surface to 4.6 m, assessors have identified 17 different
carbon-tetrachloride (CT) and PCE soil sources, scattered across the site [66,67] (see the authors’ Tables 1,
4 and 5). Yet, only one of these carcinogen sources (in a metals-hot spot) will be removed. In addition,
soil sources of CT and PCE that are deeper (than 4.6 m)—and sources for 9 other (non-PCE, non-CT)
above-allowed-level VOCs, including TCE—have never been located, thus will not be removed [67]
(pp. 20, 28–29, 38–39); [86] (pp. 31, 36, 44). Thus, they will outgas into ambient air for many years—just
as non-removed sources and DNAPLs have done at other toxic sites [111–114].

If numbers of shallow-soil sources (up to 4.6 m below ground surface) of nine other VOCs are
proportional to the 17 for shallow-soil CT and PCE (8.5 sources each, as preceding paragraphs show),
then there should be 77 shallow-soil-VOC sources for nine other site VOCs for which no source-testing
has been done. Likewise, if numbers of deeper-soil-VOC sources (up to 30.5 m) are proportional to
those in shallow (to 4.6 m) soil (17 + 77 = 94), the Pasadena site should have up to 627 soil-VOC sources
(100/15) (94) that will not be located or removed—a massive data gap, especially for child risks.

Fifth, the ambient-air-VOC-data gap also should be filled because elevated ambient-air-VOC
concentrations influence indoor concentrations; contaminate much US-metropolitan-area ambient air;
and likely cause continuing toxic-site-VOC outgassing. VOC releases are likely continuing because TCE
has a half-life of 3–7 days in ambient air. Thus, TCE should not be present after about 50 days, unless
there are ongoing releases. Yet because TCE continues to be present throughout the US, ongoing TCE
releases must be occurring. These low releases are significant because many people are continuously
exposed to them, leading to high population risks. Thus, apparently continuing releases of toxins like
TCE (see the authors’ Table 5) should not left as a data gap [107] (pp. 1–2).

3.4.2. Airborne-Exposure Data Gaps for Site Ambient VOCs: Special Risks to Children

Data gaps for ambient-air-VOC risks (see the authors’ Tables 1–5) are worrisome because, as noted
earlier, VOCs are an important class of “air toxics” [16–18]—that are ubiquitous, particularly harmful
to young children, and associated with many increased long-term health risks [11,108,115,116]. For
instance, VOCs—especially site CT, dibromochloromethane, and TCE, three main site risk drivers [67]
(p. 34), are strongly photochemically reactive. As ozone precursors, they react in sunlight with nitrogen
oxides to form ozone or smog [117]. Yet ozone has no safe dose and is a leading cause of child asthma
morbidity and mortality [118–123]. Three is the median age for asthma onset [119].

Compared to adults/older children, younger children take in more air, absorb more ozone, and
can face permanent ozone-caused reductions in lung function. Emissions from VOC toxic sites, like
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this one, can even prevent their organs from developing properly [121,123]. VOCs also can travel
for scores of kilometers, to cause deadly ozone. Because the Pasadena site’s air-toxics (such as CT,
dibromochloromethane, and trichloromethane) contribute to already harmful Los Angeles County
ozone/smog risks—assessors should close this ambient-air-VOC data gap [123] (pp. 4, 5, 11–13, 22).

3.4.3. Airborne-Exposure Data Gaps, Especially for Particulate-Metals (PM) Risks to Children

The site-metals-dust data gap is likewise one that especially harms younger children. This is
because, once the toxic-site asphalt cap is removed, windblown dust will transport toxic-site metals,
carcinogens, and gases, putting children at risk. Four reasons argue for closing this site data gap.

First, the data gap for dust- or PM transport of heavy metals could be a significant because high
levels of metals will remain onsite and can be blown for many kilometers, at least during the 3–4
years of site grading and construction, when site soils are exposed. Because preconstruction site
remediation will remove only 11 small metals-hotspots [67] (pp. 20, 29); [70] (p. 8), sampling logs
show that significant concentrations of above-allowed-levels of metals, like lead and mercury, will
remain [71,93], such as at sampling locations USC-BC-126-01 and V2. USC-BC-126-01 has 15 times the
allowed lead levels, 1170 mg/kg [71]. Because neither lead nor mercury has a safe dose, and both can
cause permanent cognitive impairment in children [4], this data gap should be remedied.

Second, the site-metals-dust data gap should be closed because it could be even more serious than
believed. Why? Most site-soil “sources” of metals likely have not been located, thus will not be removed,
because site owners have not allowed sampling inside/below 68 percent of site buildings—roughly
half of site-soil surface. These buildings could cover high soil-metals levels, because at least half of site
buildings appear to have been used for metals testing/development/fabrication/cleaning—and to have
had floor drains, into site soil [66] (pp. 24–32), [67].

Given limited building access, 10 of 11 named metals-hotspots are outdoors, where assessors
always had site access. By mostly ignoring under-building, soil-metals testing, assessors have focused
on easily assessed, easily removed, outdoor storm drains/pits [67]. If so, the site metals-hotspot
designation may be a function—not of where the highest soil-metals concentrations are but, instead,
a function of where testing was allowed (outdoors), and what is easy to detect and remove (storm
drains/pits). If so, assessors should fill this metals data gap [66] (pp. 24–32), [67].

Third, the site-soil-metals-dust-transport data gap should be addressed because, despite the
absence of a safe dose of many metals, many of them will not be removed, and their windblown dust
will expose nearby neighborhoods. Yet any level of lead exposure to children during sensitive brain
development, especially ages 2 and younger, risks lower IQ, neurological deficits, and psychological
problems like aggressiveness and criminal behavior [124]. Something similar holds for mercury,
another no-safe-dose site metal. Though some site-mercury concentrations—that exceed allowed
levels—will not be removed (e.g., location V2), any mercury exposure risks IQ, developmental,
cognitive, neurological, psychological, linguistic, immune, heart, motor and intelligence deficits in
young children [125]. Both reasons suggest full metals testing is needed, to close this data gap [67].

Fourth, the soil-risk-data gap for dust-transport of heavy metals is significant and should be
closed because the site’s extraordinarily high wind speeds could scatter windborne metals at least
5–31 km offsite. The average Pasadena-site wind speed is 21 km/h [126]—50 percent higher than what
meteorologists classify as “high winds” (15 km/h and above) that can erode soil and blow dust high
into the air [127]. In arid, drought-prone, southern California, “even moderate (wind) disturbance”
causes such metals-dust transport [128]. Similar reasons explain why 22 tons of soil/year blow from
the Sahara Desert into the Americas [127,129–131].

