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Enhancing spiking neural
networks with hybrid top-down
attention
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As the representatives of brain-inspired models at the neuronal level,

spiking neural networks (SNNs) have shown great promise in processing

spatiotemporal information with intrinsic temporal dynamics. SNNs are

expected to further improve their robustness and computing e�ciency

by introducing top-down attention at the architectural level, which is

crucial for the human brain to support advanced intelligence. However,

this attempt encounters di�culties in optimizing the attention in SNNs

largely due to the lack of annotations. Here, we develop a hybrid network

model with a top-down attention mechanism (HTDA) by incorporating an

artificial neural network (ANN) to generate attention maps based on the

features extracted by a feedforward SNN. The attention map is then used

to modulate the encoding layer of the SNN so that it focuses on the most

informative sensory input. To facilitate direct learning of attention maps

and avoid labor-intensive annotations, we propose a general principle and

a corresponding weakly-supervised objective, which promotes the HTDA

model to utilize an integral and small subset of the input to give accurate

predictions. On this basis, the ANN and the SNN can be jointly optimized by

surrogate gradient descent in an end-to-end manner. We comprehensively

evaluated the HTDA model on object recognition tasks, which demonstrates

strong robustness to adversarial noise, high computing e�ciency, and good

interpretability. On the widely-adopted CIFAR-10, CIFAR-100, and MNIST

benchmarks, the HTDA model reduces firing rates by up to 50% and improves

adversarial robustness by up to 10% with comparable or better accuracy

compared with the state-of-the-art SNNs. The HTDA model is also verified on

dynamic neuromorphic datasets and achieves consistent improvements. This

study provides a new way to boost the performance of SNNs by employing a

hybrid top-down attention mechanism.
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1. Introduction

With complex structures and advanced cognitive functions,

the human brain is a valuable reference for building artificial

general intelligence. As the representatives of mimicking the

brain at the neuronal level, spiking neural networks (SNNs)

(Maass, 1997) have rich coding schemes and complex dynamics,

which are suitable for processing spatiotemporal information

(Tavanaei et al., 2019). With the support of neuromorphic

hardware (Painkras et al., 2013; Benjamin et al., 2014; Schuman

et al., 2017; Pei et al., 2019), event-driven updates and sparse

spike emissions of SNNs lead to high energy efficiency and

low inference latency. SNNs can be optimized by biologically

inspired synaptic plasticity, such as the Hebbian learning rule

(Gerstner and Kistler, 2002) and its variants (Masquelier and

Thorpe, 2007). On the other hand, driven by the deep learning

paradigm, SNNs can be directly learned based on surrogate

gradient descent in an end-to-endmanner (Wu et al., 2018, 2019;

Neftci et al., 2019), or converted from pretrained deep artificial

neural networks (ANNs) (Cao et al., 2015; Bu et al., 2021; Li

et al., 2021). Recently, the development of hybrid networks by

combining ANNs and SNNs has attracted increasing research

interest (Pei et al., 2019; Lee et al., 2020; Wu et al., 2022). Hybrid

networks leverage the unique characteristics of both parties,

providing more diverse building blocks and flexible structures

for supporting advanced intelligence.

In addition to the neuronal level, it is also important to

draw inspiration from the brain at the architectural level. Top-

down attention supported by ubiquitous feedback connections

(Connor et al., 2004; Noudoost et al., 2010; Baluch and Itti, 2011)

in the brain can select a subset of sensory input for processing

according to internal goals or working memory (Corbetta

and Shulman, 2002; Gazzaley and Nobre, 2012), facilitating

the brain to concentrate on the most crucial information

with limited cognitive processing resources (Desimone and

Duncan, 1995). In the deep learning community, top-down

attention has been investigated to improve the performance

of ANNs on image classification tasks (Harris et al., 2019),

and reinforcement learning is deployed to guide attention

generation (Ba et al., 2015). Moreover, as revealed by

findings in neuroscience, the top-down attention mechanism

may strengthen the robustness of the vision system (Luo

et al., 2015) and reduce energy consumption by suppressing

firing rates of neurons (Martinez-Trujillo and Treue, 2004).

Therefore, incorporating top-down attention into SNNs can

further improve the performance and bio-plausibility of existing

SNN models. Some work developed SNN models with top-

down attention but the generation of the attention map is

based on manual design (Wu et al., 2013) or restricted to

simple models (Arena et al., 2012), leading to less flexibility

and scalability. Direct learning of top-down attention maps

is desired for building practical SNN models with top-down

attention. However, the difficulties of acquiring sufficient labeled

attention maps and designing effective supervision objectives

hinder its development.

In this work, we report a hybrid network model that

enhances a feedforward SNN with top-down attention (HTDA).

