
Haughton and Balado BMC Bioinformatics 2013, 14:121
http://www.biomedcentral.com/1471-2105/14/121

RESEARCH ARTICLE Open Access

BioCode: Two biologically compatible
Algorithms for embedding data in non-coding
and coding regions of DNA
David Haughton* and Félix Balado

Abstract

Background: In recent times, the application of deoxyribonucleic acid (DNA) has diversified with the emergence of
fields such as DNA computing and DNA data embedding. DNA data embedding, also known as DNA watermarking or
DNA steganography, aims to develop robust algorithms for encoding non-genetic information in DNA. Inherently
DNA is a digital medium whereby the nucleotide bases act as digital symbols, a fact which underpins all
bioinformatics techniques, and which also makes trivial information encoding using DNA straightforward. However,
the situation is more complex in methods which aim at embedding information in the genomes of living organisms.
DNA is susceptible to mutations, which act as a noisy channel from the point of view of information encoded using
DNA. This means that the DNA data embedding field is closely related to digital communications. Moreover it is a
particularly unique digital communications area, because important biological constraints must be observed by all
methods. Many DNA data embedding algorithms have been presented to date, all of which operate in one of two
regions: non-coding DNA (ncDNA) or protein-coding DNA (pcDNA).

Results: This paper proposes two novel DNA data embedding algorithms jointly called BioCode, which operate in
ncDNA and pcDNA, respectively, and which comply fully with stricter biological restrictions. Existing methods comply
with some elementary biological constraints, such as preserving protein translation in pcDNA. However there exist
further biological restrictions which no DNA data embedding methods to date account for. Observing these
constraints is key to increasing the biocompatibility and in turn, the robustness of information encoded in DNA.

Conclusion: The algorithms encode information in near optimal ways from a coding point of view, as we
demonstrate by means of theoretical and empirical (in silico) analyses. Also, they are shown to encode information in a
robust way, such that mutations have isolated effects. Furthermore, the preservation of codon statistics, while
achieving a near-optimum embedding rate, implies that BioCode pcDNA is also a near-optimum first-order
steganographic method.

Background
The potential of deoxyribonucleic acid (DNA) for use as
a storage medium of digital data was realised just over
a decade ago [1]. Many promising applications of this
emerging field have been proposed, such as long term
data storage [2] and genetic tagging [3]. It is likely that,
with advancements in DNA sequencing and synthesis-
ing technologies, information embedding in the genome
of living organisms will be routine in the near future. To

*Correspondence: david.haughton@ucdconnect.ie
School of Computer Science and Informatics, University College Dublin,
Belfield, Co. Dublin, Ireland

date several data embedding algorithms have been pro-
posed [1,2,4-8]. However, as we will see later, none of
them fully comply with some recently highlighted bio-
logical restrictions. Not adhering to these restrictions
can potentially be detrimental to the organism hosting
the artificial information-carrying DNA. Here we pro-
pose two novel algorithms jointly called BioCode, which,
unlike any previous ones, produce information-encoded
DNA more biologically compatible for the host organism,
thus improving the robustness of the encoded message.
In addition to operating under strict constraints, never
dealt with before, they encode information in near opti-
mal ways. This is to the extent that for one such algorithm

© 2013 Haughton and Balado; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 2 of 16
http://www.biomedcentral.com/1471-2105/14/121

the embedding rate (in information bits embedded per
DNA component) is indistinguishable from the optimal
theoretical bound.
Interest in using DNA for information storage (genetic

memories) is growing, not surprisingly, as it is a highly
compact and potentially durable medium with the abil-
ity to make replicas of information costing little energy.
Stored information is passed from generation to gener-
ation when placed anywhere in the genome of asexual
organisms. Data encoded in DNA is subject to errors
caused by random mutations in the organism’s DNA, but
if encoded correctly it may still be retrievable after mil-
lions of generations or more [7]. Encoding information in
sexually reproducing organisms is more complicated due
to the effects of genetic crossover. However this issue has
been tackled by Heider et. al [9], who proposed embed-
ding information in mitochondrial DNA (mtDNA). In
most sexually reproducing species mtDNA is inherited
from themother alone, making it an ideal location for data
embedding.
Another application of robust DNA data embedding

algorithms is the genetic tagging of organisms. This would
be of interest to individuals researching and working
with artificial or genetically modified organisms, allow-
ing them to embed “ownership watermarks”. This was the
case in one recent, high profile experiment performed
by the J Craig Venter Institute (JCVI). A watermarked
DNA sequence, representing the researchers’ initials, was
embedded in a chemically synthesized bacterial genome
[10]. A further proposal is the application of DNA data
embedding for tagging potentially hazardous viruses [11].
Unique watermarks could identify different laboratories
handling viruses, and thus it would be possible to refute
claims that some particular institution is the source of a
viral outbreak.
Despite the different potential applications of DNA data

embedding, all embedding algorithms should be designed
based on some common principles. Many of the prior
algorithm proposals have been made by researchers con-
cerned primarily with the biological aspects of embedding
an artificial DNA sequence, but which paid relatively
little attention to the coding aspects of the problem.
Instead we have designed the BioCode algorithms keep-
ing in mind not only more stringent biological con-
straints, but also principles from digital communications.
Firstly, the information-carrying DNA sequence should
not hinder the host organisms’ development (that is, it
should be as biocompatible as possible). Secondly, the
embedded data should be retrievable as close as possible
to a theoretical threshold (Shannon’s capacity), deter-
mined by the number of generations a message has been
transmitted along and the mutation rate between genera-
tions. Finally, the algorithms should make economical use
of DNA in terms of data storage, that is, maximise the

embeddable payload for a given sequence length. We will
demonstrate these properties through an in silico empir-
ical analysis, in conjunction with theoretical estimates of
achievable embedding rate.
There exist two distinct regions within the genomes

of living organisms: protein-coding (pcDNA) regions and
non-protein coding (ncDNA) regions. In the past, ncDNA
was thought to have no function, however recent research
suggests that up to 80% of ncDNA may be responsible for
regulatory functions [12]. In the remaining 20% of ncDNA
it is safe to assume that DNA can be freely overwritten.
Indeed several authors have performed successful data
embedding experiments in vivo in these regions [5,6]. The
ncDNA data embedding algorithmwe propose here is also
designed to operate in this non functional 20% of ncDNA.
On the other hand pcDNA regions are responsible for

the encoding of proteins, which are the basic building
blocks of life. It is possible to modify pcDNA regions to
encode information; however the constraints which an
algorithm must operate under are more restrictive. The
goal of each of the two BioCode algorithms presented here
is to optimally embed information within each of the two
types of DNA regions that we have discussed.

Prior art
The DNA data embedding field was born a little over a
decade ago with the seminal paper by Clelland et al. [1],
in which the authors proposed and implemented a data
embedding scheme. Alphanumeric data was embedded
using a trivial assignment of base groupings to charac-
ters. The synthesised DNA in this case was embedded in
vitro, but not sub-cloned into an organism’s genome. The
work of Clelland et al. was built upon by Wong et al. [2],
in which they performed in vivo embedding of data in
bacterial ncDNA regions. Similar to Clelland et al’s encod-
ing scheme, a base to alphanumeric translation table was
used. Two bacteria were selected for embedding, E. coli
and D. radiodurans. The latter has the ability to survive in
harsh environments such as those containing high levels
of ionizing radiation, implying that the encoded message
would also be resilient under such conditions.
The first paper to discuss error correction for informa-

tion encoded in DNA was by Smith et al [13]. Since any
information embedded in DNA is replicated from genera-
tion to generation, any difference between encoded infor-
mation may be resolved by examining copies obtained
from different organisms. Also, there exists genetic
machinery in the cell which maintains DNA, providing
limited error correction. Despite such inherent error cor-
rection abilities, the use of error correctionmethods at the
encoding stage is required to reliably retrieve information
after many generations of a host organism.
Arita and Ohashi [4] developed an embedding algo-

rithm which operates in pcDNA regions. The algorithm

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 3 of 16
http://www.biomedcentral.com/1471-2105/14/121

encodes binary data and was successfully tested in vivo.
The main pitfall of this method is that it requires that the
original DNA sequence be available at the decoder end in
order to decode the embedded message.
One paper of significance was written by Heider and