Moreover, the toxic-site’s high winds threaten its urban population on all sides. Pasadena has
mountains to the North, desert to the East, and the Pacific to the West and South. Consequently, during
every month of the year, 10–40 percent of total Pasadena wind comes from each of the four directions
and buffets the city, including the 20,000 people—and 5000 children—who live within 2 km of the
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toxic site [132]. Once the site asphalt cap is removed, these daily high winds will widely transport
metals-dust particles, a risk for which the data gap should be closed [133,134].

Fifth, the CSM data gap for metals-dust transport should be closed because site-screening levels
ignore this risk. DTSC warns that its toxic-site screening levels exclude windblown- contaminant-dust
risks [135] (p. 7), though they put young children most at risk. Thus, DTSC advises that “if [risk]
pathways e.g., excessive dust generation,” occur at a toxic site, like Pasadena; if these standard screening
levels are used; then the resulting “risk evaluation may significantly underestimate risk” [135]. Thus,
site documents should remedy this windblown-dust data gap.

3.4.4. Airborne-Exposure Data Gaps, Especially for VOC-Particulate-Matter (PM) Risks to Children

Another CSM-data gap concerns (2) transport of site VOCs that adhere to PM. Because the toxic site
abuts the 10-lane, I-210 freeway, with its high PM levels; because high site winds will create significant
PM/dust/gases, especially during years of earthmoving/construction; and because of site- outgassing
VOCs (see the authors’ Tables 1, 4 and 5), this PM will adsorb and absorb site VOCs [136,137]. Yet site
documents calculate no PM risks. Four reasons suggest this gap should be closed.

First, site risk drivers, VOCs, will “significantly contribute” to “toxic health effects” of PM,
especially for young children [138–140]. Because PM has no safe dose, and children’s lungs are still
developing, even short-term exposure—hours or days—could cause permanent lung-development
impairment [141–144]. This PM-VOC lung damage occurs because VOCs, adsorbed on particle surfaces,
promote more inflammation than PM alone [137,145]. Yet VOCs, the most dangerous part of PM, can
constitute about 60 percent of airborne-PM mass [146]. Because outgassing VOCs make no-safe-dose
PM more harmful, especially for still-developing lungs, this data gap should be closed.

Second, the PM-VOC data gap also needs closing because VOCs are major precursors for urban
fine PM formation, as already mentioned. They contribute to no-safe-dose PM and ozone/smog that
especially harm children’s lung function [147] (p. 3833). As in Houston, Beijing, Mexico City, and Los
Angeles County (where the site is located), VOCs (like CT, dibromochloromethane, and TCE) already
are some of the worst primary pollutants [147]. Given the already-heavily-polluted location of the
toxic site, there is special need to close this PM-VOC-data gap.

Third, the PM-VOC data gap, associated with site-outgassed VOCs, should be remedied because
VOC-risk-data studies are feasible. For years, scientists have quantitatively assessed the increased
human-health and smog risks associated with PM-and-adhering-VOCs [148–154].

Fourth, the PM-VOC data gap (see the authors’ Tables 2 and 3), should be closed because site
documents admit but fail to assess this problem, especially for vulnerable young children. Site
documents admit that extremely toxic VOCs will “adhere to soil particles and become airborne
contaminants,” a “health hazard,” whenever wind blows over uncapped or excavated site soil [86]
(pp. 38, 67). Yet instead of calculating these PM-VOC risks, site documents say this risk “would be
mitigated through air monitoring” and work-stoppage during high winds [86] (pp. 50, 63, 64). Yet
because of the data gap, it is impossible to know whether planned mitigation is possible. After all, as
Section 3.4.2. warned, work-stoppage during high winds does not stop the winds that blow exposed
site contaminants. If not, this data should be closed, and its results used to re-assess site mitigation.

3.5. Site Data Gaps for Risks to Receptors, (16) Workers/Site Residents, and (17) Area Residents

A third data-gap area is risk to receptors/pollution victims. These include area/site residents,
especially children—and site-adjacent school children and medical and emergency-care patients.

3.5.1. Data Gaps for Schoolchildren and (17) Area-Resident Receptors

Because site documents calculate no risks to (17) area residents, especially children (see Section 3.5.4
below), they ignore their risks from breathing carcinogenic vapors and windblown site contaminants.
Partly because Pasadena City College Extension abuts the north side of the toxic site (and admits
dual-enrollment middle- and high-school students) [155], this data gap is significant. School
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buildings are less than 30.5 m from the toxic site. Yet DTSC says any buildings within 30.5 m
of a subsurface toxic-gas plume—like the plumes under this entire site—should be evaluated for
carcinogenic-vapor-intrusion [106]. Such subsurface carcinogenic gases can travel even farther than
30.5 m, even upgradient to the many homes near the site [156–159]. This is true because of the site’s
sandy soils and high VOC concentrations—nearly a million times higher than allowed (see the authors’
Tables 1, 4 and 5). Yet no offsite soil-gas testing has been done.

In addition, as already mentioned in Section 3.3.6, this child-risk-data gap should be closed because
many site contaminants exceed allowed levels, are genotoxic carcinogens without a safe dose, and are
10 times more harmful to young children [102,105,160]. These genotoxins include TCE; benzo(a)pyrene,
dibenz(a,h)anthracene, methylene chloride, benz(a)anthracene, benzo(b)- fluoranthene, chrysene,
and indeno (1,2,3-cd) pyrene. Yet site documents have no mention of heightened, genotoxic risks
to site-resident children and middle-, high-school, and college students at Pasadena City College.
Instead site documents say only: “The 9.15 acre (toxic) site is bounded to the north by East Foothill
Boulevard [86] (p. 1). Obviously, this data gap should be closed.

3.5.2. Data Gaps for Risks to (17) Area Residents and Patients at the Adjacent Medical Facility

Site risk/remediation documents likewise have no risk data for (17) area residents—including
children—and no data on site risks to medical patients, especially child, elderly, and urgent-care
patients at the multi-story, hospital-size, Kaiser Permanente medical facility that abuts the east side of
the toxic site. It covers an area roughly half the size (4.5 acres) of the toxic-waste site (9.15 acres). For at
least two reasons, this risk-data gap for medical patients, especially children, should be closed.