The top-down attention maps are generated based on the

features extracted by the SNN. Although an SNN with multiple

spikes to approximately represent real numbers and trained by

surrogate gradient descent can be used to complete regression

tasks such as attention generation, the overall performance still

lags behind the ANN counterpart (Zhao et al., 2022). To alleviate

the difficulty of optimization and improve the performance, an

ANN is deployed to generate the attention maps because it has

more accurate representation and can be easily optimized by

mature gradient-based methods. The generated attention map

then modulates the encoding layer of the SNN. Thus, the hybrid

model forms a closed loop to attend to the most informative

inputs, making it possible to improve the robustness and energy

efficiency of the SNN through iterative inferences. Furthermore,

to address the direct learning of the top-down attention,

we propose a general principle and a corresponding weakly-

supervised objective for the attention map. With this objective,

manual annotations are not required for training the attention

map generator. Thus, the hybrid model can be optimized in

an end-to-end manner with surrogate gradient descent. We use

object recognition tasks to investigate the HTDA model, and

demonstrate stronger robustness to adversarial noise, higher

computing efficiency, and better interpretability. On the CIFAR-

10, CIFAR-100, and MNIST benchmarks, the HTDA model

reduces firing rates by up to 50% and improves adversarial

robustness by up to 10% with better accuracy compared with

the state-of-the-art SNNs. The HTDA model is also verified

on the dynamic N-MNIST dataset and achieves consistent

improvements. This work comprehensively studies the potential

benefits of ANNs-based top-down spatial attention to SNNs on

challenging machine learning tasks. With a new objective to

optimize the proposed attention mechanism, the HTDA model

provides a strong baseline and sheds light on SNNs enhanced by

top-down attention using a hybrid approach. Our contributions

are summarized as follows:

1 We develop a hybrid network model with top-down

attention, which is composed of an SNN to extract

spatiotemporal features and an ANN to generate top-down

attention maps. The hybrid model combines the strengths

ANNs and SNNs.

2 We propose a general principle and a corresponding

weakly-supervised objective for generating attention maps,

which facilitate direct learning of the top-down attention

without manual annotations.

3 We investigate the HTDA model on object recognition

tasks and demonstrate that it has greater robustness to

adversarial noise, higher computing efficiency, and better

interpretability compared with the state-of-the-art SNNs.
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2. Materials and methods

In this section, we introduce the design philosophy and

the overall architecture of the hybrid model with top-down

attention. The formulation of the adopted neuronal models

and the training method of the hybrid model are presented.

More importantly, we provide the design principle and the

corresponding objective for the top-down attention.

2.1. Overall architecture

The overall architecture of the HTDA model is inspired by

the top-down attention structure of the perceptual system in

the human brain (Baluch and Itti, 2011). The backbone of the

HTDA model is a convolutional SNN, which is used to extract

spatiotemporal features and perform downstream tasks. Besides,

to alleviate the difficulty of optimization, an ANN is deployed

to generate top-down attention maps based on the extracted

features because ANNs have accurate real-valued representation.

This configuration can also improve training stability and

efficiency. The generated attention map then modulates the

behavior of the feedforward SNN, thus forming a closed loop

to give more reliable inference. The overall architecture of the

hybrid model is illustrated in Figure 1A. Stimulated by the

input X(t) and modulated by the attention map Mn, the SNN-

based feature extractor E(·) generates a time-varying signal F(t),

which represents the input in the spatiotemporal domain. The

processing of the feature extractor can be formulated as the

following equation:

F(t) = E
(

X(t)×Mn, θE, hE
)

, t ∈ (nTf, (n+ 1)Tf], n ∈ N

(1)

where θE denotes learnable parameters of E(·) and hE denotes

the initial value of the state variables of E(·). Tf denotes the

period of generating attention maps, which can be determined

by the frequency of input signals. For instance, the inputs that

change rapidly should have a small Tf. The first layer of the

SNN is an encoding layer, which learns to encode inputs to

spike trains.

On the one hand, the signal F(t) will be then fed into the

SNN-based classifier C(·) to give predictions, such as categories

in recognition tasks. To make the prediction more reliable, the

outputs of the classifier at each sampling time are concatenated

and then processed by a learnable decoder to give the final result.

As a generalization of averaging the prediction over the time

dimension, the learnable decoding scheme of the concatenated

features can lead to better performance due to adaptive feature

selection and high representation precision (Wu et al., 2019).

This process is formulated as follows:







FC(t) = C
(

F(t), θC , hC
)

Y = wT
C

[

FC(Td)
T , FC(2Td)

T , ..., FC(KTd)
T
]T

+ bC
(2)

where Y is the final prediction of the recognition. Similarly, θC

denotes learnable parameters of C(·) and hC denotes the initial

value of the state variables of C(·). wC and bC are parameters

of the linear decoder. Td is the sampling interval and K is the

number of sampling in an inference. For practical applications,

Td can be set as 1ms according to widely adopted settings (Wu

et al., 2022). Therefore, K is determined by the duration of

input signals.

On the other hand, the signal F(t) will be integrated over

a fixed period Tf and then passed into the ANN to generate

the top-down attention map Mn. Mn is a matrix whose size is

equal to the spatial size of the input. The attention map will

modulate the encoding layer of the SNN-based feature extractor,

promoting the SNN to concentrate on the most informative part

of the input. The modulation process can be implemented by

multiplying the input with the attention map. The generation of

the attention map can be formulated as the following equation:

Mn = Sigmoid
{

Te × LayerNorm

[

A

(

1

Tf

∫ nTf

(n−1)Tf

Fdt, θA

)]}

(3)

where θA denotes learnable parameters of A(·). The initial

value of the attention map, ie, M0, is set to an all-ones

matrix J, indicating no preference for each part of the

input. Layer normalization (Ba et al., 2016) and the sigmoid

function with a temperature coefficient Te are applied for

the attention map. The temperature coefficient determines

the slope of the sigmoid curve, and thus determines the

range and magnitude of the non-zero gradient of the sigmoid

function. In the inference phase, large Te is desired because

it can improve the hardness or concentration degree of the

attention map. However, large Te can result in gradient

vanishing or explosion (Han and Moraga, 1995). To enlarge

the range of the non-zero gradient and thus alleviate gradient

vanishing, the temperature coefficient increases gradually from

1 to a large value in the training phase and then fixed

in the inference phase. This scheduling strategy of the

temperature coefficient is critical for stable training of the

HTDA model.