Barnekow [5], in which they proposed two versions of
a data embedding algorithm, entitled “DNA-Crypt”. The
ncDNA version of the DNA-Crypt algorithm is a triv-
ial mapping of bits to bases. The authors also proposed
a pcDNA version of their algorithm, and went on to
test their proposal in vivo [14]. It was suggested that
Hamming code be used in conjunction with DNA-Crypt
to increase robustness under mutations, although note
that error correction can actually be applied on any DNA
data embedding method.
The use of repetition coding as an explicit DNA data

embedding method was first proposed by Yachie et al [6].
The premise behind their algorithm is that errors may
be corrected by embedding redundant copies of infor-
mation throughout an organism’s genome. The authors
performed in vivo embedding of binary data in multiple
ncDNA regions. Also included was an in silico analysis
of their method, showing the data recovery rate for a
varying mutation rate. This work was expanded upon by
Haughton and Balado [7].
The first paper to discuss performance analysis of data

embedding algorithms and propose performance bounds
was by Balado [15]. The achievable rate for both ncDNA
and pcDNA under substitution mutations when codons
are uniformly distributed was presented. Further bounds
were proposed by Balado and Haughton in [16]. These are
upper bounds on the possible embedding rate (bits per
DNA component) that an algorithm can attain. Therefore
we will compare the performance of the BioCodemethods
to these bounds.
For more information on DNA watermarking the

reader is referred to the recent review by Heider and
Barnekow [17].

Notation and framework
In this section we introduce the notation necessary
for explaining the BioCode algorithms. We also present
the framework used and a summary of basic biolog-
ical facts that will be needed to explain the algo-
rithms. Sets will be represented by calligraphic letters,
for instance S . The cardinality of a set, or the num-
ber of elements it contains, is denoted as |S|. Elements
of sets are represented by lower case letters, such as
v ∈ S . Vectors of elements are represented by bold letters,
for instance v = [v1, v2, · · · , vk].
Inherently, DNA is a linear digital storage medium

whose building blocks are four nucleotide bases, denoted
in set notation by X � {A,C,T,G}. These bases belong to
two chemically distinct groups, purines R � {A,G} and

pyrimidines Y � {T, C}. We will represent a DNA strand
comprising n bases by a vector x = [x1, x2, · · · , xn], with
xi ∈ X . A dinucleotide DNA sequence is represented by a
two-element vector d = [x1, x2]. TheDNAmolecule actu-
ally consists of two antiparallel strands, and either of the
two strands completely defines the other by means of the
so-calledWatson-Crick base pairings A–T and G–C. This
fact is of importance for the BioCode ncDNA method, as
we will see later.
The DNA data embedding problemmay be modelled in

terms of the communications channel shown in Figure 1.
The purpose of DNA data embedding is to encode a mes-
sagem = [m1,m2, · · · ,ml], withmi ∈ M � {0, 1}, within
a host DNA strand x. This is achieved using a function
f (·, ·, ·), which represents a DNA data embedding algo-
rithm. Its output is an encodedDNA strand y = f (m, x, k),
where k is a secret key. Since organisms are subject to
mutations, any information encoded in their genomes is
equally so. This is reflected by y undergoing a probabilistic
“mutations channel”, possibly accumulating errors, to give
a mutated DNA strand z. At the decoder a function d(·, ·)
takes z in order to produce an estimate of the original mes-
sage,m′ = d(z, k). The embedding key k is a secret shared
by the encoder and decoder to ensure that the encoded
information is private. As we will see the embedding key
may consist of a permutation of a basic translation table,
but it may also include a cryptographic key if desired.
For reasons that will become clear next, DNA data

embedding algorithms which target protein-coding DNA
manipulate codons, as opposed to individual bases. A
codon is a group of three consecutive bases, which we
will denote as x̂ = [x1, x2, x3]∈ X 3, with a vector of
codons being for instance x̄ = [x̂1, · · · , x̂n]. Genes are
simply pcDNA regions flanked by certain start and stop
markers enclosing consecutive codonsa that can be trans-
lated into proteins by the genetic machinery. Every codon
x̂ uniquely translates to an amino acid a = aa(x̂), where
the aa(·) function translates a codon (or codon sequence)
to an amino acid (or amino acid sequence). Using their
standard abbreviations, the set of all possible amino acids
is A � {Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His,
Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, Stp }.
Stp is included for notational convenience, although it is
not an amino acid but just a “translation stop” command.
The sequential concatenation of amino acids in a gene
produces a protein. The relationship between codons and
amino acids, represented by aa(·), is given by the near-
universal genetic code. This is a redundant relationship
since |X 3| = 64 but |A| = 21. The set of synonymous
codons which translate the same amino acid a ∈ A is
denoted Sa. The superset of all codons is given by SA, and
each subset Sa is composed of the codons which translate
the same amino acid, ∀a ∈ A|Sa ⊂ SA. This redun-
dancy is also behind the different codon bias (or codon

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 4 of 16
http://www.biomedcentral.com/1471-2105/14/121

Figure 1 Typical communications channel model. An embedding function f (·) encodes a messagem in a DNA sequence to produce y. If
necessary this is done so with a host DNA sequence x and key k. y is transmitted through a channel to produce z, which is decoded using d(·).

usage bias) exhibited by different organisms. Codon biases
are characteristic frequencies of the appearance of codons
associated with each amino acid. As we will see, this built-
in redundancy of the genetic code lies at the foundations
of all pcDNA algorithms, and therefore both the genetic
code and codon bias are fundamental to these techniques.
Finally, note that taking into account the three bases in a

codon and the two antiparallel strands in a DNAmolecule,
there are six different reading frames in which a DNA seg-
ment could be translated to proteins. A correct reading
frame is determined by the presence of a start codon (the
codon mapping to Met, and two codons mapping to Leu
in eukaryotic organisms).

Constraints of DNA data embedding
It is essential that any data embedding process does not
harm the functionality of the host organism, that is to say,
the information-carrying DNA strand y and the original
x should be biologically equivalent. In order to develop
reliable data embedding algorithms the constraints which
enable robust encoding must be clear. This section out-
lines important biological constraints which should be
placed uponDNAmodifications. The BioCode algorithms
described in the following section abide by all of these
constraints.

• ncDNA constraint: no start codons — A modi-
fied ncDNA region (in order to embed information)
should not be mistaken as a pcDNA region by the
genetic machinery. This implies that start codonsb
should not appear in the modifications. To the best of
our knowledge BioCode ncDNA is the only algorithm
strictly observing this constraint, however another
method does acknowledge it to some extent. This
algorithm was used by the JCVI to encode data in
the artificially engineered synthetic bacterium and is
disclosed in a patent [18]. This method does not com-
pletely guarantee that start codons will not be created;
instead, it is designed such that the probability of start
codons appearing is low. Moreover, this low likeli-
hood only applies to one of the six possible reading

frames of DNA, whereas BioCode ncDNA enforces
the constraint in all six frames.
In any case it might still happen that a modified

region which originally did not contain start codons
may acquire them due to mutations accumulated over
a number of generations. This is clearly a potentially
unavoidable scenario for any method.