First, the medical-facility buildings are less than 15.2 m from the toxic site—and only about 30.5
m from subsurface PCE, TCE and other “sources” [66]. As already mentioned, DTSC says anyone
in buildings within 30.5 m of such subsurface, carcinogenic soil-gas plumes is in danger from vapor
intrusion [63,106], and they should be tested. Yet, no offsite testing has been done.

Second, the site Health Evaluation assesses no carcinogenic-gas risks to adjacent medical
patients/offsite receptors, despite DTSC’s warning of their high risks (see the authors’ Tables 1,
2, 4 and 5) [63,106]. Site documents say only, “The 9.15 acre (toxic) site is bounded to the . . . East by a
Kaiser Permanente medical facility” [86] (pp. 1, 2, 5), but this offsite-testing data gap should be closed.

3.5.3. Data Gaps for Risks to Site (16) Construction Workers Who Are Receptors

Remediation documents likewise calculate no site risks to construction workers, despite their
grading and bulldozing contaminants whose concentrations are nearly a million times higher than
allowed (see the authors’ Tables 1, 4 and 5). Instead, site documents say only: “potential risks include
exposure of onsite workers to health and safety hazards typically encountered during construction
activities and fugitive dust and VOC emissions during soil excavation activities” [86] (p. 55). This data
gap should be closed, as already noted, as construction workers will be those most directly exposed.

The construction-worker data gap is especially obvious, as the Health Evaluation [67] (see the
authors’ Table 2) assesses (i) no ambient-air risks for anyone (ii) no risks to vulnerable populations like
construction workers, medical patients, children, and surrounding neighbors and (iii) no groundwater
risks. To admit such serious risks, but neither calculate them nor inform victim populations is
inconsistent, threatens public health, and precludes meeting safety standards.

3.5.4. Data Gaps for Risks to Site-Resident Receptors Who Are (17) Children

However, the most serious data gaps concern child-resident risks. Although the main remediation
document [67] calculates no child risks, its one-page CSM lists “child resident” as a toxic-site-risk
receptor [89], yet excludes them from the Health Screening [67] (see the authors’ Table 3). The other
site-remediation document [86] mentions only risks to children from onsite lead, but neither quantifies
nor clarifies this risk. For instance, it never warns that lead has no safe dose, that any dose—especially
to younger children—risks permanent brain damage, as Section 3.4.2 explained. Instead the document
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says only: “Lead is a COPC [contaminant of potential concern]. The main target for lead toxicity is the
nervous system, both in adults and children” [86] (p. 28). At least six reasons argue for remedying this
child-risk-data gap.

First, as noted in the introduction, most cancer victims, at most PCE/TCE toxic sites, are children.
The younger the children, the greater their risks, as in Woburn, Massachusetts; Franklin, Indiana; San
Francisco, California; and other PCE/TCE sites. Unless Pasadena assessors calculate site-resident-child
risks, they may make the same mistakes that caused child cancers elsewhere

Second, the CSM resident-child-risk-data gap should be remedied because the main reason—that
children are the first and disproportionate-in-number victims at hundreds of PCE and TCE sites—is
that children are far more sensitive to genotoxic carcinogens than adults are. As Section 1 noted,
because of this higher child sensitivity, US EPA directs risk assessors to use an ADAF [102,105,160].
However, because site assessors used no ADAF and calculated no risks to children, this is arguably a
significant data gap; it violates US EPA’s ADAF directive.

Third, site-toxics risks to children should be calculated because young children have “only one
chance” to develop a heart, brain, lungs, etc. When toxins harm them, they face permanent structural
damage to bodily organs, not merely a curable medical ailment. Because treatment typically cannot
correct their permanent developmental harm [102,105,160,161], this data gap should be closed.

Fourth, child-site-resident risks should be assessed because they are very high, and cleanup levels
do not protect children from birth defects. As Section 3.3.6 noted, to avoid cardiac and other birth
defects, US ATSDR says airborne/inhaled TCE doses must be no higher than 0.4 ppb/day—about 2
micrograms/cubic meter (ug/m3)/day [2,5,162,163]. Yet remediation documents allow beside-building,
carcinogenic/mutagenic TCE soil-gas levels as high as 480 ug/m3—240 times higher than what causes
permanent heart defects in children [67] (pp. 40–41), [162,163]. Given this apparent failure to protect
site-resident children, their risks should be assessed, not left as a data gap.

Fifth, the developer’s preceding allowed TCE soil-gas levels—480 ug/m3 [67] (pp. 40–41)—are
1000 times less safe than mandated California and US-EPA cleanup levels of 0.480 ug/m3 TCE, given in
site documents [71]. If the developer is not following state/federal cleanup standards, at least there
should be no TCE child-risk data gap. People deserve to know what risks they may face.

Sixth, the developer’s allowed TCE soil-gas levels—within 5 feet of the surface, are 4250 ug/m3 [67]
(pp. 40–41)—266 times less safe than the 2019 California-recommended soil-gas cleanup levels of
16 ug/m3 TCE [164]. Given the ADAF (Section 1), this 4250 ug/m3 TCE level will be 2,660 times less safe
for children aged two and younger—than what Cal EPA and US EPA advise. Arguably site assessors
should fill these gaps of risks to children. After all, children cannot protect themselves.

3.5.5. Data Gaps for Risks to Adult Receptors Who Are (16) Site Residents

Site remediation and toxics-removal documents also have a data gap for risks to adult (16) onsite
residents, another potential receptor/victim population. Instead of assessing all their site risks, from
all contaminants through all pathways, remediation documents assess only VOC risks, only under
four counterfactual conditions. These are (i) that one is exposed to VOCs only within 9 m of the
surface [67] (p. 33), not within 30.5 m, as DTSC warns [63,106]; (ii) that one is exposed only to average
(not the highest) VOC-soil-gas concentrations; (iii) that some technology can reduce this VOC-soil-gas
risk by a factor of 1000; and (iv) that one is indoors and receives some assumed protective technology.
There is no assessment of site-resident risks from non-VOC contaminants; from groundwater used for
drinking water (Section 3.3); from outdoor carcinogenic gases—a million times higher than allowed
(Section 3.4.1); and from windblown metals/toxins (Section 3.4.2–Section 3.4.3) [67], [70] (p. 8), [86]
(p. 48), (see the authors’ Table 3). Two reasons argue for closing this data gap.

First, site documents admit that “COPCs [contaminants of potential concern] could remain in
place at concentrations that may exceed some regulatory screening levels”; carcinogens will remain
because the only required pre-construction removal is of 11 small metals “hotspots” [86] (p. 48). If
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contaminants remain, there should be no data gaps regarding their levels/risks; otherwise, cleanup
might not meet regulatory standards, and site residents will lose their “right to know” these risks.