Notably, the configuration of the ANN-based attention

map generator has unique advantages. A lot of neuroscience

studies have revealed that the top-down feedback signals in

perceptual pathways have different timescales from bottom-

up sensory inputs (Larkum et al., 2004; Sarter et al., 2016;

Helfrich et al., 2019). The top-down signals that reflect internal

goals or working memory vary relatively slowly (Egeth and

Yantis, 1997). With a relatively large time scale, rate-coding

SNNs can be adapted to generate attention maps for the

proposed model, which can use multiple spikes over a time

window to approximately represent real numbers. However, the

performance of such SNN on regression tasks is still inferior

to the ANN counterpart (Zhao et al., 2022). Besides, multiple
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FIGURE 1

(A) The schematic of the HTDA model. The SNN-based feature extractor generates a spatiotemporal representation, which is then fed into an

ANN to generate top-down attention maps and a classifier to give predictions. The attention map modulates the encoding layer of the SNN. (B)

Neuronal models used in the HTDA model. (C) Training methods of the HTDA model. The HTDA model is jointly trained by unrolling in the time

dimension. A weakly-supervised objective is designed to optimize the attention map generator. (D) Firing rates of the encoding layer of the

feature extractor with or without top-down attention. The firing rate is calculated as the proportion of firing neurons in di�erent channels at a

certain spatial location at a certain time step.

iterations of the SNN result in lower computational efficiency.

To address this issue, we use an ANN to generate attention

maps. On the one hand, the ANNs can be considered as

the time-averaged version of rate-coding SNNs and naturally

have real-valued representation (Deng et al., 2020), whose

optimization methods have been investigated more deeply

(LeCun et al., 2015). On the other hand, the ANN-based

attention map generator reduces computation cost by only

iterating once in the period Tf. With the proper Tf, the

change of the input during the period is small, and thus

the attention map generated based on the integrated features

can track the focused object in the input. The quality of

the attention map can also be improved due to the high

precision of the feature integration and the ANN representation.

Notably, this discussion does not lead to a conclusion that SNNs

are fundamentally inferior to ANNs in performing attention.

On the contrary, the unique characteristics of SNNs can be

further investigated to implement various attentionmechanisms

(Chen and Gong, 2022). In this work, popular ReLU-based

ANN neurons are adopted in the implementation of the

attention generator.

2.2. Neuronal models

As the backbone of the HTDA model, the feedforward

SNN serves as the key component for processing sensory

inputs. SNNs have the characteristics of intrinsic temporal

dynamics, sparse computation, and event-driven updates, which

are appropriate for processing spatiotemporal information. In

the HTDA model, we adopt the prevalent leaky integrate-

and-fire (LIF) model for SNNs. The LIF model is easy to be

implemented with moderate bio-plausibility. It should be noted

that the proposed HTDAmodel is neuronal model-agnostic and

not restricted to the specific LIF model. The schematic of the

neuronal models used in this work is presented in Figure 1B.

The equation of the membrane potential of the LIF model is

presented as follows:

τ
du(t)

dt
= −(u(t)− ureset)+ RI(t) (4)

where u(t) is the membrane potential and ureset is the reset

potential. τ is the time constant and R is the resistance of

the membrane, respectively. I(t) is the afferent current of the
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neuron, including pre-synaptic inputs and bias currents. If the

membrane potential u(t) exceeds a threshold Vth, the neuron

will emit a spike and reset its membrane potential. For better

simulation, the equation can be discretized in time by the

numerical method (Wu et al., 2018). The iterative formula of

the membrane potential of a layer of neurons with a sampling

interval Td is presented as follows:











hk+1 = hkλ
(

1− ok
)

+ w ∗ xk+1

ok = H
(

hk − Vth

)

λ = e−
Td
τ

(5)

where k is the index of the time step and ok is the spiking output.

λ is the decay factor of the membrane potential, usually ranging

from 0 to 1.H(x) is the Heaviside step function, whose surrogate

gradient can be approximated by a window function. w is the

weight of the synapses and xk is the pre-synaptic spiking input. ∗

denotes a certain linear operation, such as vector multiplication

and convolution. The decay factor λ and the threshold Vth of

the HTDA model are learnable to better support the generation

of the attention map. In one inference, as mentioned above, the

SNN model iterates K steps to give the final prediction.

2.3. Training method

The ANN and the SNN in the HTDA model are jointly

trained by unrolling in the time dimension, which is illustrated

in Figure 1C. The unrolled network forms a directed acyclic

graph, which can be optimized based on gradient descent.

The non-differential property of the spike generation can be

solved by surrogate gradient (Neftci et al., 2019). The overall

minimization objective is formulated as the following equation:

L = αLC + (1− α)LM (6)

where LC is the loss for object recognition and LM is the loss

for generating the attention map. α is a hyper parameter that

adjusts the weight of the two terms. LC can be implemented by

the softmax cross-entropy loss.