• pcDNA constraints: primary structure preservation
— The primary structure, i.e. protein translation, of
a gene may not be altered, in effect meaning that
aa(ȳ) = aa(x̄). Algorithms are restricted to encoding
information by replacing codons synonymously (that
is to say, with codons which translate the same amino
acid). This greatly reduces capacity and increases
the complexity of pcDNA algorithms over ncDNA
algorithms.

codon bias preservation (codon count preservation)—
The second constraint which must be considered
concerns the distribution of codons in organisms,
or codon bias. There is a growing body of research
pointing towards the codon bias usage of pcDNA
regions dictating the gene expression levels in both
eukaryotic and prokaryotic organisms, in particular,
the speed at which genes are translated into proteins
[19,20]. Therefore it is desirable that the codon bias
in a given pcDNA region be preserved when such a
region is modified to embed data. This constraint may
be especially important when encoding information
extensively throughout an organism’s genome.
The empirical distribution of codons in a pcDNA

region is given by its codon bias, which is just a nor-
malised codon count. Hence, in practice preserving a
codon bias amounts to preserving a codon count. In
other words, the codon bias preservation constraint
implies that the histogram of the codons in a pcDNA
region must remain unchanged after the embedding
process.
It should be noted that if the codon composition for

a particular amino acid does not vary, i.e. the same
codon translates a single amino acid every time in a
pcDNA region, then any algorithm operating under

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 5 of 16
http://www.biomedcentral.com/1471-2105/14/121

this constraint cannot encode information using those
codons. In practice we have not observed this extreme
case and while codon compositions do not appear with
equal frequency, they are sufficiently distributed to
achieve high embedding rates.

The codon bias preservation constraint has been
acknowledged, to some extent, in a DNA embedding algo-
rithm created by Liss et al. [8]. This algorithm encodes
information by first determining the frequency of each
codon to be used for embedding. Codons are assigned to
bit values in such a way as to mirror the bit frequencies
of the message with the codon usage frequencies. It is a
reasonable assumption to expect the binary message to
be embedded, m to be approximately uniformly random
as any data will appear so when compressed. Under the
method by Liss et al., if we assume the binary message is
uniformly random, and there is high variation in codon
usage frequencies for an amino acid, the codon bias would
not be preserved.
An even more stringent constraint for pcDNA embed-

ding is the preservation of codon pairs. A recent study
demonstrated that certain codon pairs were preferred
in pcDNA regions, while others were avoided [21]. We
have investigated this constraint when combined with
the two constraints above and, for the genes used in
this study, have determined that no information can be
encoded when strictly enforced. In these genes there were
no two amino acid pairs with differing codon compo-
sitions, meaning that no codon pairs could be swapped
while maintaining the primary structure preservation
constraint. Therefore this constraint will not be consid-
ered here. A further issue with this constraint is the
preservation of codon pairs in different reading frames. If
codon pairs in all reading frames were to be preserved, the
DNA sequence could not be modified at all.

Method
As we will see, both algorithms proposed in this paper
operate under conditions which vary depending upon the
message encoding progress, and which take into account
the aforementioned constraints on DNA modification.
Both algorithms face the problem of statically or dynam-
ically mapping a given set of available symbols (bases
or codons) to message bits, and vice versa. For clarity,
this common encoding principle which we call gradu-
ated mapping will be introduced next, before the actual
BioCode algorithms are presented.

Graduatedmapping
Given a set of available symbols S , which in general are
bases or codons, it is possible to map all of it’s elements
to the elements of a second set of binary stringsM. Obvi-
ously both sets must have identical cardinality, denoted by

μ = |S| = |M|. Let l � �log2 μ� denote the minimum
length of any binary string inM.
First, let us consider the simplest case, that is, when

l = log2 μ. In this case M is composed of μ length-l
binary strings, arranged in ascending order from zero to
μ − 1. The other case to consider is when l < log2 μ. In
this instance, to achieve a higher embedding rate, some of
the binary strings in M must be of length �log2 μ� + 1
bits. The first 2l values fromS are assigned l-length binary
strings, in ascending order from 0 to 2l−1. The remaining
values from the range 2l + 1 to μ are first duplicated with
the l-length binary strings corresponding to the range
2l+1 − μ + 1 to 2l. The strings in the former range are
concatenated with a “1”, while the strings in the latter are
concatenated with a “0”.

Dynamic graduatedmapping
We will see that a special situation is the requirement that
each of the elements from S be used a specific amount
of times due to biological constraints. If an element s ∈
S has been used as many times as permitted, then it will
be removed from S , decreasing μ by one unit. Every such
removal prompts a remapping of S ↔ M in a graduated
fashion, wherebyM is completely recreated using the new
value of μ and the mapping method just described in the
paragraph above.
As an example of the method, suppose that S =

{a, b, c, d, e}, then it would have the following mapping
S ↔ M = {00, 01, 10, 110, 111}. Now, if during execution
of the algorithm the element d is used as many times as
permitted, S becomes S \d and the setM is remapped as
M = {00, 01, 10, 11}.
As we will see in the following section, the two BioCode

algorithms exploit the basic concept of graduated map-
ping in their own unique ways. Notice that the actual
permutations used in the mappings may be kept as a
secret shared by encoder and decoder, thus implementing
the aforementioned secret key that precludes decoding by
unauthorised third parties.

BioCode ncDNA
In this section we introduce BioCode ncDNA—a method
to optimally embed information within ncDNA while
observing the no start codons constraint. Firstly, observe
that as |X | = 4 it is possible to encode informa-
tion by trivially assigning a two bit sequence to each
base. This is the foundation of the ncDNA embed-
ding algorithm DNA-Crypt by Heider and Barnekow [5],
among others. However such a static mapping of bits
to DNA symbols does not take into account the no
start codons constraint discussed in the previous section.
Using such a mapping it is possible that some particular
messages will produce start codons in the information-
carrying strand. One might think that simply avoiding

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 6 of 16
http://www.biomedcentral.com/1471-2105/14/121

messages which translate into start codons would bypass
this problem. However, this is far from being a solu-
tion because there are three possible reading frames
where the genetic machinery might find a start codon,
plus three additional reading frames in the antiparallel
complementary strand.
In order to address this issue BioCode ncDNA uses a

variable symbol mapping that we describe next. For gen-
erality it is assumed that the host DNA belongs to a
eukaryotic organism, for which the start codons are “ATG”,
“CTG” and “TTG”, with the complementary codons on the
opposite strand being “CAT”,“CAG” and “CAA”. Taking the
first two bases of these triplets, the following set of special
duplets is defined:

D � {AT, CT, TT, CA}
These duplets indicate that the next encoded symbol

in a DNA sequence is a special case since a start codon
may be produced if the wrong symbol is encoded. Such a
situation is avoided by constantly examining the trailing
dinucleotide sequence, d =[yi−2, yi−1], where i represents
the position of encoding within the information-carrying
DNA sequence y. If the concatenation of the previous two
bases d with the current base yi has the potential to cre-
ate a start codon (that is, if d ∈ D), then the algorithm
restricts the choice of yi to a subset of bases Sd such
that no start codon can be produced. Otherwise yi can be
freely chosen fromX . In order to reflect these conditions,
a graduated mapping from the subset Sd to message bits
is used to encode the symbol yi. Note that the graduated
mapping is different for different values of d, but static for
any given d.
A schematic of the algorithm is shown in Figure 2. The

encoded DNA sequence y is constructed by reading the
binary message m and at each point examining the pre-
viously encoded dinucleotide d. A lookup of Table 1 is
performed using d and the next bit(s) to be encoded m,
from the message vector m. The base y ∈ Sd is selected
for encoding using m ∈ Md. This mapping is performed
by locatingm in the setMd and choosing the base y from
Sd at the corresponding position.

Table 1 BioCode ncDNA

d AT CT TT CA X 2 \ D
|Sd| 3 3 3 1 4

Sd

A A A C A

T T T T

C C C C

G

↓ Decode

Encode ↑

Md

0 0 0 00

10 10 10 01

11 11 11 10

11

Given the dinucleotide sequence d the next message base to be encoded is one
belonging to the setSd. Each bit message found inMd corresponds to a base
inSd .