Second, remediation documents admit that site residents—especially young children—could face
high cancer risks because no pre-construction carcinogen-remediation will be conducted, and any
needed carcinogen-remediation must be done later, after thousands of residents are already living
onsite. Site documents admit that “future residential and commercial users could be exposed to
[carcinogenic] vapor intrusion until such time that soil vapor is removed which could be more than a
year” [86] (p. 50), [67] (pp. 35–43). Because the developer has rejected preconstruction, site-carcinogen
remediation, and because this risk is significant, this risk-data gap should be closed.

3.5.6. Data Gaps for Risks to Receptors Who Are Area Residents, Especially Children

Site-remediation assessments/plans likewise have another major risk-calculation-data gap, for
risks to (17) area residents. Four reasons argue for closing this data gap.

First, site-remediation data show that highly carcinogenic site soil—which will be graded and
excavated in open air—has levels of industrial-solvents that are nearly a million times above allowed
levels (see the authors’ Tables 1, 4 and 5). Given such high levels of contamination, it begs the question
to assume site-exposure risks from these carcinogens are low, then to allow cancer-risk-data gaps.

Second, as Sections 3.4.1–3.4.3 argued, site-remediation documents admit that because “inhalation
of airborne [carcinogenic] dust particles” could occur [86] (p. 38), and because site toxins could “adhere
to soil particles and become airborne contaminants” [86] (p. 67), state law requires site-monitoring
for airborne-toxics risks, “to ensure that unsafe concentrations of dust are not migrating offsite” [86]
(pp. 66–67). Yet if these risks require site-document warnings, they also require quantitative
calculations of site risks to potential victims. Leaving this data gap both begs the question that
windblown-toxic-dust-and-vapor risk is low and puts potential victims at risk.

Third, remediation documents admit that “inhalation of airborne dust and volatile chemicals in
ambient air” poses risks, yet without evidence, claim that only site-construction workers face these
non-quantified risks [67] (p. 31). Not quantifying this risk for all receptors again begs the question.

Fourth, the area-resident, dust-data gap should be closed because, during earth-moving and
construction, site documents allow windblown contaminants to threaten 20,000 residents, including 5000
children who live within 2 km of the site. They allow above-allowed levels of windblown-contamination
of offsite neighborhoods, at dust levels of 50 micrograms per cubic meter (µg/m3)” [86] (p. 68). Although
the authors’ Table 6 shows such levels could jeopardize area residents’ health, the site Health Evaluation
never included this, or any other, risks to children [67] (see the authors’ Table 3). Because site documents
admit that higher-than-allowed-contaminant levels could harm people, they should quantify this risk,
not beg the question.

Table 6. Allowed Carcinogen Exposure from Contaminated Dust, Blown Offsite 1 [86].

Contaminant
Allowed Contaminant Level in

50 µg/m3 of Dust, Blown
Offsite by Wind [86]

Times above
Allowed Level

Times above Allowed
Level for Children

Ages < 2 [5]

Carbon Tetrachloride 0.067 µg/m3 750 NA
Perchloroethylene 0.46 µg/m3 110 NA
Trichloroethylene 0.48 µg/m3 104 1040 2

1 Note that, despite allowing high levels of carcinogens to be blown offsite, into surrounding neighborhoods, as the
authors’ Table 3 shows, site assessors provide no required calculation of particulate-matter (PM) and other risks in
ambient air. 2 This risk is 10 times greater for children ages 2 and younger, than for adults, given the age-dependent
adjustment factor (ADAF) [5]—which applies to all onsite genotoxic carcinogens such as trichloroethylene,
benzo(a)pyrene, dibenz(a,h)anthracene, methylene chloride, benz(a)anthracene, benzo(b)fluoranthene, chrysene,
and indeno(1,2,3-cd)pyrene.
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3.6. Results of Assessing Possible Determinate Bias in the Data

To assess possible determinate bias or directionality in the preceding data gaps, the second DUE
method followed three main steps: (1) identifying each CSM data gap; (2) using known site data to
determine whether each gap is directional or not; and (3) assessing whether or not, overall, the gaps
contribute to under/over/correctly estimating site risks. Subsequent paragraphs show that site-data
gaps are unidirectional/determinate. They underestimate site risks, especially to children.

3.6.1. Identified CSM Data Gaps

Results of the first step, (1) above, appear in preceding Sections 3.3–3.5. They revealed three
potential data gaps—regarding groundwater risks, airborne risks from windblown PM and carcinogenic
vapor, and receptor or victim risks, especially to children and area residents. The groundwater-data gaps
exist because no site-groundwater-testing has been done. As shown earlier, the air-medium data gaps
occurred mainly because there has been:

• no testing/assessment of outdoor/ambient-air contaminants;
• no human-health-screening assessment of most airborne site risks. (Site documents calculate only

VOC risks, only from indoor-air; only by assuming a 1000-fold level of technological protection
(not guaranteed for the site); and only after assuming average-VOC levels);

• no child risk assessment, despite the 10-fold-higher TCE cancer risks that young children face;
• no full soil testing (site-access problems caused half the site to be excluded from soil testing.);
• no calculation of windblown soil-metals risks, though many onsite-excess-metals areas (that

exceed allowed levels) will not be removed; and
• no calculation of PM risks (from windblown PM gases and PM-adhering VOCs).

Similarly, Section 3.5 revealed that the site victim/receptor data daps occurred because there has been
no calculation and assessment of risks to:

• sensitive groups on site-adjacent property, e.g., schoolchildren, medical/urgent-care patients;
• area residents, especially children, from illegal levels of windblown-site-soil metals/toxins/

carcinogens, though US ATSDR says wind is one of two main ways people are exposed to TCE;
• area and site-resident children, from developmental harm, birth defects, child cancer, and

neurological harm, despite US EPA’s directing use of the ADAF to protect children.

In short, site-remediation documents reveal data gaps regarding groundwater-media, air-media,
and pollution-receptor risks. Are these data gaps merely problems of quantitative imprecision, or do
they reveal directionality, a systematic bias in data collection?

3.6.2. Determining the Overall Directionality, If Any, of Data Gaps

Given the preceding data gaps, do they show any directional bias, in terms of supporting/not
supporting the null hypothesis, that is, no effects from site data gaps? Consider the directionality of these
three risk-data gaps, regarding groundwater, airborne contaminants, and potential victims/receptors.