Generally, if we have sufficient ground-truth labels of the

attention maps, LM can be easily implemented as the mean-

square-error objective. However, these labels are difficult to

obtain and the manual annotations are not necessarily optimal.

To address this issue, we propose a general principle for

generating these attention maps. On this basis, we design a

feasible weakly-supervised objective without the need of detailed

annotations. This approach facilitates the direct learning of

the top-down attention, which not only reduces manual

intervention but also improves flexibility.

Inspired by neuroscience studies, the proposed principle

of designing LM is to promote the HTDA model to utilize

an integral and small subset of the input to give accurate

predictions. In other words, the attention map should be sparse,

diverse, and smooth. At meanwhile, the attention map should

not degrade the classification accuracy of the HTDA model.

Guided by this principle, a feasible formulation of LM is

presented as follows:

LM =
1

NP

N
∑

n=1

{

γ ‖Mn‖1 − β‖Mn −mean(Mn)‖
2
2

+(1− γ − β)‖Mn ∗K‖1

}

(7)

where P is the number of elements of the attention map.N is the

number of generated attention map in an inference, which can

be calculated as ⌊
K∗Td
Tf

⌋. K is a kernel of a high pass filter, such

as the Laplacian operator. mean(·) is an operator to calculate the

mean value of all elements of a given matrix.

The first term of LM promotes the ANN to generate sparse

attention maps. Due to the non-differentiability of L0 norm,

L1 norm is adopted as the optimal convex approximation

of the L0 norm for promoting sparsity. At the same time,

constrained by the classification loss, the generated map should

not be too sparse to degrade the accuracy. The second

term is used to maximize the variance of all elements of

the attention map. This objective can promote the values

of all elements toward 0 or 1, thus improving diversity.

Otherwise, all the elements of the attention map may tend

to be 0.5, leading to loss of selectivity. The third term

promotes the attention map to be smooth, which can make

the focused object integral and improve training stability.

γ and β are coefficients that balance these three terms.

With this weakly-supervised objective, the HTDA model

can be optimized in an end-to-end manner, resulting in

greater flexibility.

As a comparison of the top-down attention investigated in

this work, stimulus-driven bottom-up attention relies on the

input to produce saliency maps, which is mainly implemented

in the feedforward pathway and usually has a relatively small

time scale (Egeth and Yantis, 1997; Itti and Koch, 2001). On

the contrary, the attention mechanism in the HTDA model

is not only based on the input stimulus but also guided by

the goal of accurate object classifications in the training phase.

In the inference phase, the classification goal implicitly guides

the attention through iterative inference. Additionally, the

attention maps are generated based on high-level information

represented in deep layers of the SNN. Feedback connections

are introduced to apply attention to the spike encoder. In

this manner, the HTDA model forms a closed loop to give

accurate and robust predictions over a time window, whose

attention has a relatively large time scale. Therefore, the

attention in the HTDA model is more like a type of top-

down attention.
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3. Results

In this section, we conduct experiments of the HTDA

model on object classification tasks. The experimental results

demonstrate that the HTDA model can generate desired top-

down attention maps according to the design principle. The

attention maps are robust to random translation, rotation, and

noise. With the assistance of the attention map, the HTDA

model achieves strong robustness to adversarial noise and

reduces computation cost. Additionally, the generated attention

map also improves interpretability, which can help to debug

the model by presenting the focus of the feature extractor. The

HTDA model is also evaluated on neuromorphic datasets and

achieves consistent improvements. The experimental settings

are summarized as follows. Please refer to the code for more

details https://gitee.com/circle-pass-filter/htda.

Network. The SNN-based feature extractor is a 6-layer VGG

(Simonyan and Zisserman, 2014)-like convolutional network

and the ANN-based attention map generator is a 3-layer

deconvolutional network (Figure 1A). In the following sections,

we use VGG-xc to denote the VGG-like network with x channels

in the first layer. The classifier is a fully connected network with

one hidden layer. The baseline model used for comparison (S-

SNN) is composed of the same SNN-based feature extractor

and classifier without the top-down attention structure, whose

thresholds and decay factors are fixed according to the state-of-

the-art training settings (Wu et al., 2022). In the experiments,

Tf is set to 2Td. The number of iterations K is set to 6 for static

data and 10 for neuromorphic data. To improve efficiency, the

attention map is generated once for static inputs and shared by

subsequent iterations. Synaptic weights of neurons are initialized

according to Kaiming’s uniform initialization scheme (He et al.,

2015). Membrane potentials of the LIF neurons are initialized as

zero. Following widely-adopted settings in the machine learning

community, one LIF neuron can have both excitatory synapses

and inhibitory synapses at the same time (Wu et al., 2018).

Dataset. The effectiveness of the HTDA model is verified

on MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al.,

2009), CIFAR-100, andN-MNIST (Orchard et al., 2015) datasets.

CIFAR-10 contains 10 classes of 32 × 32 colorful images, with

50k samples for training and 10k samples for test. CIFAR-100

is similar to CIFAR-10 but contains 100 classes. MNIST has

60k training samples and 10k test samples, whose spatial size

is adjusted to 32 × 32. N-MNIST is the neuromorphic version

of MNIST, which is generated based on dynamic vision sensors.

