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Compelling evidence in rats support the idea that gestational chronodisruption induces
major changes in maternal circadian rhythms and fetal development and that these
changes impact adult life at many physiological levels. Using a model of chronic
photoperiod shifting throughout gestation (CPS), in which pregnant female rats
(Sprague–Dawley strain; n = 16 per group) were exposed to lighting schedule
manipulation every 3–4 days reversing the photoperiod completely or light/dark
photoperiod (12/12; LD), we explored in the adult rat male offspring body weight gain,
glucose homeostasis, adipose tissue content, adipose tissue response to norepinephrine
(NE), and adipose tissue proteomic in the basal condition with standard diet (SD) and in
response to high-fat diet (HFD). In adult CPSmale (100–200 days old; n = 8 per group), we
found increasing body weight, under SD and adiposity. Also, we found an increased
response to intraperitoneal glucose (IGTT). After 12 weeks of HFD, white adipose tissue
depots in CPS offspring were increased further, and higher IGTT and lower intraperitoneal
insulin tolerance response were found, despite the lack of changes in food intake. In in
vitro experiments, we observed that adipose tissue (WAT and BAT) glycerol response to
NE from CPS offspring was decreased, and it was completely abolished by HFD. At the
proteomic level, in CPS adipose tissue, 275 proteins displayed differential expression,
compared with LD animals fed with a standard diet. Interestingly, CPS offspring and LD
fed with HFD showed 20 proteins in common (2 upregulated and 18 downregulated).
Based on these common proteins, the IPA analysis found that two functional pathways
were significantly altered by CPS: network 1 (AKT/ERK) and network 2 (TNF/IL4; data are
available via ProteomeXchange with identifier PXD026315). The present data show that
gestational chronodisruption induced deleterious effects in adipose tissue recruitment and
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function, supporting the idea that adipose tissue function was programmed in utero by
gestational chronodisruption, inducing deficient metabolic responses that persist
into adulthood.
Keywords: DoHAD, adipose tissue, diabetes, obesity, chronobiology
INTRODUCTION

At present, according to the European Foundation for the
improvement of living and working conditions and the US
Department of Labor, approximately 20% of the worldwide
workforce is employed under shift work schedule (1, 2),
increasing a risk of early onset of a series of non-
communicable diseases (NCD), like metabolic syndrome,
obesity, and cardiovascular diseases (1, 3–5). In this regard,
compelling evidence in human and animal models support the
idea that chronodisruption (i.e., disturbance of internal temporal
order, essentially circadian, of endocrinology, physiology,
metabolism, and behavior) might be a link between NCD and
shift work schedule. Indeed, similar phenomena arose during
pregnancy, namely, gestational chronodisruption (6–9). In
human, exposure to shift work schedule during pregnancy has
been associated with an increased risk of miscarriage, preterm
delivery, and low birth weight, in addition to higher incidence of
sleep and metabolic and cardiovascular disturbances in the
offspring (10–12). Unfortunately, interpreting human studies
during pregnancy is quite difficult, due to confusing scenarios
imposed by the effects of food availability, electronic screen
exposure, emotional support, and family life. Actually, new
epidemiological studies add more evidence about the potential
deleterious effects of gestational chronodisruption in human,
although conducting studies with more controlled conditions is
imperative (5, 13, 14).

Therefore, to dissect the potential mechanism involved in the
long-term effect of chronodisruption, we use a model in which
pregnant female rats were exposed to lighting schedule
manipulation every 3–4 days reversing completely their
photoperiod (chronic photoperiod shift, CPS), simulating
night shift work schedules in humans (6, 9). In vivo and in
vitro experiments in rat, non-human primates, and sheep
demonstrated that gestational chronodisruption affects fetal
organ function like adrenal, heart, hippocampus, liver, and
fetal hormonal rhythms like prolactin, corticosterone, and
cortisol. Altogether, the current evidence supports the idea that
gestational chronodisruption is indeed an unhealthy signal for
fetal development. Moreover, adult offspring of these studies
show changes in organs such as liver, kidneys, and pancreas and
an increase in the amount of adipose tissue (6–8, 15–20).
Interestingly, in precocious species like sheep, new information
support the notion that the timing at which the effect of
chronodisruption appears could be related to age. In a recent
study, Gatford et al. (21) found a lack of or a weak effect of
maternal chronodisruption in young sheep, in contrast to that
reported previously in young rats (9).
n.org 2
Adipose tissue has been proposed as an important target of
developmental programming since obesity is the main risk factor
for numerous pathologies, such as type 2 diabetes mellitus,
insulin resistance (22), hypertension (23), cardiometabolic
disease (24), and some types of cancer (25). Obesity is
observed clinically by an excessive accumulation of white
adipose tissue, related to a state of chronic and mild
inflammation, which is directly related to the complications
generated by obesity (26). It must be kept in mind that in
mammals, there are two types of adipose tissue that are
structurally and functionally different: white adipose and
brown adipose tissue. White adipose tissue (WAT) is
responsible for energy storage in the form of triglycerides, and
it plays an endocrine function through the secretion of
inflammatory cytokines. Meanwhile, brown adipose tissue
(BAT) is responsible for energy dissipation as heat, which is
produced from triglycerides stored in brown adipocytes, a
physiological process called thermogenesis (27, 28).

Using the rat model of CPS throughout gestation, we
investigated the long-term detrimental effects of gestational
chronodisruption on glucose homeostasis and adipose
tissue physiology and metabolism in the male adult
offspring, based on our previous studies in rat male offspring
in which we documented the long-term effect of the
cardiovascular, endocrine, and metabolic impact of gestational
chronodisruption in the offspring (6). In this model, as in other
models of developmental origin of health and diseases (29),
important sex differences have been shown in the offspring (9).
Furthermore, considering risk factors prevailing in a modern
society subjected to night shift work schedules, the impact of a
second cardiometabolic challenge [high-fat diet (HFD) for 12
weeks] was evaluated in the male adult offspring that had been
gestated under CPS relative to LD (control) conditions. An
integrative array of methodologies was applied to generate the
following outcomes: food intake and cumulative weight gain,
glucose and insulin tolerance, fasting glucose and insulin levels,
serum leptin and adiponectin levels, WAT and BAT tissue and
cellular characterization, in vitro WAT and BAT glycerol
response to norepinephrine, global genomic DNA methylation,
and quantitative proteomics analyses.
MATERIALS AND METHODS

Animals
The protocols were approved by the Bioethics Commission from
the Universidad Austral de Chile (CBA: 352/2019). Animal
handling was performed following the guidelines for the care
August 2021 | Volume 12 | Article 678468
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and use of laboratory animals of the Institute for Laboratory
Animals Research of the National Research Council.