Section 3.3 showed that site-remediation documents contain no quantitative-risk information
about contaminated-storm-water runoff and soil-contaminant migration (especially of carcinogenic-
industrial-solvent VOCs) into groundwater. As a result, there is no quantitative risk assessment of
groundwater threats to potential victims/receptors, through ingestion, inhalation, or dermal contact.

Section 3.4 likewise revealed that site documents contain no quantitative-risk information about
threats from inhalation of airborne-contaminant PM and carcinogenic gases, by residential and area
receptors/potential victims.

Section 3.5 revealed that site-remediation documents contain no quantitative-risk information
regarding threats to key potential victims/receptors. These include people who are outdoors, within several
kilometers of the site, especially children; site construction workers; and adjacent schoolchildren and
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medical patients. Other victims include those who are indoors, in nearby homes, the adjacent school,
or the large medical facility—who could be victims of offsite carcinogenic vapor intrusion. DTSC
requires such offsite-vapor testing [106], but this has never been done.

Each of these (Sections 3.3–3.5) data gaps is biased toward the null or no-effect hypothesis, because
each gap represents dangerous and ignored effects—as having a risk value of zero. This is because
none of these omitted risks is included in the human-health screening evaluation, which is supposed
to sum all types of risks, via all exposure pathways. By omitting these risks, the resulting, supposedly
aggregate, risk is incomplete, an underestimate. For young children, for reasons already given, these
risk-underestimates are likely as much as 10 times greater than adult risks.

3.6.3. Assessing Whether These Data Gaps, Overall, Contribute to Over/Underestimates of Site Risks

The previous section showed that each CSM data gap-outlined in Sections 3.3–3.5—likely imposes
risks on potential victims. Yet site documents ignored these risks, thus counted their harm as 0 because
the risks are ignored, unquantified, and unanalyzed.

Yet, each omitted risk is likely greater than 0, partly because each is part of the CSM risk factors.
Each omitted risk also is likely greater than 0 because regulators such as ATSDR [5,6]; DTSC [92,106,135];
and US EPA [63] have repeatedly and forcefully warned against ignoring these important pathways of
harm at toxic sites. For instance, they have warned against data gaps regarding special toxic-site threats
to children, e.g., [5,63]; airborne carcinogenic-soil-vapor risks to area residents [5]; carcinogenic-soil
risks to groundwater [63,106]; and so on. That is, the data gaps show that site assessors have not
followed the mandated government rules for toxic-site assessment and cleanup. Instead they have
taken shortcuts that ignore many risks, thus leave data gaps.

Moreover, there is no foreseeable way that these risks—all counted as 0 and thus all supporting
the null or no-effect hypothesis—could be health-positive. Why not? All the ignored risks or data
gaps involve effects of exposure to some of the most toxic and carcinogenic chemicals known, like
TCE. Because none of these ignored health risks/effects could be health-positive, because government
regulators specifically warned against ignoring these risks, yet because site assessors counted all these
toxic risks as zero, overall, these data gaps are unidirectional. They underestimate site risk. Therefore,
they provide evidence of determinate bias.

4. Discussion

Given the preceding evidence for determinate scientific bias in the Pasadena-toxic-site-remediation
documents, at least six questions come to mind:

1. Why did site assessors not calculate groundwater risks, when they have been a main exposure
route for TCE and PCE at other sites where they have caused widespread cancer?

2. Why did site assessors not calculate airborne/soil-borne site risks—the main site risk drivers?
3. Why did city officials and state regulators not find and correct these data-gap problems?
4. Why did Pasadena officials not do a better job of protecting city residents, especially children?
5. What future research might promote further analysis of DUEs to deter flawed toxics cleanup?
6. What general principles does this case study suggest for improving toxic-site remediation?

4.1. First Question: Why Was There No Calculation of Groundwater Risks, a Key TCE/PCE Exposure Route?

Site assessors attempted to answer this question in site documents. Consider their six responses.

4.1.1. Is “No Information” Known about Site Groundwater, as Assessors Claim?

First, site assessors said that “No information is currently known about groundwater at the site,
therefore the HHSE [Human Health Screening Evaluation of site risks] cannot take groundwater into
account at this time” [67] (p. 35). However, these data are unknown because the developer chose to do
no preconstruction groundwater sampling. Moreover, the assessors’ own documents admit that site
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contaminants have been found in site-adjacent drinking-water wells, beginning before 1994 [67] (p. 6).
Hence it does not appear true that “no information” is known about site groundwater.

4.1.2. Are Nearby Well Data Unavailable, as Assessors Claim?

Second, site assessors attempted to explain their not performing groundwater-risk assessment
by saying “We have not been able to obtain recent analytical data from the three wells” near the
site [70] (p. 11). However, as earlier sections of this analysis noted, the closest state-groundwater-
monitoring well (well 1), 2 km down-gradient from the site, is contaminated with the three main site
risk drivers, CT, PCE, and TCE. Its PCE levels are 4 times higher than the US EPA MCL [91]. The senior
author obtained these well data by logging into the state groundwater-information system, setting up
a password, and downloading the data. Thus, it is false that the data are not available

4.1.3. Is Preconstruction Site-Groundwater Testing Unnecessary, as Assessors Claim?

Third, assessors attempted to explain their failure (to perform groundwater testing) by claiming it
was unnecessary, given that depth to groundwater is greater than 91.4 m, and groundwater is not “a
planned source of drinking water” [67] (p. 31). However, DTSC clearly said, in site documents, (1) that
there are two active drinking water wells within half a kilometer of the site [70] (p. 7). and (2) that:
“The water under the site is designated for beneficial use . . . The property owner does not own the
water rights under this site, which is located in an adjudicated basin. Considering all the facts above,
groundwater must be included” in site risk assessments [70] (pp. 8, 10). Moreover, the assessors’ own
data show that soil is sandy and that depth to groundwater is 58.2 m in some places, not greater than
91.4 m [67] (pp. 5, 6), as the assessors claim.