BioCode ncDNA guarantees that no start codon can be
created in all reading frames in both sense and anti-sense
directions. The algorithm can be easily modified in such a
way as to prevent any other codon of choice from appear-
ing. Decoding an embedded message is simply the reverse
process of encoding, with one additional improvement.
Since it is not possible for start codons to appear inten-
tionally, if they do arise due to mutations it is possible to
detect the corresponding message errors —and even in
some cases to correct them.

Binary Codon equivalency
Before introducing BioCode pcDNA –a method to
near optimally embed information within pcDNA while
observing the primary structure preservation and codon
count preservation constraints— we will briefly describe
a pcDNA data embedding algorithm previously proposed
by us, called Binary Codon Equivalency (BCE) [22]. BCE
can be seen as a particular instance of BioCode pcDNA
when only the primary structure preservation constraint is
obeyed—but not the codon count preservation constraint.

Figure 2 A schematic of the BioCode ncDNA algorithm. The input message m, in conjunction with the trailing dinucleotide sequence
[yi−2, yi−1] is used to perform a lookup of Table 1.

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 7 of 16
http://www.biomedcentral.com/1471-2105/14/121

Central to BCE is a lookup table containing graduated
mappings of codons to bit strings. Table 2 explicitly shows
this mapping, with part (a) showing the genetic code and
part (b) giving the translated bit sequences. It should be
noted that this mapping has been refined since BCE was
originally disclosed in [22], in order to achieve a higher
embedding rate.
BCE executes as follows: it initiates by translating

the sequence of codons, x̄ =[x̂1, x̂2, · · · , x̂n] into its
corresponding amino acid sequence a = aa(x̄) =
[a1, a2, · · · , an] (primary structure). The encoded
sequence, ȳ is then constructed by traversing a and choos-
ing for each index i a message-dependent codon ŷi such
that aa(ŷi) = ai. A lookup of Table 2 is performed to find
the bit sequence matching the current message bit(s) m
in Mai . The codon ŷi ∈ Sai is selected corresponding to
the position of that match.

BioCode pcDNA
The BioCode pcDNA algorithm preserves in ȳ not only
the primary structure of the original host sequence x̄ —
as BCE does already— but also its codon count. These
two objectives are simultaneously achieved by means of a
dynamic adaptation of the strategy followed by BCE. We
have just seen that in BCE the cardinality of the codon
set Sai corresponding to each amino acid ai is constant
for all i = 1, 2, · · · , n, which allows the use of a static
lookup table throughout the embedding process.However
the additional constraint observed by BioCode pcDNA
requires the cardinality of Sa to be varied during the
embedding process.
The following is a step by step procedure of the algo-

rithms’ operation made with reference to Figure 3.

• Amino Acid Translation— As in BCE, the vector of
codons, x̄ is converted into a vector of amino acids;
a = aa(x̄).

• Initialize Encoding Tables — Next, for every amino
acid, all possible codon types in x̄ which translate that
amino acid must be found. Given Sc is the set of k
codons which translate a single amino acid, Sc will
only contain the codon types which appear in x̄. If all
k possible codon compositions are found in x̄, then
Sc will contain all k codons. For example, given the
amino acid Glycine we have the corresponding set Sg .
Four codons translate this amino acid which would
normally yield Sg � {GGA, GGC, GGG, GGT}. How-
ever if the codon GGT does not appear in x̄ and
all other codons do, then the set will consists of
Sg � {GGA, GGC, GGG,}. This process of inserting
all the codon types into their component amino acid
sets continues until all the unique codons in x̄ have
been classified. For each amino acid set, a set iden-
tical in size is created to contain the corresponding

bit mappings. Given Sc, a corresponding set Mc is
populated using the cardinality μ = |C| and the grad-
uated method described in the previous section. There
is then a mapping of Sc �→ Mc. Sc is contained
within a superset of codon sets, Sc ∈ SA. If the full
set of 64 codons are identified in the pcDNA region
then the entire amino acid set SA and corresponding
bit mappings MA would be identical to Tables 2 (a)
and (b). Once SA and MA have been initialized for
each amino acid, they may be queried to determine
the available codons and possible bit sequences that
can be encoded. Continuing the example above for
G � {GGA, GGC, GGG}, the possible bit mappings
for G would beMg � {0, 10, 11}.
A codon count vector c is then created, which con-

tains the number of times that each codon appears in
a pcDNA region. This, along with SA andMA will be
modified as the algorithm progresses.

• Table Lookup — Construction of ȳ begins by exam-
ining the first amino acid a1 and the first 3 bits in the
message sequence, [m1,m2,m3]. If amino acid a1 is
represented by the codon set Sa1 (all codons in Sa1
translate a1), then the available bit sequences are given
byMa1 . The bit sequence matching the current input
is searched for in Ma1 , if {m1,m2,m3} /∈ Ma1 , then
{m1,m2} is located, if {m1,m2} /∈ Ma1 then {m1}
is located. The position at which the matching bit
sequence is located corresponds to the codon to be
selected for embedding from Sa1 . That is to say, if the
k -th element inMa1 is identical to the current input,
then the k -th codon of the same amino acid from Sa1
is used for encoding.

• Decrease Codon Count — Once the codon ŷ has
been used for encoding, the count for that codon in c
is decremented by one.

• Adjust Tables — If the count for codon ŷ reaches
zero, then codon ŷ is removed from SA. In other
words, if a codon has been used as many times as it
appeared in the original sequence then that codon can
no longer be used for embedding because the bud-
get for that codon has been exhausted. The removal
of ŷ from SA also prompts a remapping of Saa(ŷ) �→
Maa(ŷ) in a graduated fashion.

• End — The algorithm loops back to the Table
Lookup step, continuing its iteration through a to
produce ȳ, until the end ofm or x̄ has been reached.

Decoding is the reverse procedure of embedding.
Instead of performing a lookup using themessage vector, a
lookup is performed using codons to retrieve the message
vector. All of the tables created for encoding must also
be created at the decoder and are modified during exe-
cution in the same way. An example of BioCode pcDNA
encoding with step by step procedure is demonstrated in

H
aughton

and
Balad

o
BM

C
Bioinform

atics
2013,14:121

Page
8
of16

http
://w

w
w
.b
iom

ed
central.com

/1471-2105/14/121

Table 2 Binary to Codon translation table

(a)

a Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Stp Tyr

|Sa| 4 2 2 2 2 4 2 3 2 6 1 4 2 2 6 6 4 4 1 3 2

Sa

GCA TGC GAC GAA TTC GGA CAC ATA AAA CTA ATG AAC CCA CAA AGA AGC ACA GTA TGG TAA TAC

GCC TGT GAT GAG TTT GGC CAT ATC AAG CTC AAT CCC CAG AGG AGT ACC GTC TAG TAT

GCG GGG ATT CTG CCG CGA TCA ACG GTG TGA

GCT GGT CTT CCT CGC TCC ACT GTT

TTA CGG TCG

TTG CGT TCT

↑ Decode

Encode ↓
(b)

Ma

00 0 0 0 0 00 0 0 0 00 - 00 0 0 00 00 00 00 - 0 0

01 1 1 1 1 01 1 10 1 01 01 1 1 01 01 01 01 10 1

10 10 11 100 10 100 100 10 10 11

11 11 101 11 101 101 11 11

110 110 110

111 111 111

(a) Codon to amino acid translation table (genetic code). Underlined are codons which double as start codons. (b) Available binary strings for message encoding. There is a one to one mapping of each binary string inMa

to a codon inSa , given by the table entries in the same positions.

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 9 of 16
http://www.biomedcentral.com/1471-2105/14/121

Figure 3 A schematic of the BioCode pcDNA algorithm. The message m and host DNA sequence x̄ are inputs to the algorithm. The encoded
sequence ȳ is output, guaranteeing that the codon bias preservation and the primary structure preservation constraints are adhered to.

an Additional file 1. This includes codon and amino acid
statics for x̄ and ȳ.