We raised and maintained 32 female rats of Sprague-Dawley
strain obtained from Charles River (CRL International Inc.,
Kingston NY). These rats were mated, and the pregnancy was
determined by the presence of positive sperm, obtained by
vaginal smears, calling that day “day 0 of gestation” (E0). All
pregnant rats had water and standard food (Prolab® RMH 3000,
Lab diet, USA) ad libitum under controlled temperature (20°C–
22°C) in standard cages inside a cabinet with filters and
ventilation. From day 1 of gestation, pregnant rats were
randomly separated into two groups of light/dark photoperiod:

A) Control light/dark (LD n = 16 pregnant female): From day
1 of gestation, a group of dams continued with the light/dark
12:12 photoperiod, with artificial white light ~400 lux at the head
level, which is turned on at 0700 h and turned off at 1900 h.

B) Chronic phase shift of photoperiod (CPS n = 16 pregnant
females): using a similar protocol reported by us (6). Briefly,
pregnant females were exposed to lighting schedule
manipulation every 3–4 days reversing completely the
photoperiod. The photoperiod reversal occurred at the night of
day 0 of gestation, so that lights, rather than going off at 1900 h,
remained on until 0700 h of day 2. At 18 days of gestation, the
mothers returned to a normal 24-h photoperiod (12:12, lights on
at 0700 h) and continued in this photoperiod thereafter.
Exposure of pregnant females to CPS had no impact on food
consumption and maternal weight (6).

Exposure of pregnant females to CPS had no impact on daily
food consumption (monitored every week) through pregnancy
Frontiers in Endocrinology | www.frontiersin.org 3
(LD: 21.2 ± 0.6 g/day, n = 16 vs. CPS: 22.3 ± 0.6, n = 16), maternal
weight at the end of gestation (LD: 427.6 ± 6.8 g, n = 16 vs. CPS:
430.3 ± 10.6, n = 16), or maternal weight gain at the end of
gestation (LD: 134.4 ± 2.8 g, n = 16 vs. CPS: 135.0 ± 7.5 g, n = 16)
as reported previously (6).

At birth, mothers and their pups were maintained in control
photoperiod 12:12, and the male offspring were studied. All the
animals were housed individually after weaning and weighted
weekly, and food consumption was measured by weighing the
food placed in the cage and the amount left 3 days later, when
bed and fresh food were replaced. For the current study, we
generated two cohorts of animals separated and used them in the
protocols described below (Figure 1). At 100 days of age, two
brothers from the same pre-natal condition were separated and
one brother was exposed to a HFD (45% excess calories) for 12
weeks and paired with a brother fed with standard food (Prolab®

RMH 3000, Lab diet, USA). Intraperitoneal glucose tolerance test
(iGTT, Cohort1) and intraperitoneal insulin tolerance test (iITT,
Cohort 2) were performed at 100 days (basal) and 12 weeks after
exposure to either a HFD or standard diet. In addition, only in
those males exposed to HFD was an additional iGTT and iITT
test performed after 6 weeks under HFD. One week after the last
test, animals were euthanized and adipose tissue was collected.

Intraperitoneal Glucose Tolerance Test
Male rats (n = 8 per group-Cohort 1) at 0800 h (after 12-h
fasting) were anesthetized (Isoflurane 2.5%–3.5%) and injected
with intraperitoneal glucose (1 g/kg; Glucose, Sanderson
laboratories; Chile). A blood drop was collected from the tail
FIGURE 1 | Flow diagram of experimental protocol. Pregnant rats were exposed to either control photoperiod (LD) or chronic photoperiod shift (CPS) from mating
until 18 days of gestation. At 100 days old, male offspring were exposed to either high-fat diet (HFD; 45% excess calories) or standard diet (SD) for 12 weeks (about
200 days old). iGTT, intraperitoneal glucose tolerance test; iITT, intraperitoneal insulin tolerance test; n = number of animals.
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to measure glucose levels (Accu-Chek; Roche Diagnostics) at −15
and 0 min before glucose administration and 30, 60, 90, 120, and
180 min after glucose injection. A blood sample was collected
at −15 min to measure fasting glucose, insulin, leptin
and adiponectin.

Intraperitoneal Insulin Tolerance Test
Male rats (n = 8 per group-Cohort 2) at 1500 h were anesthetized
and injected with insulin (1U/kg; Humalog® #CAT: VL7510, Eli
Lilly and Company, Indianapolis, USA) after 6-h fasting. A blood
drop was collected from the tail to measure glucose levels (Accu-
Chek; Roche Diagnostics) at 0, 15, 25, 35, 45, and 60 min after
glucose injection. A blood sample was collected at 0 min to
measure fasting glucose, insulin, leptin, and adiponectin.

Adipose Tissue Depots
At 200 days of age (after 12 weeks of HDF, n = 8 per group—
Cohort 1), eight male rats per group were deeply anesthetized
(Isoflurane 3%, Baxter Laboratories, Melbourne, Australia), a
midline incision was done to expose the vena cava, and an
overdose of sodium thiopental (150 mg/kg; Vetpharma, Buenos
Aires, Argentina) was administered. Immediately after death was
confirmed, whole white adipose depots (inguinal, epigonadal,
and perirenal) and interscapular brown adipose depot were
dissected and weighted. Pieces were stored at −80°C for
proteomic analysis or fixed in 4% formalin for histological
analysis. The remaining adipose tissue were stored in our
tissue bank at −80°C.