In addition, US EPA and DTSC documents show that vapors and drinking water from contaminated
groundwater—hundreds of meters below residences—could still cause cancer in those residing nearby
at the surface; this is especially because of (1) soil contamination, nearly a million times higher
than allowed (see the authors’ Tables 1, 4 and 5), and (2) the sandy, rocky, site soils through which
carcinogenic gases can move quickly [63,70] (p. 10). That is why, in site documents, DTSC scientists
told the Pasadena developer/assessors to provide “evidence that the deep (carcinogenic) soil-vapor
concentrations proposed to be left in place will not be a future threat to groundwater (and to) develop
site-specific soil-vapor remediation goals protective of ground water” [70] (pp. 10, 20). However,
assessors have not done what DTSC scientists asked; most site soil has not been tested, and assessors
will remediate only the top 9 m of soil at the site, not everything above groundwater [67] (pp. 41–42).
Thus, contrary to the assessors’ third argument, groundwater testing appears necessary.

4.1.4. Would Post-Construction Testing Protect Groundwater and Receptors, as Assessors Claim?

Fourth, site assessors attempted to justify their failure to do preconstruction-groundwater-risk
assessment by committing to do a full year of post-construction-groundwater testing [67] (p. 5), [70]
(p. 12). However, later testing will not work because preconstruction tests are needed, in part, to reveal
what site-soil toxins/sources are contaminating groundwater, so that these soil-contaminant sources
can be removed, before site development [63]. This removal is necessary, as DTSC says, to ensure that
“soils are not a continuing source of groundwater contamination” [70] (p. 9).

In addition, contaminants cannot be removed, post-construction, as the assessors claim, because
even limited site testing and isoconcentration maps (for only 2 of the scores of contaminants) cover at
least one-fourth of the site [66,67], and their removal would undermine the developer’s multistory
apartment buildings [72]. US Superfund regulations (required for this site), including US EPA Guidance
on assessing soil-vapor sites [63], like this one, mandate preconstruction groundwater testing/cleanup,
as does the required National Oil and Hazardous Substances Pollution Contingency Plan [165,166].
Thus, the assessors’ plan for later groundwater testing will not work.
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4.1.5. Is Post-Construction Site-Groundwater Testing Essential to Development, as Assessors Claim?

Fifth, assessors tried to explain not performing preconstruction, groundwater testing/assessment
by claiming that because it would interfere with site construction/earthmoving, it must be done
later [67] (p. 32). However, this response begs the question. Predevelopment groundwater testing
will not interfere with earthmoving. This response suggests the developer gives groundwater testing
(and public health/safety) second priority, after site-construction, rather than giving health/safety first
priority, and site-construction second priority. Should public health/safety not come first?

The developer/assessors admitted their questionable priorities in site documents. They said later
groundwater-testing wells must be placed, not in areas where scientifically rigorous sampling requires
placement, but where they “will not impact planned site development” [70] (p. 7). They likewise said
preconstruction removal of soil-based groundwater contaminants should not be done because it “is
not a timely means of remediating the site once site development is approved to proceed” and would
interfere with the developer’s planned rapid site construction [70] (p. 10). However, this reason fails,
as it provides no scientific justification for failure to assess groundwater.

4.1.6. Is Post-Construction, Site-Groundwater Testing Legally Defensible, as Assessors Claim?

Sixth, the site developer tried to explain not performing preconstruction-site-groundwater testing
by claiming that the Prospective Purchase Agreement (PPA), that Trammell Crow obtained from
California DTSC [167], did not require preconstruction groundwater testing, as it is “outside the
responsibilities and obligations” of Trammell Crow [70] (p. 10). PPAs are state contracts that give
toxic-site remediators-developers liability protection against future harm from site toxins, provided
they are “willing to cleanup contaminated sites” [168]. This Trammell Crow response is correct, insofar
as the PPA itself does not require preconstruction groundwater testing.

However, the PPA does not change the fact that state and federal cleanup rules require groundwater
testing/assessment (see preceding paragraphs). Moreover, the PPA itself requires that “intended uses
of the site (and all activities anticipated to be undertaken in connection therewith) will not pose health
risks to persons,” and that the developer will “reduce the human health risk to acceptable levels.”
Yet if previous arguments are correct, closing the groundwater-testing gap is necessary to meet both
PPA requirements [167] (pp. 2, 5). In addition, the PPA says the state “may specify such additions,
modifications, and revisions” to planned remediation, “as deemed necessary to protect human health
and the safety of the environment” [167] (p. 8). Hence, to provide a scientific justification for not
conducting preconstruction groundwater testing, Trammell Crow must show this failure or data gap
nevertheless protects “human health and the safety of the environment.”

Moreover, if the DUE is correct, there is strong evidence that the PPA must be revised. One reason
is that, for the last decade, a multi-committee group of state legislators has tried and failed to reform
DTSC. In 2019, this DTSC-oversight, super-committee concluded that California DTSC.

• continues to have “an inadequate and unresponsive regulatory program,” especially problems
with “transparency, accountability, and . . . . cleanup,” despite legislative “statutory changes . . . to
help DTSC better achieve its mandates.” This has caused “decreased . . . public trust in DTSC”;

• “is not properly enforcing state and federal law and is allowing . . . numerous violations of state
law and regulations . . . [and use of] outdated technologies, practices, and safeguards . . . [that] are
potentially releasing hazardous wastes into the environment” [169] (pp. 7, 4–6).

Given these California-Legislature conclusions, the Pasadena developer may have induced DTSC
(see the next section) to ignore state/federal toxic-cleanup standards. However, as Section 4.1 helps
argue, this does not make either site data gaps or cleanup violations scientifically defensible.

4.2. Second Question: Why Did Assessors Ignore Site Risk Drivers, Not Test Most Air- and Soil-Borne Risks?

At least two possible explanations come to mind for the second, or airborne-risk, data gap. One
reason may be that because no one did a DUE for site-remediation documents, the airborne/soil-borne
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data gaps were not obvious. The documents did claim that sampling data collected in 2006 were
“usable for their intended purposes” because they met data-quality criteria such as adequate sample
preservation and detection limits [67] (Attachment C, p. 3). However, no assessors ever did a DUE
to assess the CSM completeness of the entire site-data set, as dictated by US EPA and some state
guidelines [74] (pp. 25–42), [85] Likewise, no one has done a DQA for site data collected since 2006.

Why did no site assessors follow the US EPA guidelines for data-usability? One reason may be
that DTSC has never mandated DUE evaluation, as other states (like New Jersey) do [85]. DTSC also
has not developed its own version of the 1992 US EPA guidelines for data-usability evaluation [74], as
states like New Jersey have done. Thus, in part, DTSC omissions may help explain the absence of a
DUE for site-remediation documents, and thus the failure to ensure that documents had no data gaps.