Information embedding rate of the BioCode Algorithms
In this section we analyse the information embedding rate
of the BioCode algorithms in message bits/base or mes-
sage bits/codon. In order to do so we will first discuss the
embedding rate of the graduated mapping method, which
assigns symbols (bases or codons) to bits in both BioCode
methods. For simplicity we will assume that the message
bits are uniformly distributed at random.
The graduated mapping method can achieve a near-

optimal rate in terms of bits/symbol (that is, in bits/base
or in bits/codon). Its minimum embedding rate R↓ for a
given codebook size μ is:

R↓ = ⌊
log2 μ

⌋
bits/symbol (1)

The maximum embedding rate is simply R↑ = R↓ + 1.
Therefore the average embedding rate is

R(μ) = R↓×
(
2R↑ − μ

2R↓

)
+ R↑×

(
2μ
2R↑ − 1

)
bits/symbol

(2)

The equation above may be explained as the weighted
average of the lower embedding rate, R↓, and the higher
embedding rate, R↑, using as weights the probabilities of
those rates being implemented by the encoder. The opti-
mal achievable rate, independent of any method, is given
by R = log2 μ. There exists one method which attains this
rate, called arithmetic encoding [3]. However arithmetic
encoding presents error propagation issues at the decoder,
which make it impossible to implement error correction
effectively.

BioCode ncDNA
There are five states that the BioCode ncDNA encoder
may be in, each of which is given by the trailing dinu-
cleotide. These five states are “AT”, “CT”, “TT”, “CA” (i.e.,
the elements in D) and X 2 \ D. In order to compute the
average embedding rate of BioCode ncDNAwewill obtain
the steady state probability of the encoder being in each of

the different states. The dynamic behaviour of this finite
state machine may be modelled by means of the Markov
chain shown in Figure 4. The state transition probabilities
associated with this Markov chain, which are also given in
the figure, can be obtained by examining the probabilities
of using bit sequences given by Table 1. These transi-
tion probabilities can be used in turn to define the 5 × 5
transition probability matrix T �[Pr(snext|scurrent)], with
scurrent, snext ∈ D ∪ (X 2 \ D). We wish now to obtain
the steady state matrix T∞ = limk→∞ Tk . In order to
do this we first compute the diagonal matrix D contain-
ing the eigenvalues of T, and a matrix P whose columns
contain the corresponding eigenvectors, such that T =
P × D × P−1. With this decomposition we can write
T∞ = limk→∞ P × Dk × P−1. As k → ∞, Dk becomes
an all-zero matrix, except for the top leftmost element
becoming the unity. We can then take the any row vec-
tor of T∞ as steady state probability vector. The formula
to compute the rate of BioCode ncDNA is given below,
where R(·) is the rate function given by equation (2). The
row elements of T are the marginal probabilities that the
previous two bases are the dinucleotide corresponding to
that row. These probabilities correspond to the Pr(d) part
of the formula below.

RncDNA =
∑

d∈D∪(X 2\D)

Pr(d)R(|Sd|) = 1.7462 bits/base

(3)

This embedding rate is not overly lower than the
unconstrained rate of embedding of 2 bits/base. How-
ever this rate may only be attained when the message
is long.

BioCode pcDNA
The embedding rate of BioCode pcDNA is more diffi-
cult to analyse due to the dynamic nature of the grad-
uate mapping it relies upon. However it was shown in
[16] that when the codon distribution is uniform and
the host sequence is long the rate of the optimum DNA
data embedding with codon bias preservation can be

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 10 of 16
http://www.biomedcentral.com/1471-2105/14/121

Figure 4Markov chain representing the probability of transition
between trailing dinucleotide states.X 2 \ D in this diagram
represents all the dinucleotide sequences excluding those which
may create start codons.

approximated by the rate of optimum DNA data embed-
ding without this constraint. Therefore we will settle for
approximating the BioCode pcDNA embedding rate by
the BCE rate, assuming that the conditions above hold.
The embedding rate of BCE is given by the equation
below:

RBCE =
∑
a∈A

|Sa|
64

× R(|Sa|) = 1.75 bits/codon, (4)

wherewe have used expression (2). In order to see that this
rate is near-optimum, observe that the maximum rate —
independent of any method—may be calculated using the
same formula above by replacing R(|Sa|) with log2 |Sa|.
This gives a rate of 1.7819 bits/codon, which is only 3%
higher than the BCE rate.

Mutation channel model
In the following we will discuss the mutations model
used to evaluate the performance of the BioCode meth-
ods. It must be emphasised that most previous authors
proposingDNA data embedding did not provide decoding
performance analyses of their algorithms, either by means
of analyses or by means of in silico Monte Carlo simu-
lations. An exception would be the work of Yachie et al.
However such analyses are fundamental for understand-
ing the expected performance of DNA data embedding
methods when used in in vivo environments.
Performance analyses are important because the infor-

mation embedded in the genome of an organism may
contain errors caused by mutations accumulated after
successive generations of the organism. That is, as shown
in Figure 1, due to the effect of a “mutations channel”
the information-carrying DNA sequence (y) may be trans-
formed into a “noisy” version of it (z) before reaching
the decoding stage. These errors may impair or degrade

the decoding of the embedded information, and hence
it is fundamental to analyse the algorithms’ performance
under mutations.
Following the communications simile, the mutations

channel causing the errors can be characterised using a
probabilistic model. The model used in our analysis will
only consider base substitution mutations, which are the
most prevalent mutations in the DNA of bacteria. In
particular such mutations are the overwhelming major-
ity in pcDNA regions [23]. These mutations randomly
replace one base with an alternate base at different loci
of a genome, and therefore can be modelled by means
of a 4 × 4 transition probability matrix � �[Pr(z|y)],
where z, y ∈ X . As a simplification we will also consider
that base substitution mutations happen independently
at different loci. In reality it may happen that dependent
mutations occur, for instance affecting a number of con-
secutive bases. However such dependencies can be easily
broken by any information embedding method by means
of a pseudo-random interleaver shared by encoder and
decoder.
The simplest —and one of the most commonly used—

models of base substitution mutation is the Jukes-
Cantor model of molecular evolution, which assumes that
Pr(z|y) = q/3 for z �= y and Pr(y|y) = 1 − q. There-
fore q = Pr(z �= y|y) is the base substitution mutation
rate. However the mutation model used in our in silico
analysis is the more realistic Kimura model of [24], whose
transition probability matrix is

� =

A C T G⎡
⎢⎢⎣

⎤
⎥⎥⎦

1 − q γ
3 q

γ
3 q (1 − 2γ

3)q A
γ
3 q 1 − q (1 − 2γ

3)q γ
3 q C

γ
3 q (1 − 2γ

3)q 1 − q γ
3 q T

(1 − 2γ
3)q γ

3 q
γ
3 q 1 − q G

(5)
This model can reflect the higher probability of base tran-
sitions (mutations among purines or among pyrimidines)
over base transversions (mutations between purines and
pyrimidines) by setting γ < 1. The γ parameter is a func-
tion of the ratio of transitions to transversions ε, and it is
obtained from it as γ = 3/(2(ε+1)). This model becomes
the less realistic Jukes-Cantor model when γ = 1. For a
more in-depth explanation the reader is directed to [7].
Since mutation events occur from parent to child it is

natural to model the mutation channel for the number
of generations p elapsed between y and z. Assuming that
� gives the transition probability matrix for one gener-
ation, the model for p generations is easily found as �p.
We denote this straightforward extension as a “cascaded
mutations model”.
At most, a mutation model can have nine parameters

if it the property of time reversibility is to hold. The
Kimura model is used in place of models with greater

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 11 of 16
http://www.biomedcentral.com/1471-2105/14/121

numbers of parameters because of the statistical problem
of overfitting. If a mutation model has several parameters,
some of which cannot be accurately estimated, the results
obtained after many generations will be distorted. Reli-
able estimates of q and γ are available and therefore �p

can be accurately approximated. The Kimura model has
been proven accurate in predicting the capacity of a DNA
sequence when compared with a 12 parameter model [25].