Random flipping and cropping are used for data augmentation

in the training phase.

Training. The HTDA model is jointly optimized by mini-

batch stochastic gradient descent with a momentum of 0.9. The

batch size is set to 200 and the initial learning rate is set to 0.1. To

improve training stability, warm-up approach (He et al., 2016) is

adopted. By grid search of the hyper parameters, β and γ are set

to 0.40 and 0.51 for all datasets, respectively. α is set to 0.10 for

CIFAR-10 and CIFAR-100, and 0.01 for MNIST and N-MNIST.

The maximum of the temperature coefficient of the attention

map generator is set to 6 for all experiments.

3.1. Improved interpretability

Attention maps indicate the focus of the network model,

which can improve interpretability. As shown in Figure 2, we

present the attention maps generated by the HTDA model for

samples in CIFAR-10, CIFAR-100, and MNIST. The feature

extractor is a VGG-128c network. The experimental results

demonstrate that the ANN can generate proper attention maps,

which are smooth, diverse, and sparse. The object outlined

by the attention map is integral and well-aligned with our

expectations about the salient features. Powered by the attention

map, the HTDA model promotes the SNN to focus on the

most informative subset of the input and filter out background

information. Additionally, we present the attention map for

the input with random translation and rotation, and the input

perturbed by Gaussian noise, respectively. The ANN can also

generate desired attention maps for these transformed inputs.

It is worth noting that the training samples are not augmented

by random rotation and adding noise, which demonstrates the

robustness and adaptivity of the HTDA model.

The distributions of the attention maps for samples in

CIFAR-10, CIFAR-100, and MNIST are presented in Figure 3.

The values of most elements of the attention map are near 0

and 1. These results indicate the attention maps are sparse and

the top-down attention works in an all-or-none manner, which

is consistent with the weakly-supervised objective (Equation 7).

The distributions are beneficial to improving the diversity of the

attention map, leading to better selectivity.

3.2. Improved robustness

In this section, we evaluate the robustness of the HTDA

model with different capacities on CIFAR-10, CIFAR-100, and

MNIST datasets, and compare with that of the baseline SNN

model. The adversarial robustness is evaluated by the project

gradient descent (PGD) attack method (Madry et al., 2018),

which uses multi-step gradient ascent to calculate adversarial

perturbation. The adversarial perturbation in these experiments

is bounded by L∞ norm. The PGD method is a popular

adversarial attack method for evaluating model robustness.

The input perturbed by the PGD method is calculated as the

following iterative formula:

X0 = X + Uniform (−ǫ, ǫ)

Xi+1 = PS

[

Xi + η · sgn
(

∇XL

(

Y , Ŷ
))] (8)
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FIGURE 2

Attention maps for samples in CIFAR-10, CIFAR-100, and MNIST under di�erent settings, respectively. The images are arranged in columns for

the input, the corresponding attention map, and the input after attention.

FIGURE 3

(A–C) The distributions of the attention maps for samples in CIFAR-10, CIFAR-100, and MNIST, respectively.

where Xi denotes the perturbed input and ǫ denotes the

perturbation budget. sgn(·) is the sign function. The

perturbation budget is the maximum L∞ norm of the

adversarial perturbation, which indicates the intensity of the

adversarial attack. Generally, larger perturbation leads to lower

accuracy. The step size η is set to 2/255 for CIFAR-10 and

CIFAR-100, and 20/255 for MNIST, respectively. The number

of iterations is set to 10. Ŷ is the ground truth of the prediction.

PS(·) is an operator to project the perturbed input into the image

space. Uniform(−ǫ, ǫ) generates a uniform noise matrix to

initialize the adversarial perturbation, whose size is equal to the

input. Notably, the adversarial perturbation is generated for the
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whole model. Thus, the attention mechanism is also considered

when calculating gradients for generating adversaries. The

PGD method only requires the sign of the gradient to generate

adversarial perturbation, which is relatively insensitive to the

exact value of the surrogate gradient in SNNs. Therefore,

gradient-based methods for evaluating adversarial robustness

have been adopted by the SNN community (Sharmin et al.,

2020; Kundu et al., 2021; Kim et al., 2022; Nomura et al., 2022).

The reported robustness is measured by the accuracy of the

model for adversarially perturbed inputs. In the experiments,

three different perturbation budgets, ǫ1, ǫ2, and ǫ3, are adopted

to evaluate the model robustness. For CIFAR-10 and CIFAR-

100, ǫ1, ǫ2, and ǫ3 are set to 1/255, 2/255, and 3/255,

respectively. For MNIST, ǫ1, ǫ2, and ǫ3 are set to 20/255,

40/255, and 60/255, respectively. The experimental results and

corresponding standard deviations under different settings are

summarized in Table 1. Every experiment is run three times

under the same setting except for random seeds.

The experimental results show that the robustness of the

HTDAmodel is improved significantly than the baseline SNN in

most cases. On CIFAR-10 and CIFAR-100, the mean robustness

of the HTDA model exceeds that of the baseline by 3% to 10%

under the perturbation budgets of ǫ1, ǫ2, and ǫ3. OnMNIST, the

robustness of the HTDAmodel is improved by up to 15% under

large perturbation budgets such as ǫ3. It should be noted that

the standard deviation of the reported robustness is about 0.5%

and substantially smaller than the difference of mean values.