Adipose Tissue Lipolytic Response to
Norepinephrine In Vitro
(n = 8 per group—Cohort 2). Epigonadal white adipose tissue
(eWAT) and interscapular brown adipose tissue (iBAT) were
dissected from individual rats, cut in small explants (about 50 mg
for eWAT and 25 mg for iBAT) and suspended in culture
medium (D-MEM F12, Sigma-Aldrich, St. Louis, MO, USA).
Explants (10 explants for each animal) were pre-incubated in
culture medium for 6 h at 37°C and aerated with 95% air CO2

and 5% O2. Next, explants were incubated in duplicate for 6 h in
2 ml medium alone (basal) or containing 0.01, 0.1, 1, and 10 mM
of norepinephrine [A7257 (−)-Norepinephrine, Sigma-Aldrich,
St. Louis, MO, USA]. At the end of incubation, the supernatant
was collected, total protein of explants was assayed by Bradford
method, and lipolysis was determined measuring the glycerol
present in the supernatant fraction with a commercial kit
(FG0100 Free Glycerol Determination Kit, Sigma-Aldrich, St.
Louis, MO, USA). Production of glycerol was calculated as
microgram per milligram of total protein in the explant.

Hormone Assays
Blood samples were collected from the tail of male rats (n = 8 per
group—Cohort 1) after 12-h fasting (n = 8 per group) at basal, 6
weeks, and 12 weeks after HFD exposure. The serum of each
sample was obtained by centrifugation (4,000×g, 10 min, 22°C),
and insulin, leptin, and adiponectin concentrations were
measured by a commercial immunoassay kit according to the
manufacturer’s instructions (MILLIPLEX® MAP Kit; Merck,
Frontiers in Endocrinology | www.frontiersin.org 4
KGaA, Darmstadt, Germany). The inter- and intra-assay
coefficients were less than 10%.

Global Methylation
Adipose tissue (prWAT and iBAT, n = 5 CPS + SD and LD + SD;
90 days old), stored in our tissue bank from previous studies (7,
30), were used to evaluate global genomic DNA methylation
using MethylFlash (methylated DNA quantification colorimetric
kit; Epigentek Group Inc., Farmingdale, NY, USA), following the
manufacturer’s instructions. Basically, our aim was to compare
the effect of gestational chronodisruption in global methylation
in adipose tissue since epigenetic changes have been reported
previously by us in adrenal and kidney, organs in which such
changes have been accompanied with changes in organ function
already in fetal life.

Proteomic Analyses
Protein identification was performed by high-resolution mass
spectrometry on a hybrid dual-pressure linear ion trap/orbitrap
mass spectrometer (LTQ Orbitrap Velos Pro, Thermo Scientific,
San Jose, CA, USA) equipped with an EASY-nLC Ultra HPLC
(Thermo Scientific). Input was 50 mg of white adipose tissue for
each sample (n = 8 per group). For analysis, peptide samples
were adjusted to 10 ml 1% ACN/0.1% TFA and fractionated on a
75-mm (ID), 25-cm PepMap C18-column, packed with 2 mm
resin (Dionex/Thermo Scientific). The separation was achieved
through applying a gradient from 2% to 35% ACN in 0.1%
formic acid over 150 min at a flow rate of 300 nl/min. An
Orbitrap full MS scan was followed by up to 20 LTQ MS/MS
runs using collision-induced dissociation (CID) fragmentation of
the most abundantly detected peptide ions. Essential MS settings
were as follows: full MS (FTMS; resolution 60,000; m/z range
400–2000); MS/MS (Linear Trap; minimum signal threshold
500; isolation width 2 Da; dynamic exclusion time setting 30 s;
singly charged ions were excluded from selection). The
normalized collision energy was set to 35%, and activation
time was set to 10 ms. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via
the PRIDE (31) partner repository with the dataset
identifier PXD026315.

Statistical Analysis
Data are expressed as mean ± standard error of the mean (SEM).
LD and CPS differences in weight gain, food consumption,
glycerol release, hormone levels, iGTT, iITT, and global
methylation were analyzed by two-way repeated measures
ANOVA and Bonferroni post-hoc test when group factor or
interaction factor was significant (32). Additionally, we
calculated the area under the curve (AUC) for iGTT and area
above the curve (AAC) for iITT. Statistical analyses were
performed using GraphPad Prism (version 9; GraphPad
Software Inc., San Diego, CA). Results were considered
significant when p < 0.05. For adipose tissue proteomics
analysis, raw data processing and protein identification were
performed using PEAKS Studio V.8.0 (Bioinformatics Solutions,
Waterloo, Canada). False discovery rate was set to <1%. Label-
free quantification was performed using Progenesis QI for
August 2021 | Volume 12 | Article 678468
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proteomics (Nonlinear Dynamics/Waters). Proteins with
abundance ratios of >1.5 or <1/1.5 at p < 0.05 were considered
as significantly regulated. We applied an integrative and
unbiased analysis approach for functional analysis of the
proteins with significant changes in expression against the
control group (LD offspring). Ingenuity Pathways Analysis
(IPA) computes a score for each protein network according to
the fit of that network to the user-defined set of “focus protein.”
The score is derived from a p-value and indicates the likelihood
of the focus proteins in a network being found together due to
random chance. A score of 2 indicates that there is a 1 in 100
chance that the focus proteins are together in a network due to
random chance. Therefore, scores of 2 or higher have at least a
99% confidence of not being generated by random chance alone
[for details, see (17)]. First, we identified the modified proteins
for the LD + HFD, CPS and CPS + HFD conditions compared to
LD (fold change > 1.5; p < 0.05). After this exploratory analysis,
we decided to focus on the common proteins for the CPS and
LD + HFD groups, based on our observed results. Under this
criterion, we selected the 20 proteins shown in Figure 8 and were
grouped to build a new dataset and analyzed by IPA to generate
the interactomes.
RESULTS