Message bitframe resynchronisation
While performance will only be evaluated under the base
substitution mutation channel just described, base errors
may also occasionally confuse the decoder into inserting
or removing message bits. If this happens the message
bitframe common to encoder and decoder can become
desynchronised, that is, the same index in m and m′ may
no longer refer to the same message bit. We must stress
that this issue not confined to BioCode, but common to
all existing pcDNA data embedding algorithms. There-
fore, the message bitframe must be resynchronised at the
decoder, as otherwise the situation above may occasion-
ally lead to a high message bit error.
Wewill employ two resynchronisationmethods in order

to deal with bitframe desynchronisation errors: marker
codes and watermark codes. These strategies could actu-
ally be applied to resynchronise after insertion and dele-
tion mutations on the level of DNA, which are not consid-
ered in this paper. Since they are applied on the bit level,
not quaternary, the methods would lack channel informa-
tion and as such can not decode optimally. Incorporating
these methods fully for the DNA case is no trivial task
because the embedding rate per base is not constant when
operating under the restriction highlighted in this paper.

Marker codes
Marker codes were originally proposed by Sellers [26] in
1962, however they were not referred to as marker codes
until much later [27]. These codes place a pilot signal
at regular intervals in the binary message. The decoder
expects the pilot signal to be located at specific points and
if not found corrective action is taken. Suppose the pilot
signal “001” is received by the decoder as “010”, it would
infer that a deletion has occurred in the block preced-
ing the pilot. The decoder resynchronises the remainder
of the message by inserting a bit in the middle of the
erroneous block. Marker codes, in the original proposal,
are capable of correcting one desynchronisation error per
block. They are not, however, designed to correct the
block in which the error occurred.

Watermark codes
Watermark codes are a recently proposed resynchroni-
sation method by Davey and MacKay that have been
shown to achieve a high encoding rate [27]. Despite their

name, they are not related to DNAwatermarking, but may
be applied here to correct bit insertions and deletions.
The application a watermark code is as follows: firstly a
“watermark” vector w is created which, for the purpose
of our simulations was a uniformly random binary vector
agreed upon by the encoder and decoder. The sparse(·)
function inserts zeros evenly throughout the input binary
vector with the position of insertions known to both
encoder and decoder. The message vector, m is spar-
sified and added modulo 2 to the watermarked vector,
m̃ = sparse(m) + w, which is then embedded in a DNA
sequence.
The next step differs in our implementation over Davey

and MacKay’s. Under their method, after being transmit-
ted across a channel, the received vector m̃′ is processed
by the Forward Backward algorithm to correct insertions
and deletions [27]. However under our method, after the
DNA sequence has been decoded, possibly accumulating
errors, the watermark decoder processes m̃′ by aligning it
with w. This is done in a similar manner to the alignment
process of the Needleman-Wunsch algorithm, however
here the edit distance is used. One important factor must
be incorporated into the alignment scoring; it is impossi-
ble for desynchronisation errors to occur inw. Differences
between m̃′ and w, other than desynchronisation errors,
are a result of encoding or mutations, which the decoder is
unable to distinguish between. Therefore, when resolving
differences caused by flips between m̃′ and w, the values
in m̃′ are stored as the alignment.
The Forward Backward algorithm allows for the com-

putation of probabilities which may then be passed to
a substitution error correction decoder. The method we
employ here does not incorporate the channel transition
probabilities in the realignment process and because of
this, is not as accurate as the Davey and MacKay’s algo-
rithm. However, our method is greatly simplified and less
computationally complex.

Results and discussion
In this section we describe the performance measures
used to evaluate the BioCode algorithms. These evalu-
ations are performed by means of Monte Carlo simula-
tions, which implement the cascadedKimuramodel as the
mutations channel.

Performance measures
First of all we must establish relevant and objective crite-
rion for evaluation. A very important figure of merit is the
“raw” probability of bit error at the decoder (Pb), which is
the probability that a bit will be incorrectly decoded after
transmission across the mutations channel. By “raw” we
mean without error correction coding (ECC): observe that
ECC can be applied to any DNA data embedding method
in order to enhance performance, but it is the baseline raw

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 12 of 16
http://www.biomedcentral.com/1471-2105/14/121

probability of bit error that determines the effectiveness
of such additional strategies.
When evaluating Pb the Hamming distance is used as

a metric for measuring the distance between two binary
strings. The Hamming distance is the number of differ-
ent same index symbols between two vectors, and it can
be written using the Kronecker’s delta function δ(·, ·) as
dH(m,m′) = ∑l−1

i=0 δ(mi,m′
i), where l is the message

length in bits. Using this distance the average probability
of bit error at the decoder is just

PHb = 1
l dH(m,m′) = 1

l

l−1∑
i=0

δ(mi,m′
i). (6)

If no bitframe resynchronisation is applied, it can hap-
pen that PHb is disproportionately high, even though only
a few bits might have been inserted or deleted by the
mutations channel.
We will also evaluate the potential performance of

the BioCode algorithms when using optimal error cor-
rection coding. This will be done so by means of the
mutual information between the message at the encoder
(m) and at the decoder (m′). The mutual information is
an information-theoretical measure which indicates the
maximum amount of information that a communications
system can send through a channel. Since the mutual
information must always be below the Shannon capacity
of the channel, we will be able to compare our results with
the theoretical capacity limits for DNA data embedding
computed in previous works [25]. In our simulations the
mutual information was empirically obtained by compar-
ing one bit of the original message, m, with its estimate
after decoding,m′, as follows:

I(M;M′) =
∑

m′∈M

∑
m∈M

Pr(m,m′) log2
(

Pr(m,m′)
Pr(m)Pr(m′)

)
,

(7)

where Pr(·) are empirical estimates of these probabilities
computed from the Monte Carlo experiments. We note
that I(M;M′)must be scaled from bits/bit to bits/base (for
ncDNA methods) or bits/codon (for pcDNAmethods).

Monte Carlo simulations
The parameters used in the cascaded Kimura model are
q = 10−8 and γ = 0.1, which are values used in prior
work [7] and are based on realistic estimates obtained in
[28]. The results for BioCode ncDNA were obtained using
messages of length 10,000 bits. For BioCode pcDNA the
message length varied depending on codon composition
and host sequence length. All the graphs compare either
the mutual information or probability of bit error (PHb)
against the number of generations an encoded sequence
has been transmitted along.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generations

P
e bH

No Code
Watermark Code

Figure 5 Empirical results of BioCode ncDNA. Shown is the
probability of bit error using the Hamming distance (PHb), for
BioCode ncDNA (blue). Also shown is PHb for BioCode ncDNA,
first encoded with a watermark code (purple).

The BioCode ncDNA PHb graph shown in Figure 5,
clearly demonstrates that information can be correctly
retrieved up to 104 generations of a host organism under
the cascaded Kimura model. Also shown in the graph is
BioCode ncDNA’s performance when the message is first
encoded with a watermark code. This yields a significant
improvement, allowing for errorless information retrieval
up to 105 generations. Marker codes, in this case, did not
decrease PHb . If desynchronisation errors are rare and bit
flips common, a marker code may itself cause desynchro-
nisation errors due to the misinterpretation of error types.
Also, marker codes cannot correct the block in which the
desynchronisation error occurred, only resynchronise the

103 104 105 106 107 108 109 1010

10
−2

10
−1

10
0

Generations

B
its

/B
as

e

Optimal Bound
No Code
Watermark Code

Figure 6 Empirical results of BioCodencDNA. This is a log-log plot
of the mutual information content of BioCode ncDNA compared
to an optimal bound. Also shown is BioCode ncDNA encoded with
the watermark code. Information content is given in bits/base.