Perhaps another reason Pasadena-remediation assessments have air/soil-borne data gaps is
that such gaps are common in toxic-site cleanups, especially wherever DUEs are not required. For
instance, Trammell Crow is the largest US commercial real-estate developer, with assets of more than
$65 billion [69]. Its “Brownfields Acquisition and Development” division, to which it refers by the
acronym BAD, is dedicated to cheaply purchasing and redeveloping toxic-waste sites [170,171]. For its
BAD properties, Trammell Crow promises the public and city officials full cleanup, a safe site [172]
(p. 2), [173]. However, after purchasing these properties, Trammell Crow often appears to allow the
same questionable data gaps, especially regarding groundwater, deeper soil, and carcinogenic soil gas.
Hence Trammell Crow’s Pasadena-site data gaps may reflect its wider corporate practices [84].

Another possible explanation for Trammell Crow’s data gaps is financial conflicts of interest.
Since at least the 1980s social-science research has clearly established “the funding effect,” that research
conclusions are likely to serve the interests of those who fund the research, an effect that is statistically
correlated with research outcomes. Thus, if private companies fund research on safety of their chemicals,
drugs, or site remediation, the research is likely to show safety. If nonprofit, university, or government
agencies fund the same research, it is much less likely to show safety. This “funding effect” has
been overwhelmingly established in environmental-health, tobacco, climate-change, chemical-toxicity
studies, and so on; this effect also could be occurring in Pasadena toxics-remediation assessments by
those whose profits are at stake [16,174,175].

4.3. Third Question: Why Did City or State Regulators Not Stop Site-Remediation Data Gaps?

Pasadena city officials were the first to approve site-remediation documents, but at least three
factors could have encouraged their approving almost any housing development—even on an
inadequately assessed toxic site. These three factors are California’s housing shortage [176], Pasadena’s
$2-billion budget deficit and, thus, Pasadena’s needed tax-base expansion [177] (p. 11).

Another factor in the approval of scientifically deficient toxic-site-remediation assessments is that
the Pasadena mayor (and developer) Terence Tornek and many city-council members accept campaign
donations from developers—whose local projects they vote to approve/disapprove [178]. However,
other cities, like Los Angeles, prohibit such donations [179]. Any of the preceding factors could have
led city officials to blindly trust Trammell Crow’s safety promises [172] (p. 2), [173]. In addition, as
Section 4.1.6 shows, because the state says California DTSC has not properly enforced toxics-cleanup
for at least 10 years, the Pasadena site-data gaps may be part of a larger problem [84].

4.4. Fourth Question: Why Did Assessors/Officials Not Give Residents, Especially Children, More Protection?

Preceding sections revealed at least 7 reasons that children (ages 2 and younger) are most at risk
from data gaps in Pasadena toxic-site-assessment/remediation documents. These younger children:

• Face up to 10-times-higher cancer risks (than adults will) from the toxic site, yet assessors performed
no child risk assessment to quantify/assesses any of these higher risks (Section 3.5.5).

• Face 10-times-higher cancer risks than adults from carcinogenic-vapor intrusion, especially from
TCE, a genotoxic carcinogen having no safe dose (Sections 3.3.6 and 3.5.1).
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• Face windblown, ambient-air TCE dust/gas whose levels are 1040 times more harmful than the best
California standards dictate (Section 3.5.6).

• Face permanent heart defects because TCE-soil-cleanup levels of 480 ug/m3 are 240 times less safe
than the 2 ug/m3 TCE—that causes such birth defects in children (Section 3.5.4).

• Face IQ losses from windblown, no-safe-dose lead that will not be cleaned up (Section 3.4.3).
• Face asthma and lung-function losses from windblown carcinogens and PM (Section 3.4.4).
• Face asthma and lung-function losses from site VOCs that cause no-safe-dose ozone (Section 3.4.2).

4.4.1. Assessors May Not Realize How Sociocultural Factors Put Children at Higher Toxics Risk

Given these heightened toxic-site threats to children, assessors may have failed to protect children
because they tend to be natural scientists/engineers, thus unaware of child-health threats. Public
officials also often trust engineering experts, not realizing they have little pediatric expertise.

In particular, assessors/officials may not know that specific social problems put children at
greater risk from toxic sites. These already-noted problems include the facts that disproportionate
numbers of vulnerable poor people, minorities, and children live near toxic-waste sites [2,180,181];
25 percent of all US children—mostly poor and minority children—live within 2 km of toxic-waste
sites [2,76–79,180,181]; most toxic-waste sites are in dense, urban areas [180]; and people living near
toxic-waste sites have (statistically significant) higher rates of health harm [3].

For instance, children conceived by mothers living within 3 km of an unremediated toxic-waste
site face statistically-significant more harm, compared to children—born to the same mothers—but not
conceived when their mothers were living within 3 km. Compared to their siblings, near-toxic- site
children are 10 percent more likely to be diagnosed with a cognitive disability; 7 percent more likely to
repeat a grade; more likely to have 6 percent (of the standard deviation) lower standardized test scores
in grammar school; and 7 percent more likely to be suspended from school [3,4,182].

4.4.2. Assessors and Regulators May Not Realize That Children Are Not Merely “Little Adults”

Because few people are likely aware of the preceding statistics, they may think children are merely
“little adults,” with the same biological vulnerabilities as adults. Yet as Section 1 outlined, children
often are more biologically vulnerable to pollutants than adults, receive higher doses, and have a
longer lifetime during which resulting harm can be expressed [180,183]. For all the preceding reasons,
children are part of the roughly 25 percent of the population that is especially sensitive, including
pregnant women and the elderly [184].

Yet in spite of children’s medical vulnerabilities, many regulations do not adequately protect
children from toxic chemicals [185], ionizing radiation [186], or other contaminants. Instead, regulations
often protect “reference man” [186], the white adult male, the most common medical-research and
clinical-trials participant. (Experiments on children are not allowed, a fact that encourages less
protective regulations for children.) As a result, people may not realize that children have “only one
chance” to develop a brain, heart, or lungs; if toxins jeopardize this “one chance,” the resulting harm
is often permanent [161]. Because children have “only one chance” [161] to develop, and often are
10 times more vulnerable to toxins, the US National Academy of Sciences/US Institute of Medicine,
recommends “separate risk assessments for children and adults” in high-risk situations like toxic-site
assessment/remediation [187]. This recommendation is consistent with US EPA’s requiring use of
ADAFs (see Section 1) to assess risks to children [5,188]