Effects of Gestational CPS on the
Offspring’s Metabolic Status
Between weaning (21 days old) and 100 days of age, CPS and LD
animals had similar food consumption expressed as kcal/day
(LD: 137 ± 12 kcal/day, n = 16 versus CPS: 143 ± 14, n = 16;
p = 0.197 unpaired t-test). However, CPS offspring was slightly
heavier (LD: 602 ± 51 g, n = 16 versus CPS: 615 ± 50 g, n = 16; p =
0.5, unpaired t-test). As shown in Figure 2A, CPS animals fed a
standard diet (CPS + SD) between 100 and 200 days became
increasingly heavier than LD + ST animals. After the 4 weeks
Frontiers in Endocrinology | www.frontiersin.org 5
under HFD, LD + HFD and CPS + HFD animals showed a
significant increase in body weight versus LD + SD (time × group
factor p < 0.001; Figure 2A). Thus, CPS animals with SD or HFD
featured a similar weight gain profile, reaching an increase of
about 50% versus LD + SD (Figure 2A). Food intake remains
steady along the 12 weeks in animals receiving either standard or
HFD (Figure 2B). Therefore, CPS animals fed with SD had a
similar weight gain to those LD or CPS fed with HFD.

In line with a previous report (6), we found slight differences
in intraperitoneal glucose tolerance test (iGTT) between LD and
CPS adult offspring at 100 days of age, before the beginning of
HFD (Figure 3A). After 60 min post glucose injection, glucose
levels rapidly decreased to 173± 2 mg/dl in the LD group,
remaining elevated in the CPS group (210 ± 16 mg/dl; p =
0.024; two-way ANOVA and Bonferroni test), but no interaction
time × column was found (p = 0.172). In addition, analyzed as
AUC, glucose response displayed a similar value to the CPS
group without reaching statistical significance (p = 0.857,
unpaired t-test; Figure 3A). However, no difference was found
at 200 days (Figure 4A). Important differences were found in
iGTT after 6 weeks with HFD. At this time window, the adult
offspring gestated under LD conditions maintained the glucose
response similar to that observed at week 0. In contrast, a marked
increase in glucose response was observed in the CPS group
relative to control LD (time × group factor: p = 0.012, two-way
ANOVA and Bonferroni; Figure 3C). Analyzed as AUC, glucose
response remained the same as week 0 (basal) for the LD group,
while basal plasma glucose levels tended to increase in the CPS
group relative to control LD group (p = 0.111; unpaired t-test).
As anticipated, a significant increase in glucose response was
found in LD animals after 12 weeks (Figure 3C) regarding 0 and
6 weeks of HFD. At this late time window, the adult CPS
offspring presented significantly higher levels of glucose in
basal conditions, raising up to 340 mg/dl levels after 30 min
post intraperitoneal glucose injection (Figure 3E), but no
interaction time × group was found (p = 0.622). Measured as
A B

FIGURE 2 | Effects of gestational chronic phase shift of photoperiod on (A) cumulative weight gain and (B) food intake of rats fed with standard diet (SD) and 45%
high-fat diet (HFD) for 12 weeks. Data are mean ± SEM. Solid line (LD): adult offspring gestated under control photoperiod; dashed line (CPS): adult offspring that
had been gestated under chronic photoperiod shift; circles: adult offspring fed with standard diet Prolab® RMH 3000; squares: adult offspring fed with HFD. n = 8
per group. *LD + HFD; CPS + SD and CPS + HFD are different from LD + SD (p < 0.05 pairwise comparison at each time point with Bonferroni correction).
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AUC, the glucose response was similar to the CPS group
compared to the LD group (p = 0.838; unpaired t-test),
probably due to the fact that the CPS group begins with higher
basal plasma levels.

Intraperitoneal insulin tolerance tests were carried out in the
parallel cohort 2. One-hundred-day-old animals have shown no
difference between LD and CPS offspring (time × group factor:
p = 0.616, two-way ANOVA; Figure 3B), expressed either as
plasma glucose levels or area above the curve (AAC; p = 0.866
unpaired t-test). Similar results were found at 200 days of age
(Figure 4B). After 6 weeks of HFD, the group that had been
gestated under LD presented a glucose response to insulin alike
to the one observed at week 0 (basal). However, the CPS group
displayed a marked increase relative to both CPS and LD at week
0 (basal) and to LD at week 6 (time × group factor: p = 0.026,
two-way ANOVA and Bonferroni; Figure 3D). Glucose response
Frontiers in Endocrinology | www.frontiersin.org 6
expressed as AAC was at the same level in the LD group
regarding week 0 (basal), while CPS showed a significant
decrease of AAC (p = 0.033; unpaired t-test). Finally, a third
iITT was performed after 12 weeks under HFD (Figure 3F). No
significant increase in glucose response to insulin was found in
LD animals regarding week 0 (basal). Meanwhile, CPS animals
presented significantly higher levels of glucose in basal
conditions, maintaining higher levels of glucose up to the end
of the experiment (time × group factor: p = 0.019, two-way
ANOVA and Bonferroni). However, AAC values for insulin
response were lower in the CPS compared to the LD group, but
not statistically significant (p = 0.325, unpaired t-test; Figure 3F),
probably due to the higher fasting glucose in CPS.

Next, we evaluated the potential role of the endocrine system
to help to explain our findings. To this goal, insulin, leptin, and
adiponectin plasma levels were measured before applying the
A B

C D

E F

FIGURE 3 | Effects of gestational chronic phase shift of photoperiod on intraperitoneal glucose tolerance test (A, C, E) and intraperitoneal insulin tolerance test
(B, D, F) of rats fed with 45% high-fat diet (HFD) for 12 weeks, measured at week 0/basal (A, B), 6 weeks (C, D) and 12 weeks (E, F). Data are mean ± SEM. Solid
line: LD, adult rats that had been gestated under control 12:12 (LD) photoperiod; dashed line: CPS, adult rats that had been gestated under chronic phase shift
(CPS) photoperiod. AUC, Area under the curve; AAC, Area above the curve. n = 8 per group. *different from LD (p < 0.05 pairwise comparison at each time point
with Bonferroni correction), #different from LD (p < 0.05, unpaired t-test).
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glucose tolerance test in fasting conditions after HFD. First,
steady levels of fasting glucose and circulating insulin, leptin, and
adiponectin were found throughout 12 weeks under HFD
challenge in the control LD group (Figure 5). In contrast,
adult CPS offspring displayed increased levels of fasting glucose
(time × group factor: p = 0.025, two-way ANOVA and
Frontiers in Endocrinology | www.frontiersin.org 7
Bonferroni; Figure 5A) at 6 and 12 weeks of treatment. In
addition, they exhibited high insulin plasma levels at 6 weeks
(time × group factor: p = 0.016, two-way ANOVA and
Bonferroni; Figure 5B, i e, week 6 versus week 0/basal),
dropping to minimal levels after 12 weeks of HFD challenge
(i.e., week 12 versus week 6). On the other hand, when plasma
A B