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 13 of 16
http://www.biomedcentral.com/1471-2105/14/121

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generations

P
e bH

ypt7
ftsZ
pSD1_197

Figure 7 Empirical analysis of BioCode-pcDNA for different
genes. Shown is the probability of bit error using the Hamming
distance (PHb). BioCode pcDNA was used for encoding the data.
Two of the genes have been used for encoding data in prior works
[4,5].

remainder of the message. Thus if blocks are large relative
to the entire message length, PHb may be high.
With error correction against bit flips the PHb , for

BioCode with a watermark code, could be further reduced
for generations beyond 107, at the expense of decreas-
ing the embedding rate. Similarly the mutual information
plot shows that 1.75 bits/base may be retrieved up to just
beyond 10,000 generations. Figure 6 compares the mutual
information of BioCode ncDNA against an optimal bound
computed using the Blahut-Arimoto algorithm (Compu-
tation provided in [29]), and shows that the algorithm is
optimal up to 105 generations. %== Figure 11 ==
For the empirical analysis of BioCode pcDNA three dif-

ferent pcDNA regions were selected for embedding, two

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generations

B
its

/C
od

on

ypt7
ftsZ
pSD1_197

Figure 8 Empirical analysis of BioCode-pcDNA for different
genes. The mutual information content for three genes encoded
with BioCode pcDNA is shown. It is given in bits/codon.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.5

1

1.5

Generations

B
its

/C
od

on

Optimal Bound
BioCode pcDNA

Figure 9 BioCode pcDNA versus optimal bound. The mutual
information content for BioCode pcDNA and the optimal bound.
The gene used for encoding and in computing the bound was the
“ftsZ” gene.

of which were used in prior works. The “ftsZ” region c in
theB. subtilis genome was used for in vivo data embedding
withArita and Ohashi’s algorithm [4]. The “ypt7” region d,
from a species of yeast known as S. cerevisiae, was used for
in silico data embedding with the DNA-Crypt algorithm
[5]. The other region used, “pSD1_197” is a plasmid gene
of a bacteria belonging to the Shigella genus e, selected
for its differing codon composition and larger sequence
length.
The PHb analyses of BioCode pcDNA on the three

genes mentioned above, shown in Figure 7, clearly shows
errorless data retrieval up to 104 generations. However,

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generations

P
e bH

No Code
Marker Code
Watermark Code

Figure 10 Empirical analysis of BioCode-pcDNA using
resynchronisation error correction. Shown is the probability of bit
error using the Hamming distance for BioCode pcDNA alone
(blue), BioCode pcDNA using a marker code (light blue) and
BioCode pcDNA using a watermark code (purple). The gene used
was the “ftsZ” gene.

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 14 of 16
http://www.biomedcentral.com/1471-2105/14/121

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generations

B
its

/C
od

on

No Code
Marker Code
Watermark Code

Figure 11 Empirical analysis of BioCode-pcDNA using
resynchronisation error correction. This plot shows the mutual
information content for BioCode pcDNA alone, with a marker
code and with a watermark code.

the embedding rate varied significantly, as shown by
Figure 8, with the rate of the“ypt7” gene (0.845 bits/codon)
being considerably lower than the other two (“ftsZ”: 1.03
bits.codon and “pSD1_197”: 1.05 bits/codon). An inter-
esting phenomenon of BioCode is responsible for this
difference, namely that as sequence length increases so to
does embedding rate. The “ypt7” gene is only 624 bases
long, while the “ftsZ” and “pSD1_197 ” genes are 1158
bases and 3309 bases long respectively. In effect, it is more
efficient at data storage for greater sequence lengths due
to a greater number of possible combinations of codons
and positions to choose from.

10
4

10
5

10
6

10
7

10
8

10
−3

10
−2

10
−1

10
0

10
1

Generations

B
its

/C
od

on

No Code
Marker Code
Watermark Code

Figure 12 Empirical analysis of BioCode-pcDNA using
resynchronisation error correction. This is a log-log plot of
Figure 11 from 104 to 108 generations, showing the mutual
information content for BioCode pcDNA alone, with a marker
code and with a watermark code.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generations

P
e bH

BCE
Arita and Ohashi
DNA−Crypt

Figure 13 Empirical analysis of BCE, Arita’s algorithm and
DNA-Crypt. This probability of bit error plot compares binary
codon equivalency (BCE), Arita and Ohashi’s algorithm and
DNA-Crypt. Arita and Ohashi’s algorithm requires that the
original DNA sequence be available for decoding. BCE is a
particular instance of BioCode pcDNA when the codon bias
preservation constraint is not applied.

A theoretical method for computing the optimal
embedding rate when observing the primary structure
preservation and codon count preservation constraints is
described in [16]. This bound can be determined bymeans
of a combinatorial analysis of the maximum number of
ways codons in a gene may be rearranged while keep-
ing the constraints. Figure 9 compares this optimal bound
with BioCode pcDNA using the “ftsZ” gene.
The remainder of the plots were obtained using the

“ftsZ” gene for encoding. Figure 10 shows that when
marker and watermark codes are used in conjunction with
BioCode pcDNA they pose a considerable improvement.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Generations

B
its

/C
od

on

BCE
Arita and Ohashi
DNA−Crypt

Figure 14 Empirical analysis of BCE, Arita’s algorithm and
DNA-Crypt. This plot shows the mutual information content of
BCE, Arita and Ohashi’s algorithm and DNA-Crypt.

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 15 of 16
http://www.biomedcentral.com/1471-2105/14/121

This is true despite not being capable of correcting flips in
the message, which would account for the overwhelming
majority of mutations. From this plot it is apparent that
the watermark code reduces the PHb more so than marker
codes.
It is important to note the gradient of the plots, as

they demonstrate that errors incurred frommutations are
isolated and do not propagate. If this were not the case
the PHb would be greater between 104 and 106. Figure 11
compares the mutual information of the two error cor-
rection methods with no code. It clearly shows that the
marker code outperforms the watermark code in terms
of embedding rate. A more informative view highlighting
this improvement is shown in Figure 12.
Finally, the last set of graphs compare BCE with

algorithms proposed by other authors. Notice that the
constraints under which the BioCode algorithms oper-
ate have never fully been incorporated into any previ-
ous embedding method. Therefore direct comparisons
with other methods are not appropriate (although com-
parisons against theoretical bounds are still possible).
However BCE, which may be seen as a particular
instance of BioCode pcDNA, can actually be compared
to other pcDNA data embedding algorithms. Heider
and Barnekow’s DNA-Crypt [5] and Arita and Ohashi’s
method [4] are compared to BCE. These methods only
maintain the primary structure preservation constraint.
BCE and DNA-Crypt perform near identically in terms

of PHb (see Figure 13), however there is a major gain in
embedding rate when using BCE, as shown in Figure 14.
Both BCE and DNA-Crypt do not require any side infor-
mation at the decoder, however Arita and Ohashi’s algo-
rithm requires the original DNA sequence to decode. Such
knowledge, which is unrealistic in practice, increases the
robustness when insertions and deletions are possible.
Also, since the embedding rate is constant for codons
which have at least one other synonymous codon, the
effects of de-synchronisation errors are limited, as can
be seen by the shape of the mutual information curve in
Figure 14. Notice the similarity in shape shown to that of
Figure 11 for marker and watermark codes.