4.5. Fifth Question: What Future Research Might Investigate DUEs as Ways to Deter Faulty Cleanups?

This article performed a focused or limited-scope DUE for the Pasadena-toxic-site-remediation
documents. One useful area of future DUE research would be to perform a focused DUE for Pasadena
remediation documents that addresses other site contaminants besides chlorinated solvents such as
PCE and TCE. For at least three reasons, it would be important to perform a DUE that addresses
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soil levels of site polyaromatic hydrocarbons (PAHs), such as benz(a)anthracene, benzo(a)pyrene,
benzo(b)fluoranthene, and dibenz(a,h)anthracene. One reason is that some of these PAHs far exceed
allowable levels. A second reason is that some of them are genotoxic carcinogens, thus especially
dangerous for children, including benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene chrysene,
dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene. A third reason to do future DUEs to address
Pasadena-site PAHs is that many of them are semi-volatile organic compounds (SVOC) that are
implicated in vapor intrusion, just as PCE and TCE are. Still another area of useful research would be to
conduct a full-blown DUE for the Pasadena site, to determine whether other aspects of site-remediation
documents exhibit similar problems with data usability.

An additional area of important research would be to determine whether remediation documents
for other toxic sites also have CSM data gaps that result in site-risk underestimation/determinate bias
and therefore are likely to cause less protective cleanups. If other sites exhibit these data gaps and
determinate bias, as the authors suspect, evidence from these other sites will help strengthen the
preliminary conclusion of this article, namely, that routine, independent DUEs may be needed to help
deter flawed PCE/TCE cleanups.

4.6. Sixth Question: What General Principles Does This DUE Suggest for Improving Toxic-Site Remediation?

The results of this Pasadena DUE case study suggest that without routine, independent DUEs,
site-remediation documents may fail to have complete, usable data needed for reliable cleanup. Thus,
if this article’s results are generalizable, they suggest several important principles:

1. Safe toxics cleanup may require implementing the highest data-quality/usability standards.
2. Safe toxics cleanup may require enforcing the highest data-quality/usability standards.
3. Safe toxics cleanup may require mandating routine, independent, data-quality/usability controls.
4. Safe toxics oversight may require prohibiting officials’ discretionary acceptance of flawed data.

Principle 1 is important because, as Section 4.2 notes, most states—except for those like New
Jersey—have not implemented the 1992 US EPA DUE guidance. California, for instance, has no
document that implements US EPA DUE guidance. Yet this article shows how important DUEs can be,
as one way to help ensure adequate testing and assessment data to support reliable site remediation.
Yet guidance that is not implemented by states cannot guide state cleanups. Because both Pasadena city
officials and the state DTSC approved the Pasadena toxic-site-remediation documents, despite their
having numerous data gaps that jeopardize site safety, Principle 1 is important.

Principle 2 is important because although federal and some state authorities have excellent
guidelines for toxic-site scientific-data audits, DQAs, DUEs, e.g., [74,85,87], these guidelines often are
not enforced by state or federal authorities (see Section 4.1.6). Sections 2 and 4.2 show that DTSC did
not enforce federal and state DQA guidelines. As a result, both the city and the state approved the
Pasadena site-remediation documents although the Pasadena DQA covers only some 2006 data, no
data for the last 13 years, and no data generated by the current site assessors/developers. Yet valid
DQA is a necessary condition for usable data and for doing a complete DUE [74,85,87].

Principle 3 is important because it recognizes that when routine, independent (third-party),
data-quality/usability evaluation is not required, as at the Pasadena site, then public health and safe
cleanup can be jeopardized. Given repeated failure to implement and enforce data-quality standards,
routine, independent-party, data quality/usability assessment must be required for all toxic sites,
particularly those in which polluters/developers do the remediation, as they have obvious financial
conflicts of interest. After all, if site assessors/remediators/developers knew that their analyses would
undergo routine data-quality evaluation by an independent third party, this knowledge would likely
deter the sort of data gaps and risk underestimation that this article has revealed.

Principle 4 is important, as many toxics’ regulators, like the California DTSC, have apparent
authority to use “discretion” to ignore state/federal recommendations for data quality/usability. [169].
If this exercise of discretion by regulatory agencies is a problem in other states, then protecting the
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public, especially children, from toxic wastes may require both routine, independent DUEs/DQAs/etc.
and also prohibiting discretionary actions that allow violations of data-quality standards. Why? Data
quality/usability standards—that are merely discretionary—are not really standards.

5. Conclusions

The preceding data-usability evaluation (DUE) shows three major conceptual-site-model,
scientific-data gaps in the Pasadena toxic-site-remediation documents, namely, data gaps regarding:

• all risks from groundwater;
• airborne risks from windblown PM, carcinogenic vapors, and vapor intrusion;
• risks to many area receptors/victims, especially to onsite-resident and area children.

Because these gaps appear to represent determinate biases that cause underreporting of site risk
and needed remediation, Pasadena-remediation assessments fail this focused DUE and are likely to
lead to flawed toxic-site cleanup. While many Pasadena residents could be hurt by deficient toxic-site
remediation, the authors showed seven distinct reasons that children will be hurt most (Section 4.4).

The preceding results are important because they suggest one reason for flawed PCE and TCE
remediation, namely, failure to perform routine, independent DUEs. If the results of this article prove
to be generalizable, they suggest that routine, independent DUEs might help to (1) prevent PCE/TCE
health harm; (2) provide an economical early-warning system for potentially flawed toxic-site cleanups;
(3) deter scientific fraud in toxics remediation; (4) ensure more timely waste remediation; and (5) reduce
legal and financial liability for toxic-waste sites.
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Abbreviations: Acronyms Used in the Article

Acronym Phrase
ADAF age-dependent adjustment factor
ATSDR US Agency for Toxic Substances Disease Registry
Cal-EPA California Environmental Protection Agency
COPC contaminant of potential concern
CSM conceptual site model
CT carbon tetrachloride
DNA deoxyribonucleic acid
DNAPL dense, non-aqueous phase liquid
DQA data-quality analysis
DTSC California Department of Toxic Substances Control
DUE data-usability evaluation
EPA US Environmental Protection Agency
HHSE human health screening evaluation
IQ intelligence quotient
MCL maximum-allowed contaminant level
NY New York
PAH polyaromatic hydrocarbons
PCB polychlorinatedbiphenyl
PCE perchloroethylene (tetrachloroethylene)
PM particulate matter
PPA Prospective Purchaser Agreement
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SVOC semi-volatile organic compound
TCE trichloroethylene
TPH total petroleum hydrocarbons
UK United Kingdom
US United States
VOC volatile organic compound
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