FIGURE 4 | Effects of gestational chronic phase shift of photoperiod on intraperitoneal glucose tolerance test (A) and intraperitoneal insulin tolerance test (B) of rats
fed with standard diet (SD) since 100 to 200 days of age. Data are mean ± SEM. Solid line: LD, adult rats that had been gestated under control 12:12 (LD)
photoperiod; dashed line: CPS, adult rats that had been gestated under chronic phase shift (CPS) photoperiod; circles: adult offspring fed with standard diet Prolab®

RMH 3000; squares: adult offspring fed with HFD. n = 8 per group.
A B

C D

FIGURE 5 | Effects of gestational chronic phase shift of photoperiod on serum levels of fasting glucose (A), fasting insulin (B), leptin (C), and adiponectin (D) at 6
and 12 weeks of 45% high-fat diet intake. Data are mean ± SEM. Solid line: LD, adult rats that had been gestated under control 12:12 (LD) photoperiod. Dashed line:
CPS, adult rats that had been gestated under chronic phase shift (CPS) photoperiod. n = 8 per group. *Different from LD (p < 0.05; two-way ANOVA and Bonferroni
test). &Different from basal (p < 0.01; two-way ANOVA and Bonferroni test).
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levels of the two hormones produced by WAT from CPS animals
were evaluated, leptin showed constantly increased levels along
the 12 weeks under HFD, which is consistent with higher body
weight gain (Figure 5C), without an interaction (time × group
factor: p = 0.123, two-way ANOVA). Adiponectin displayed
higher levels already in basal conditions in CPS offspring (i.e.,
before HFD), but like the levels measured in the control LD
offspring, with stable values throughout HFD challenge (time ×
group factor: p = 0.149, two-way ANOVA; Figure 5D).

Effects of Gestational CPS on the
Offspring’s Adipose Tissue Lipolytic
Function In Vitro
White and brown adipose tissues were collected and analyzed 1
week after the last test described above was carried out. CPS
animals fed standard diet had more iWAT and less BAT than
animals gestated under control (LD) conditions, while pWAT
and eWAT show no difference. HFD induced an increase in
perirenal, epigonadal, and inguinal white adipose tissue pads
(Figures 6A–C), matching findings from another report (33).
Meanwhile, CPS offspring displayed increased subcutaneous
iWAT depot with both standard diet and HFD, compared to
LD without interaction (column factor: <0.001; time × group
factor: p = 0.704, two-way ANOVA). Surprisingly, CPS iWAT
levels under standard diet were similar to those of LD + HFD
iWAT. We explored whether the treatments induced an increase
in the number of white adipose cells in eWAT. Neither LD nor
CPS with or without HFD was associated with differences in the
number of cells per section, supporting the idea that the effects
induced by HFD or CPS on eWAT total mass represent bigger fat
pads. Next, we evaluated the effects of CPS and HFD on brown
adipose tissue depot. As expected, HFD given to the control LD
offspring did not affect the content of brown adipose tissue
(interscapular depot). However, CPS offspring presented a
significant decrease (about 50%; group factor: p < 0.001, two-
way ANOVA and Bonferroni) in iBAT, which was not affected
by HFD (time × group factor: p = 0.697, two-way ANOVA;
(Figure 6D). Neither LD nor CPS with or without HFD
displayed differences in the number of cells per section
(Figures 6E–H).

The functional integrity of WAT was assessed under in vitro
conditions by testing glycerol response to increasing doses of
norepinephrine (NE). Explants of LD eWAT animals fed with
standard diet had a significant glycerol response to 1 µM NE and
reached a maximal response with 10 µM NE. In contrast, in CPS,
eWAT explants’ glycerol response to NE was statistically
significant only to 10 µM NE (group factor: p = 0.103, two-
way ANOVA and Bonferroni; Figure 7A). In animals fed with
HFD, the glycerol response to NE in eWAT LD explants was
similar to the one found under the standard diet (group factor:
p = 0.64, treatment × group factor: p = 0.76, two-way ANOVA
and Bonferroni; Figures 7A–C). Therefore, HFD did not affect
the in vitro response to NE in LD conditions (Figures 7C). In
contrast, eWAT explants from adult animals that had been
gestated under CPS conditions displayed a blunted glycerol
response to all NE doses tested (group factor: p < 0.001,
Frontiers in Endocrinology | www.frontiersin.org 8
treatment × group factor: p = 0.024, two-way ANOVA and
Bonferroni; Figure 7C).

The functionality of BAT was also evaluated under in vitro
conditions. First, BAT explants of adult offspring gestated under
LD and CPS conditions and fed with standard diet showed
increased glycerol response to 10 µM NE (group factor: p =
0.029, two-way ANOVA and Bonferroni; Figure 7B). Of note,
higher basal levels of glycerol were found in the incubation media
from CPS animals than that of control (LD) animals. This
difference was no longer present in BAT explants from CPS
animals receiving HFD for 12 weeks. In addition, BAT explants
from these animals showed a reduced glycerol response to NE
and overall glycerol production was lower than that of BAT
explants from control (LD) conditions also fed on HFD (group
factor: p < 0.001, treatment × group factor: p = 0.440, two-way
ANOVA and Bonferroni; Figure 7D).