Conclusions
In this paper we have introduced the BioCode algorithms
for embedding information in DNA. These novel methods
are designed to be more biologically compatible than any
previous DNA data embedding algorithms, fully adhering
to strict constraints. Furthermore they lay the foundation
for information storage in DNA in a way that is both effi-
cient and robust, as we have shown by means of in silico
Monte Carlo simulations. The BioCode pcDNA algorithm
preserves codon statics making it difficult to infer that
information has been embedded. This aspect, in addi-
tion to BioCode pcDNA’s near-optimum embedding rate,

implies that BioCode pcDNA is a near-optimum first-
order steganographic method. While DNA data embed-
ding is currently in its infancy, it is likely that this field will
grow considerably as technologies for synthesising and
sequencing DNA become cheaper and faster. Therefore
efficient data embedding techniques such as the BioCode
algorithms can potentially find widespread applicability.

Endnotes
aPossibly interspersed with noncoding regions (introns)

in eukaryotic cells.
bCodons which mark the start of a gene in pcDNA.
c[GenBank:NC_000964.3 (1597832..1598980)]
d[GenBank:NC_001145.3 (267174..267800)]
e[GenBank:NC_007607.1 (170357..173665)]

Additional file

Additional file 1: This file contains an example of BioCode pcDNA
encoding amessage into a DNA sequence.

Competing interests
A patent has been filed for the BioCode algorithms in Ireland.Both authors
declare no other competing interests.

Authors’ contributions
DH BioCode algorithms conception, development and theoretical analysis,
software development and simulations, tables and figures preparation,
manuscript preparation (main author). FB theoretical limits, manuscript
preparation (secondary author), coordination, research funds collection. Both
authors read and approved the final manuscript.

Acknowledgements
This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under grant number: 09/RFP/CMS2212.

Received: 31 July 2012 Accepted: 19 March 2013
Published: 9 April 2013

References
1. Clelland CT, Risca V, Bancroft C: Hiding messages in DNAmicrodots.

Nature 1999, 399(6736):533–534.
2. Wong PC, Wong K, Foote H: Organic datamemory using the DNA,

approach. Comms ACM 2003, 46:95–98.
3. Shimanovsky B, Feng J, Potkonjak M: Hiding data in DNA. In Procs. of the

5th Intl. Workshop in Information Hiding Noordwijkerhout. The Netherlands;
2002:373–386.

4. Arita M, Ohashi Y: Secret signatures inside genomic DNA. Biotechnol
Prog 2004, 20(5):1605–1607.

5. Heider D, Barnekow A: DNA-basedWatermarks using the DNA-Crypt
Algorithm. BMC Bioinformatics 2007, 8(176).

6. Yachie N, Sekiyama K, Sugahara J, Ohashi Y, Tomita M: Alignment-based
approach for durable data storage into living organisms. Biotechnol
Prog 2007, 23(2):501–505.

7. Haughton D, Balado F: Repetition coding as an effective error
correction code for information encoded in DNA. Bioinformatic
Bioeng, IEEE Int Symp 2011, 0:253–260.

8. Liss M, Daubert D, Brunner K, Kliche K, Hammes U: Embedding
permanent watermarks in synthetic genes. PLoS ONE 2012,
7(8):e42465.

9. Heider D, Kessler D, Barnekow A:Watermarking sexually reproducing
diploid organisms. Bioinformatics 2008, 24(17):1961–1962.

10. Gibson D, Benders G, Andrews-Pfannkoch C, Denisova E, Baden-Tillson H,
Zaveri J, Stockwell T, Brownley A, D W Thomas MA, Merryman C, Young L,
Noskov V, Glass J, Venter J, Hutchison C, Smith H: Complete chemical

http://www.biomedcentral.com/content/supplementary/1471-2105-14-121-S1.pdf

Haughton and Balado BMC Bioinformatics 2013, 14:121 Page 16 of 16
http://www.biomedcentral.com/1471-2105/14/121

synthesis, assembly, and cloning of amycoplasma genitalium
genome. Science 2008, 319:1215–1219.

11. Jupiter DC, Ficht TA, Samuel J, Qin QM, de Figueiredo P: DNA,
Watermarking of infectious agents: progress and prospects. PLoS
Pathog 2010, 6:e42465.

12. The ENCODE Project Consortium: An integrated encyclopedia of DNA,
elements in the human genome. Nature 2012, 489:57–74.

13. Smith GC, Fiddes CC, Hawkins J P Cox, J P: Some possible codes for
encrypting data in DNA. Biotech Lett 2003, 25(14):1125–1130.

14. Heider D, Barnekow A: DNAwatermarks: A proof of concept. BMCMol
Biol 2008, 9(40).

15. Balado F: On the Shannon capacity of DNA data embedding. In IEEE
International Conference on Acoustics, Speech and Signal (ICASSP). Dallas,
USA; 2010:1766–1769.

16. Balado F, Haughton D: Gene tagging and the data hiding rate. In 23nd
IET Irish Signals and Systems Conference. Ireland: Maynooth; 2012.

17. Heider D, Barnekow A: DNAWatermarking: Challenging perspectives
for biotechnological applications. Curr Bioinformatics 2011,
6(3):375–382.

18. Clyde A Hutchison, HOS Michael, G Montague: Encoding text into
nucleic acid sequences. In US Patent 12/916,344; 2010.

19. Lavner Y, Kotlar D: Codon bias as a factor in regulating expression via
translation rate in the human genome. Gene 2005, 345:127–138.

20. Das S, Roymondal U, Sahoo S: Analyzing gene expression from
relative codon usage bias in Yeast genome: A statistical significance
and biological relevance. Gene 2009, 443(1–2):121–131.

21. Tats A, Tenson T, RemmM: Preferred and avoided codon pairs in three
domains of life . BMC Genomics 2008, 9:463. [http://www.biomedcentral.
com/content/supplementary/1471-2105-14-121-S1.pdf]

22. Haughton D, Balado F: Performance of DNA data embedding
algorithms under substitutionmutations. In Bioinformatics and
Biomedicine Workshops (BIBMW) 2010 IEEE International Conference on;
2010:201–206.

23. Chen J, Wu Y, Yang H, Bergelson J, Kreitman M, Tian D: Variation in the
ratio of nucleotide substitution and Indel rates across genomes in
mammals and Bacteria. J Mol Biol Evol 2009, 26(7):1523–1531.

24. Kimura M: A simplemethod for estimating evolutionary rate in a
finite population due to mutational production of neutral and
nearly neutral base substitution through comparative studies of
nucleotide sequences. J Mol Biol 1980, 16:111–120.

25. Balado F: Capacity of DNA Data embedding under substitution
Mutations. IEEE Trans Inf Theory 2013, 59(2):928–941.

26. Sellers JF: Bit loss and gain correction code. Inf Theory, IRE Trans 1962,
8:35–38.

27. Davey MC, MacKay DJC: Reliable communication over channels with
insertions, deletions and substitutions. IEEE Trans Inf Theory 2001,
47:687–698.

28. Purvis A, Bromham L: Estimating the transition/transversion ratio
from independent pairwise comparisons with an assumed
phylogeny. J Mol Evol 1997, 44:112–119.

29. Haughton D, Balado F: Amodified watermark synchronisation code
for robust embedding of data in DNA. In IEEE 38th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP); 2013.

doi:10.1186/1471-2105-14-121
Cite this article as: Haughton and Balado: BioCode: Two biologically com-
patible Algorithms for embedding data in non-coding and coding regions
of DNA. BMC Bioinformatics 2013 14:121.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.biomedcentral.com/content/supplementary/1471-2105-14-121-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-121-S1.pdf

	Abstract
	Background
	Results
	Conclusion

	Background
	Prior art
	Notation and framework
	Constraints of DNA data embedding

	Method
	Graduated mapping
	Dynamic graduated mapping

	BioCode ncDNA
	Binary Codon equivalency
	BioCode pcDNA
	Information embedding rate of the BioCode Algorithms
	BioCode ncDNA
	BioCode pcDNA

	Mutation channel model
	Message bitframe resynchronisation
	Marker codes
	Watermark codes

	Results and discussion
	Performance measures
	Monte Carlo simulations

	Conclusions
	Endnotes
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