These results indicate that the improvement achieved by the

HTDA model is statistically significant. Interestingly, with a

relatively small network such as the VGG-32c, the robustness

improvement of the HTDA model on CIFAR-10 and CIFAR-

100 is larger than that with a large network. These results are

consistent with the hypothesis that theHTDAmodel can allocate

the limited capacity to process themost informative subset of the

input. Thus, the HTDA model can achieve stronger robustness

with a small network capacity.

The HTDA model improves robustness because that it can

filter out background information by suppressing the activation

of corresponding encoding neurons of the SNN. This approach

reduces the dimension of the input space, therefore reducing the

space of the potential adversarial examples to fool the network

(Simon-Gabriel et al., 2019). Several works have demonstrated

that elimination of the background of inputs using hand-

designed attention masks prior to classification can improve

robustness (Vaishnavi et al., 2020). In contrast, the HTDA

model can automatically generate attention maps based on the

extracted features without manual annotations.

The above explanation can be verified by the comparison

in Table 1. Interestingly, the experiments on MNIST serve as

an ablation study. Samples of the digits in MNIST have black

backgrounds, which can be seen as the results after attention

to a certain extent. Therefore, the robustness improvement of

the HTDA model on MNIST should not be significant. This

inference is consistent with the presented results. Specifically,

with the network of VGG-32c and under the perturbation

budget of 20/255, the robustness of the HTDA model is 96.08%,

which is comparable to that of the baseline (95.69%). On the

other hand, under larger perturbation budgets, the robustness

improvement increases because the HTDA model has better

efficiency of the network capacity.

3.3. Improved e�ciency

The HTDA model can reduce firing rates of the SNN-

based feature extractor, resulting in lower communication and

TABLE 1 Comparison of accuracy and robustness under di�erent settings (%).

Settings
CIFAR-10 CIFAR-100 MNIST

S-SNN HTDA S-SNN HTDA S-SNN HTDA

VGG-32c

Clean 87.88± 0.12 88.57 ± 0.03 59.73± 0.14 62.07 ± 0.05 99.14± 0.06 99.25 ± 0.07

ǫ1 66.23± 0.28 72.20 ± 0.34 37.02± 0.39 46.00 ± 0.27 95.84± 0.14 96.03 ± 0.06

ǫ2 31.81± 0.70 43.56 ± 0.81 15.26± 0.51 26.15 ± 0.15 72.65± 3.72 79.52 ± 0.66

ǫ3 10.23± 0.89 19.77 ± 0.56 5.64± 0.16 12.46 ± 0.29 9.03± 2.51 23.07 ± 0.24

VGG-64c

Clean 90.37± 0.09 90.93 ± 0.10 64.61± 0.43 66.09 ± 0.07 99.17± 0.03 99.22 ± 0.10

ǫ1 72.58± 0.28 75.44 ± 0.60 39.93± 0.27 45.80 ± 0.39 96.1± 0.11 95.95 ± 0.11

ǫ2 42.01± 0.39 47.11 ± 1.20 16.31± 0.33 22.86 ± 0.76 72.08± 1.24 79.00 ± 0.58

ǫ3 17.32± 0.16 21.84 ± 0.95 5.91± 0.25 10.20 ± 0.44 9.98± 0.37 25.57 ± 2.41

VGG-128c

Clean 90.83± 0.21 91.99 ± 0.17 68.17± 0.31 69.13 ± 0.06 99.14± 0.04 99.19 ± 0.04

ǫ1 75.36± 0.54 79.25 ± 0.24 44.69± 0.42 48.25 ± 0.20 96.02± 0.17 96.03 ± 0.11

ǫ2 49.13± 0.60 56.51 ± 0.36 21.69± 1.08 25.55 ± 0.72 74.44± 2.32 78.96 ± 0.55

ǫ3 25.38± 1.10 31.25 ± 0.90 8.90± 0.53 11.62 ± 0.78 14.82± 1.85 28.42 ± 3.72

The results of the HTDA model are marked in bold.
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FIGURE 4

(A–C) Mean firing rates of the feature extractors on CIFAR-10, CIFAR-100, and MNIST, respectively. The mean firing rate is calculated as the

proportion of firing neurons in all layers over all time steps.

FIGURE 5

Firing rates of each layer of the feature extractor (VGG-128c) at di�erent time steps under di�erent settings. The firing rate presented in each

cell of the matrix is the proportion of the firing neurons in a certain layer at a certain time step. On both CIFAR-10 and CIFAR-100, the firing rates

of the HTDA model after attention decrease significantly.

computation costs, and thus improved energy efficiency. In the

human brain cortex, it is estimated that the energy consumed

by communication is about 35 times larger than that of

computation (Levy and Calvert, 2021). The communication of

spikes also poses challenges in terms of network bandwidth,

energy consumption, and synchronization for neuromorphic

systems (Painkras et al., 2013; Benjamin et al., 2014; Schuman

et al., 2017). Thus, reducing firing rates of SNNs can improve

energy efficiency significantly. Here, we evaluate the firing

rates of the SNN-based feature extractor of the HTDA model

after applying top-down attention and compare with that of

the baseline SNN. The results are presented in Figure 4. The

error bar shows the standard deviation of the firing rates of

three independent trials. Across different datasets and network

capacities, the firing rates of the SNN in the HTDA model

decrease by a large margin than that of the baseline. The

larger the network capacity, the more significant the decrease

in firing rates. Specifically, the firing rate of the HTDA model

with the VGG-128c network on CIFAR-10 decreases by 50%.