Some of the differences in white and brown adipose tissue
between CPS and LD animals described above were present
before the HFD challenge. Therefore, we explored potential
epigenetic mechanisms involved by measuring global genomic
DNA methylation status in both WAT and BAT depots in the
offspring at 100 days. Perirenal WAT from LD offspring showed
significant day/night methylation differences, with levels that
were about 25% higher during daytime (Figure 8A). Conversely,
lower levels of global genomic DNA methylation were detected
during daytime in perirenal WAT from CPS offspring (time ×
group factor: p = 0.001, two-way ANOVA and Bonferroni). It
should be noted that the mean day/night methylation level was
similar for perirenal WAT from both LD and CPS adult
offspring. Finally, no differences were found for global DNA
methylation in BAT, either during daytime or nighttime (p =
0.948, two-way ANOVA; Figure 8B). These early differences in
global DNA methylation suggest that epigenetic programming
has occurred in WAT from the CPS group.

Next, we evaluated the effects of prenatal chronodisruption
and postnatal HFD on total protein expression in white adipose
tissue using a quantitative proteomics analysis. (Data are
available via ProteomeXchange with identifier PXD026315.)

Animals that had been gestated under LD conditions and
received HFD during adult life displayed a significant increase in
body weight and weight of white adipose tissue fat pads at 100
days. These exacerbated weight-gain pattern induced by HFD
was accompanied by modification in the expression level of 91
proteins (fold change higher than 1.5) in white adipose tissue.
We further analyzed the proteomics data using Ingenuity
Pathway Analysis (IPA) to look for interactions among the
differentially expressed set of proteins framed in functional
pathways. As might be expected, the major effects at the
proteome level were found in the functional pathway involving
fatty acid metabolism. In addition, changes in the expression
level of proteins related to cytoskeleton function and cellular
differentiation were found.

WAT from adult CPS offspring at 200 days fed with SD
displayed differential expression of 275 proteins with a fold
change higher than 1.5, when compared to the control LD
group fed with SD. Remarkably, 96% of the differentially
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FIGURE 6 | Effects of gestational chronic phase shift of photoperiod in recruitment of adipose tissue depot. Upper panel displays the weight of whole adipose tissue
depots adjusted by full-body weight of 200-day-old rats fed with standard diet or high-fat diet. (A) Inguinal adipose tissue, (B) epigonadal adipose tissue, (C)
perirenal adipose tissue, (D) interscapular brown adipose tissue. Middle panel displays representative H&E staining of (E) 10× perirenal white adipose tissue and (F)
40× interscapular adipose tissue histological sections. Lower panel displays the corresponding cell number counts as shown in (G) from white adipose tissue and
(H) from brown adipose tissue. Data are mean ± SEM. Black bars: LD, adult rats that had been gestated under control 12:12 (LD) photoperiod. White bars: CPS,
adult rats that had been gestated under chronic phase shift (CPS) photoperiod. Standard diet: animals fed with Prolab® RMH 3000, High-fat diet: animals fed with
45% high-fat diet for 12 weeks. n = 8 per group. *LD + HFD; CPS + SD and CPS + HFD are different from LD + SD (p < 0.05 pairwise comparison at each time
point with Bonferroni correction). &Different from standard diet (p < 0.05 pairwise comparison at each time point with Bonferroni correction).
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expressed proteins were downregulated in WAT from adult CPS
offspring. This significant proportion of downregulated proteins
is consistent with the metabolic alterations described above for
WAT from adult CPS relative to LD offspring.

Comparison of adult CPS offspring fed standard versus CPS
fed HFD led to the identification of 235 proteins exhibiting
Frontiers in Endocrinology | www.frontiersin.org 10
significantly modified expression levels, that is to say, 114 more
proteins than LD animals receiving HFD. Among these, 219
proteins were upregulated and 16 proteins were downregulated.

In contrast, comparison of WAT from CPS fed with SD and
LD fed with HFD vs. both LD fed with SD show striking
similarity and only four proteins were differentially expressed
A B

FIGURE 8 | Effects of gestational chronic phase shift of photoperiod on global genomic DNA methylation of perirenal white adipose tissue (A) and interscapular
brown adipose tissue (B) from 90-day-old rats sampled at day (10:00 h) and night (22:00 h). Black bars: LD, adult rats that had been gestated under control 12:12
(LD) photoperiod. White bars: CPS, adult rats that had been gestated under chronic phase shift (CPS) photoperiod. n = 5 per group. *different from LD (p < 0.05
pairwise comparison at each time point with Bonferroni correction).
A B

C D

FIGURE 7 | Effects of gestational chronic phase shift of photoperiod on glycerol response to increasing doses of norepinephrine (NE) of white epigonadal adipose
tissue (A, C) and brown interscapular adipose tissue (B, D). Explants from 200-day-old rats fed with either standard diet Prolab® RMH 3000 (A, B) or 45% high-fat
diet (HFD; C, D). Data are mean ± SEM. Black bars: LD, adult rats that had been gestated under control 12:12 (LD) photoperiod. White bars: CPS, adult rats that
had been gestated under chronic phase shift (CPS) photoperiod. n = 8 per group. *different from LD. &Different from basal LD (0 mM NE). All comparisons: p < 0.05
pairwise comparison at each time point with Bonferroni correction.
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in CPS HFD. Taken together, these proteomics results support
the notion that in terms of protein expression, WAT from adult
CPS offspring is somewhat similar to WAT from adult LD
offspring fed with HFD. This possibility was further
investigated by running functional proteomic analyses to target
common protein profiles by these means; 20 differentially
expressed proteins were identified in both experimental groups
as compared to the adult offspring that had been gestated under
control LD conditions receiving SD postnatally (Figure 9). Of
note, a most important difference in WAT was found in
MYADM, that was −9.7 times downregulated regarding LD +
HFD. So far, the actual role of MYADM in adipose tissue
function remains non-investigated, but recent evidence is in
line with a potential role of this protein in local inflammation,
as mediator of low-grade inflammation as deduced for its role in
membrane (34). After this exploratory analysis, we decided to
focus on the common proteins for the CPS and LD + HFD
groups, based on our observed results. Under this criterion, we
selected the 20 proteins shown in Figure 9, grouped to build a
new dataset and analyzed by IPA to generate the interactomes.

Detailed pathway analysis of WAT from adult CPS + SD
showed an imbalance in the pathways related to inflammatory
Frontiers in Endocrinology | www.frontiersin.org 11
status, network 1 (TNF/IL4, score 14; Figure 10, top panel), and
network 2 (AKT/ERK, score 28; Figure 10, lower panel)
supporting the idea that WAT from adult CPS offspring fed
with SD was undoubtedly affected to an important extent by
gestational chronodisruption.
DISCUSSION

Life on Earth has evolved over million years to successfully adapt
to dominant environmental clues such as light/dark cycles.
However, several environmental factors have been influenced
by human activity, with artificial light at night (ALAN) being one
of the most recent changes imposed over roughly the last
century. ALAN is linked not only to light pollution of densely
populated locations but also to shift work schedules (about 20%
of the global workforce). Recent research on the crosstalk
between metabolism and the circadian system has provided
evidence linking shift work schedules with the onset of
metabolic disorders such as obesity, type 2 diabetes, and
cardiovascular dysfunction (35). Considering that a clear
FIGURE 9 | Up and down expressed proteins in WAT from adult offspring gestated under control conditions and fed with high-fat diet during 12 weeks from
postnatal day 100 onwards (LD + HFD group—black bar) and adult offspring gestated under CPS conditions and fed with standard diet postnatally (CPS + SD). Fold
change in CPS + SD offspring is shown in red, and that of LD + HFD is in black. Data are expressed as mean of fold changes and were analyzed using Ingenuity
Pathways Analysis (IPA).
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FIGURE 10 | Interactome depicting the pathways that were most significantly enriched by differentially expressed proteins identified by quantitative proteomics of
white adipose tissue (WAT) from adult offspring. Comparison: adult offspring that had been gestated under control (LD) conditions and fed with high-fat diet (HFD)
during 12 weeks from postnatal day 100 onwards (LD + HFD group) versus adult offspring that had been gestated under CPS conditions and fed with standard diet
postnatally (CPS + SD). Red, upregulated protein; green, downregulated protein; white, protein related in the network without expression changes. Proteins
connected with solid lines have direct links; those connected with dotted lines have indirect links. The set of proteins was grouped in the Ingenuity Top Network 1:
Cellular Development, Cell Morphology, Cell-Mediated Immune Response, and Inflammatory Response pathways.
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relationship has been established for an adverse intrauterine
milieu with chronic disease later in life [references in (36, 37)],
we tested the hypothesis that gestational chronodisruption (CPS
conditions) translates into long-term detrimental effects on
glucose homeostasis and adipose tissue physiology, increasing
the negative impact of HFD as a cardiometabolic challenge
during adulthood in the male offspring.

Gestation under a CPS has an important effect on the adrenal
and cardiovascular system in the male offspring during
adulthood (6, 7, 30). In the present paper, we found the impact
of CPS on adipose tissue recruitment and function under
standard diet that were enhanced by the HFD challenge. At
100 days of age, several differences were present between the LD
and CPS group. We observed significant differences in
intraperitoneal glucose tolerance test, requiring more time to
return to the basal levels, accompanied by an increase in leptin,
suggesting an increase of adipose tissue that may be involved in
the early metabolic effect described above. In addition, animals
gestated under CPS conditions responded to HFD with altered
iGTT and iITT profiles, in parallel with increased weight gain
without any change in food intake. In keeping with early CPS
effects on adipose tissue, at 100 days of age in WAT perirenal,
global methylation displays differences between LD and CPS,
with CPS offspring showing lower levels of global genomic DNA
methylation during daytime. Altogether, the current results,
before the challenge using HFD, support the idea that an
epigenetic mechanism should be present in the early effect
observed in WAT at 100 days of age. Next, we found that
chronodisruption throughout gestation induced significant
changes in body weight and adipose tissue recruitment and
function under standard diet. CPS effects on adipose tissue
were exacerbated by HFD. By 200 days of age and after 12
weeks of receiving HFD, the distribution of different adipose
tissue depots was altered. Besides, the amount of inguinal white
adipose tissue (iWAT) was increased in the adult CPS offspring,
while the amount of interscapular brown adipose tissue (iBAT)
decreased significantly. Furthermore, the in vitro lipolytic
capacity of adipose tissue from CPS offspring (evaluated by
glycerol production) was inhibited in animals exposed to
prenatal CPS and postnatal HFD. At 200 days old (after 12
weeks with HFD), an obesogenic phenotype was observed in CPS
animals, which, at the molecular level, might be explained by the
altered expression pattern found for 275 proteins in CPS adipose
tissue, as compared with control (LD) animals fed with a
standard diet. Interestingly, the CPS + SD and LD + HFD
groups showed 20 differentially expressed proteins in common
(2 upregulated and 18 downregulated). Based on these common
proteins, functional analyses identified two functional pathways
as significantly altered: network 1-TNF/IL4 and network 2-AKT/
ERK. Altogether, the present results support the notion that
white adipose tissue function was programmed in utero by
chronodisruption, inducing changes in physiology and
metabolic response capacity that persist into adulthood.
Interestingly, the key results in the current manuscript support
the idea that CPS offspring treated with a standard diet, in terms
Frontiers in Endocrinology | www.frontiersin.org 13
of metabolic assessment, are close to a control animal fed with
a HFD.

Increased accumulation of white adipose tissue has been
proposed as a strong and independent predictor of adverse
health outcomes associated with obesity (38), as reported here.
Besides its role in energy storage, WAT is also an active secretory
organ producing a large number of molecules termed adipokines.
Actually, adipokines participate in the modulation of glucose and
lipid homeostasis via the central effects of leptin (39). Adipokines
include pro-inflammatory factors and chemokines, increased in
obesity (40). Although obesity has been associated with increased
accumulation of macrophages within the fat mass, it remains
unclear how the crosstalk between macrophages and white
adipocyte tissue initiates the dysfunction of white adipose
tissue in metabolic disorders. Recently, it has been
demonstrated that a link between metabolic syndrome and
chronodisruption is provided by the early onset of low-grade
inflammation (38, 41), an inflammatory state associated with a
wide range of chronic conditions, such as metabolic syndrome,
type 2 diabetes mellitus, and cardiovascular disease (42).
Reinforcing this issue, our current results plus other works of
our group show that maternal chronodisruption is translated in
the offspring in an obesogenic phenotype in which low-grade
inflammation is already present at 90 days of age (30); it must be
kept in mind that these findings are consistent with the
significant range of differentially expressed proteins identified
by means of quantitative proteomics in WAT.