This is because the HTDA model allocates as little as possible

but sufficient resources to process information even with larger

network capacities.
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As shown in Figure 1D, the firing rates of the neurons in

the encoding layer of the HTDA model corresponding to the

background of the input are significantly suppressed by the top-

down attention. This does not degrade accuracy because the

background contributes little to accurate and robust recognition

of objects. The spatial firing patterns of subsequent layers are

similar to the encoding layer, therefore reducing the firing rate

of the entire HTDA model. These can be verified by the results

of the firing rates of each layer of the feature extractor (Figure 5).

The firing rates of the HTDA model decrease significantly

after applying attention. As commonly accepted, neurons in

deep layers represent the high-level abstraction of the input.

Interestingly, the firing rates of the neurons in deep layers keep

similar to the baseline. This phenomenon suggests that the

HTDA model and the baseline SNN may have similar object-

level representations of the input, and thus do not degrade

accuracy on benign samples.

In the HTDA model, the ANN-based attention map

generator brings additional computation cost and network

parameters. For a fair comparison, we present the number of

MACs (Multiply–Accumulate Operations) and parameters of

the HTDA model on CIFAR-10 and compare with that of the

baseline. The results are summarized in Table 2. The reported

TABLE 2 Comparison of computing operations and the number of

parameters of di�erent models.

Settings VGG-32c VGG-64c VGG-128c

MAC (M)
S-SNN 31.1 92.1 331.5

HTDA 23.7 60.4 165.5

Para. (M)
S-SNN 2.94 5.32 13.52

HTDA 3.10 6.55 16.14

computing operations are estimated by considering firing rates

and sparse computation. In other words, the neuron that does

not fire will not lead to post-synaptic computation. Compared

with the baseline, the computation costs of the HTDA model

are reduced by up to 50%, which is similar to the results of

the firing rates. Additionally, the parameters of the HTDA

model are increased slightly than the baseline. Therefore, the

additional computation cost brought by the ANN is much less

than the reduced cost brought by suppressing firing rates. In

total, the HTDAmodel can improve energy efficiency, especially

by reducing the amount of spike emissions.

3.4. Evaluation on neuromorphic data

We evaluate the HTDA model on a neuromorphic dataset,

N-MNIST, to demonstrate its compatibility on dynamic data. To

improve efficiency, the event data of N-MNIST is accumulated

over a period of 5ms and 10 time steps are used to represent the

samples. The digits in N-MNIST move in space. Therefore, the

HTDA model is required to generate dynamic attention maps

to track the digits, which is more challenging. As presented in

Figure 6, the generated attention maps of the HTDA model on

N-MNIST can dynamically concentrate on the moving digits.

More importantly, as the time steps increase, the attention

maps become more fine-grained. These results demonstrate the

effectiveness of the HTDA model powered by the closed-looped

iterative inference.

We further evaluate the robustness of the HTDA model

on N-MNIST, whose evaluation protocol is similar to the

experiments presented above. Notably, the adversarial noise is

generated for the full model including the feedback attention

mechanism. The results are summarized in Table 3. ǫ1, ǫ2,

FIGURE 6

Event data of samples in N-MNIST and corresponding attention maps. The attention maps are set to all-ones matrices at the first two steps and

updated every two steps.
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TABLE 3 Comparison of di�erent models on N-MNIST.

Settings
Robustness (%)

Para. (M) MAC (M)

Clean ǫ1 ǫ2 ǫ3

VGG-32c
S-SNN 99.23± 0.11 98.99± 0.11 84.67± 3.63 44.89± 3.59 2.96 10.2

HTDA 99.29 ± 0.03 98.67 ± 0.11 92.52 ± 0.72 75.24 ± 6.22 3.12 12.0

VGG-64c
S-SNN 99.19± 0.06 98.72± 0.02 46.68± 8.56 10.29± 3.62 5.91 34.5

HTDA 99.26 ± 0.05 98.61 ± 0.14 82.72 ± 2.86 55.08 ± 0.65 6.57 40.4

The results of the HTDA model are marked in bold.

TABLE 4 Comparison of di�erent settings on CIFAR-10 (%).

Attention Learnable Accuracy Robustness (ǫ2) Firing rates

X X 87.88± 0.12 31.81± 0.70 12.45± 0.15

X X 88.09± 0.04 38.54± 0.40 11.20± 0.05

X X 87.84± 0.12 40.54± 0.68 8.48± 0.11

X X 88.57± 0.03 43.56± 0.81 9.15± 0.32

TABLE 5 Comparison of attention targets on CIFAR-10 (%).

Targets Accuracy Robustness (ǫ1) Robustness (ǫ2) Robustness (ǫ3) Firing rates

Encoder 88.57± 0.03 72.20± 0.34 43.56± 0.81 19.77± 0.56 9.15± 0.32

Encoder&middle 88.52± 0.10 72.40± 0.68 45.05± 1.50 21.23± 1.13 9.33± 0.09

TABLE 6 Comparison of accuracy on CIFAR-10, CIFAR-100, and MNIST.