We suggest that chronodisruption interfered with the normal
developmental trajectory of adipose tissue in utero, which led to
readily consequences for metabolism during adult life. The
persistent deleterious effects secondary to light at night along
gestation suggest the involvement of epigenetic mechanisms.
Indeed, a significant change in the levels of global genomic
DNA methylation between day and night was detected in
white adipose tissue. On the other hand, in vitro glycerol
production in response to norepinephrine was affected.
Therefore, regulatory mechanisms related to the misalignment
of circadian rhythms may operate in WAT. In this context, it is
worth mentioning that in a recent publication, Moreno-Mendez
et al. (43) argued that epigenetic impairment of adipose tissue
function might derive from a mechanism involving
hypomethylation of IGF2 and hypermethylation of leptin and
TNF-A. This is consistent with our findings that independent of
the diet, animals exposed to chronodisruption during gestation
between 100 and 200 days of age are metabolically comparable to
those LD animals fed with HFD. A series of cases reported by
Nahme et al. (44) in 2019 suggest that these findings can be
extrapolated to human health. These authors, for the first time,
observed a direct relationship between misalignment of the
melatonin rhythm during pregnancy and gestational problems
together with a low Apgar score in the newborns from these
mothers. While we must be careful to overinterpret a series of
cases, there are already many studies suggesting an increased risk
of adverse pregnancy outcomes secondary to maternal shift work
throughout pregnancy (12) and in their offspring (45, 46).
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For instance, it has been demonstrated that deficient nutrition
during gestation alters the development of adipocytes in utero,
resulting in a permanent increase in the ability to form new
adipocytes in adipose tissue depots and increase lipid storage in
existing adipocytes (47).

In addition, we know that maternal melatonin during
pregnancy may also play an important role in the development
of brown adipose tissue and the thermoregulation of the
newborn sheep (48, 49). Circadian disruption chronically
impairs the biological clock’s function, favoring multiple
pathological processes like cancer and metabolic and
cardiovascular disorders (50). Many of these processes could
be related to a low-grade inflammation state, as suggested by the
upregulation of TNF-a, IL-1b, and IL-6 in various tissues from
rat and other animal models of chronodisruption in sleep
deprivation (51, 52). Of note, our proteomic results suggest
changes in the same direction. Low-grade inflammation has
been implicated in the development of chronic diseases. For
instance, undernutrition in utero causes impairment in muscle
growth during fetal growth, and after birth, these individuals
accumulate a disproportionately high-fat mass (53). The adipose
tissue secretes several potent inflammatory factors, which may
lead to low-grade inflammation. Though there are scarce
evidence that links gestational chronodisruption with a low-
grade inflammation state, our results suggest that gestational
chronodisruption promotes an increase of pro-inflammatory
cytokines in males (30), which could be the central mechanism
of programming observed here. Consistent with this evidence, we
observed that two pivotal pathways involved in adipose tissue
function like TNF/IL4 and AKT/ERK were modified in LD fed
with HFD and CPS with standard diet at 200 days of age; both
pathways involved a key step in the progression of metabolic
adipose tissue dysfunction like low-grade inflammation and
differentiation process (54). Therefore, we speculate that part
of this key pathways was modified in utero and could be one of
the mechanisms programming in utero by gestational
chronodisruption, an idea that needs more exploration. In the
same line, results of our group support the notion that a critical
organ involved in metabolism and correct response to stress, the
adrenal gland, is programmed in utero by maternal
chronodisruption, in which CPS offspring present a
desynchronization of the adrenal circadian clock and
steroidogenic pathway, leading to abnormal stress responses
and potentially increasing the risk of developing chronic
diseases (6, 7).

An interesting comparison of our results with those available
in sheep suggests to us that sheep are more resilient than the rat
to the impact of photoperiod changes during gestation (21, 55).
The evidence supports those minor changes that occur in
pregnant sheep in comparison to the pregnant rat as well as
the minor changes observed in the young lamb offspring,
opening the possibility to speculate that a protective
physiological environment allows the sheep to cope with
adverse environmental cues. How this occurs remains to be
investigated, but we need to keep in mind that the sheep
present several physiological differences compared to rats, such
Frontiers in Endocrinology | www.frontiersin.org 14
as glucocorticoid production, which is low in sheep (56),
pregnancy physiology, and the seasonal characteristic of the
sheep and postnatal development. Further research is needed
in order to establish how both animal models help to understand
the long-term impact of gestational chronodisruption
in humans.

In summary, the present results in male rats strongly support
the idea that gestational chronodisruption may act through
epigenetic mechanisms to define an abnormal adipose tissue
phenotype, which is functionally consistent with increased risk of
obesity, insulin resistance, hypertension, and metabolic
syndrome. This liability seems to be compounded by HFD,
which can be considered a highly prevalent risk factor in
modern life.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will bemade
available by the authors, without undue reservation. Protein data
are available via ProteomeXchange with identifier PXD026315
https://www.ebi.ac.uk/pride/archive/projects/PXD026315.
ETHICS STATEMENT

The animal study was reviewed and approved by Bioethics
Commission from the Universidad Austral de Chile (CBA:
352/2019).
AUTHOR CONTRIBUTIONS

DH, CT-F, and HR conceived and designed the study, analyzed
and interpreted the data, drafted the manuscript, critically
revised important intellectual content in the manuscript, and
provided overall supervision. NM, TK, CS, ES, KV, FT, andMS-F
performed the experiments, analyzed the data, drafted the
manuscript, and contributed to intellectual content in the
manuscript. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was supported by Grants Fondecyt 11190711 (DH),
Fondecyt 1191207 (CT-F), and Fondecyt 11170245 (NM) from
Fondo Nacional de Desarrollo Cientıfíco y Tecnológico, Chile.
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