Dataset Model Backbone Para. (M) Steps Accuracy (%)

CIFAR-10

Unsupervised (Panda and Roy, 2016) Spike CNN - 250 75.42

Back-propagation (Wu et al., 2019) CIFARNet 45 8 90.53

Converted SNN (Sengupta et al., 2019) VGG-16 138 2,500 91.55

Hybrid plasticity (Wu et al., 2022) CIFARNet 45 12 91.08

S-SNN (ours) VGG-128c 13.52 6 90.83 ± 0.21

HTDA (ours) VGG-128c 16.14 6 91.99 ± 0.17

CIFAR-100

Converted SNN (Han et al., 2020) ResNet-20 0.27 2,048 67.82

Converted SNN (Han and Roy, 2020) VGG-16 138 2,048 70.97

S-SNN (ours) VGG-128c 13.52 6 68.17 ± 0.31

HTDA (ours) VGG-128c 16.14 6 69.13 ± 0.06

MNIST

Converted SNN (Diehl et al., 2015) Spike CNN - 200 99.10

Hybrid plasticity (Wu et al., 2022) CIFARNet 45 12 99.50

S-SNN (ours) VGG-32c 2.94 6 99.14 ± 0.06

HTDA (ours) VGG-32c 3.10 6 99.25 ± 0.07

The results of our implementations are marked in bold.

and ǫ3 are set to 10/255, 40/255, and 50/255, respectively.

Every experiment is run three times independently. Instead of

binary adversarial noise, the generated real-valued adversarial

noise is directly added to the samples in N-MNIST, which

is more reliable to evaluate the robustness. The results

demonstrate that the HTDA model can improve robustness

on neuromorphic data, which is consistent to the results of

static datasets.

3.5. Ablation study

The top-down feedback attention mechanism and the

learnable thresholds and decays are two key ingredients of

the HTDA model. To investigate their effects on the overall

performance of the HTDA model, we conduct an ablation

experiment, in which the attention and the learnable are

independently enabled or disabled. The experiment is conducted
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on CIFAR-10 with a VGG-32c network backbone. Training

settings and the evaluation protocol are kept the same as that

of the HTDA model. Results of the four settings are presented

in Table 4. As indicated by the experimental results, these two

key designs can both improve performance and reduce firing

rates. The improvement independently achieved by the attention

is more significant than that of the learnable thresholds and

decays. Additionally, learnable thresholds and decays contribute

more to the improvement of accuracy. In contrast, the attention

mechanism contributes more to enhancing robustness and

reducing firing rates. More importantly, these two designs can

be combined to further improve the overall performance.

To investigate the effect of the attention target on model

performance, we conduct a contrast experiment on CIFAR-10

with a VGG-32c network, in which top-down attention maps

are applied to the encoder and middle layers of the SNN.

Except for the attention target, other settings of the model

are the same as that of the HTDA model. Comparisons of

accuracy, robustness under the perturbation budgets of ǫ1,

ǫ2, and ǫ3, and firing rates are presented in Table 5. The

experimental results show that the performance of these two

models is comparable. Moreover, additional attention to middle

layers can slightly improve robustness, especially under larger

perturbation budgets. Generally, similar results of these two

settings indicate that it is reasonable to only apply the attention

to the encoder layer. Neurons in the encoder layer that are

suppressed by the top-down attention will not trigger neurons in

subsequent layers at the same spatial location. Therefore, it is not

necessary to apply the top-down attention to the middle layers

again. Nevertheless, more sophisticated attention mechanisms

for middle layers are worth further exploring (van de Ven et al.,

2020).

3.6. Comparison with state-of-the-art
SNN models

In this section, we compare the HTDAmodel with the state-

of-the-art SNN models on classification accuracy. Considering

that the key innovation of the HTDA model lies in the

architectural level instead of the network backbone level, we

adopt the state-of-the-art SNN models with similar VGG-

like backbones for comparison. The results are summarized

in Table 6. The architecture of the VGG-128c in this work

are similar to the CIFARNet and the VGG-16 network. The

reported time steps are the maximum number of iterations

in an inference and refer to the published work, which can

be directly compared. The HTDA model exceeds the baseline

S-SNN consistently and achieves state-of-the-art accuracy on

CIFAR10 with fewer parameters and time steps. The accuracy

of the HTDA model on CIFAR-100 is comparable to the state-

of-the-art accuracy of converted SNNs with thousands of time

steps. However, time steps of the HTDA model are much fewer

than these converted SNN models because the HTDA model is

directly optimized based gradient descent. In the future, more

advanced backbones can be further combined in the HTDA

model to achieve better performance.

4. Conclusion

In this work, we develop a hybrid neural network with

a top-down attention mechanism. A general principle and a

corresponding weakly-supervised objective are proposed for

optimizing the top-down attention. The proposed HTDA

model is investigated on object recognition tasks on CIFAR-10,

CIFAR-100, MNIST and N-MNIST datasets. The experimental

results demonstrate that the HTDA model can achieve

strong robustness, high computing efficiency, and improved

interpretability. Specifically, the HTDA model improves the

robustness to adversarial noise by up to 10% and reduces the

firing rates by up to 50% compared with the state-of-the-art

SNNs. The accuracy of the HTDA model is also comparable

to or larger than the state-of-the-art SNN models. This work

promotes the development of the SNN models with top-

down attention.
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