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Abstract

DNA methylation is a major epigenetic modification in the mammalian genome that regulates crucial aspects of gene
function. Mammalian cloning by somatic cell nuclear transfer (SCNT) often results in gestational or neonatal failure with only
a small proportion of manipulated embryos producing live births. Many of the embryos that survive to term later succumb
to a variety of abnormalities that are likely due to inappropriate epigenetic reprogramming. Aberrant methylation patterns
of imprinted genes in cloned cattle and mice have been elucidated, but few reports have analyzed the cloned pig genome.
Four surviving cloned sows that were created by ear fibroblast nuclear transfer, each with a different life span and multiple
organ defects, such as heart defects and bone growth delay, were used as epigenetic study materials. First, we identified
four putative differential methylation regions (DMR) of imprinted genes in the wild-type pig genome, including two
maternally imprinted loci (INS and IGF2) and two paternally imprinted loci (H19 and IGF2R). Aberrant DNA methylation,
either hypermethylation or hypomethylation, commonly appeared in H19 (45% of imprinted loci hypermethylated vs. 30%
hypomethylated), IGF2 (40% vs. 0%), INS (50% vs. 5%), and IGF2R (15% vs. 45%) in multiple tissues from these four cloned
sows compared with wild-type pigs. Our data suggest that aberrant epigenetic modifications occur frequently in the
genome of cloned swine. Even with successful production of cloned swine that avoid prenatal or postnatal death, the
perturbation of methylation in imprinted genes still exists, which may be one of reason for their adult pathologies and short
life. Understanding the aberrant pattern of gene imprinting would permit improvements in future cloning techniques.
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Introduction

Somatic cell nuclear transfer (SCNT) is the transmission of a

differentiated somatic cell nucleus to an enucleated oocyte. SCNT

is used to generate individuals with identical genetic backgrounds,

increase the economic efficiency of animal preservation, produce

transgenic animals, and cure genetic disorders or cancer [1,2].

However, SCNT-cloned mammals usually have a low survival rate

due to abortion, neonatal death and postnatal defects. Animals

that have been successfully cloned during the past decade include

sheep, cattle, goats, pigs, rabbits, mice, cats, and dogs [3,4,5].

Various types of somatic cell are used for transfer, including

mammary gland epithelial, ovary epithelial, cumulus, granulosa,

and ear fibroblast cells. Although a variety of nuclear cell types and

stages of oocytes have been tried, the success rate still remains low

[6]. Most of surviving clones have physiological problems; for

example, large offspring syndrome (LOS) and placental abnor-

malities have been found in cloned cattle, sheep, and mice [7,8,9].

Notably, offspring that are produced by the natural mating of

clones that have an abnormal phenomenon do not inherit the

abnormality, providing evidence that precise, dynamic epigenetic

control is a major requirement during the period of fertilization to

blastocyst [10]. Therefore, understanding aberrant methylation

patterns and correcting perturbed epigenetic modification will

help improve the health of cloned animals.

Epigenetic reprogramming is an essential process in mammals

to regulate DNA methylation and gene expression during

gametogenesis and embryogenesis. This reprogramming could

be performed by demethylases and DNA methyltransferases

(Dnmts) to produce demethylated and methylated DNA, respec-

tively. However, no demethylase has been identified in mammals

[11,12]. The loss of maternal nuclear Dnmt1 is the cause of

aberrant methylation in imprinted genes during nuclear transfer

[13]. The reprogramming process is divided into four parts:

formation of primordial germ cells (PGCs), maturation of gametes,

fertilization to produce a zygote, and embryonic stages. The

methylation markers of imprinting are erased during the formation

of PGCs and reestablished in the gamete genome. After

fertilization, the non-imprinted methylation markers are demeth-

ylated, and then the methylation markers are reestablished during

embryonic development. However, the methylated or non-

methylated imprinting markers are maintained from the one-cell

to the blastocyst stage [14–16]. This reprogramming process

affects DNA methylation, chromatin histone acetylation, and
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other embryo growth mechanisms. During embryonic develop-

ment, the methylation status of some imprinted genes is dynamic

and has spatial and temporal requirements [17]. Accumulating

evidence indicates that incomplete or inappropriate epigenetic

modification of donor nuclei used for nuclear transfer is likely to be

the primary cause of failure when cloning animals [18].

DNA methylation at cytosine residues within CpG dinucleotides

is one common regulatory modification of gene expression.

Differentially methylated regions (DMRs) are DNA regions with

methylation differences between parental alleles. Some DMRs are

also imprinting control regions (ICRs), which control several

imprinted genes in a cluster [15]. Most imprinted genes contain

DMRs, which are crucial in maintaining imprinting in mammalian

genomes. Genomic imprinting is a uniparentally expressed pattern

that includes many reading mechanisms: promoter methylation,

antisense transcripts, boundaries, and silencers. It is also involved in

the regulation of normal embryonic development, placental growth,

parental-specific expression, X-chromosome inactivation, clustering

effects of ICRs, and tissue-specific expression [19,20]. A group of

imprinted genes may encode signal transduction molecules, cell

cycle regulators, transcription factors, enzymes, and non-coding

RNAs [21]. So far, approximately 60 imprinted genes have been

found in the human genome, but this number is expected to

increase to at least 100 [22].

In general, the perturbation of mono-allelic expression of

imprinted genes could cause the abortion of embryonic and fetal

development during pregnancy. For example, H19 and insulin-like

growth factor 2 (IGF2) are well-studied imprinted loci with specific

expression patterns controlled by the DMR of H19. CTCF-

binding protein is also involved in H19 downstream enhancer

regulation [23]. The alteration of the imprinting status of an IGF2

allele (loss of imprinting, LOI) results in biallelic expression during

embryonic growth, whereas IGF2 overexpression in mice causes

prenatal or postnatal overgrowth that is similar to the symptoms of

Beckwith-Wiedemann syndrome [24,25].

In this study, four surviving cloned sows created by ear fibroblast

nuclear transfer with whole-cell microinjection, each with a different

life span and multiple organ defects, were used as samples in this

epigenetic study analyzing the aberrant methylation of maternally

and paternally imprinted loci. Four imprinted genes, H19, IGF2,

receptor of insulin-like growth factor 2 (IGF2R), and insulin-1 (INS), were

selected as targets to verify changes in the DMR methylation

patterns of the cloned swine genomes compared with the wild-type

genomes. Both IGF2R and H19 are paternally imprinted,

characteristically maternally expressed genes that encodes a

growth-inhibitory factor and non-protein-coding RNA transcript

of unknown function, respectively, whereas the other two genes,

IGF2 and INS, are maternally imprinted, characteristically pater-

nally expressed genes that encode growth-promoting factors [26].

To quantify the CpG island methylation status in DMRs of each

selected imprinted gene, we used Southern blot hybridization,

methylation-specific PCR (MS-PCR), bisulfite sequencing, and a

combined bisulfite and restriction assay (COBRA). Significant

changes (either hypermethylation or hypomethylation) in the levels

of epigenetic methylation were observed in the analyzed imprinted

loci in different tissues of cloned sows. Here, we describe the

characterization of these epigenetic changes in the examined tissues

of cloned swine genomes.

Materials and Methods

Tissue sample collection of cloned and wild-type sows
Whole-cell intracytoplasmic microinjection of ear fibroblast cells

was used to produce four surviving cloned piglets, named cloned pig

Nos. 1 to 4 (CP1 to CP4), as described previously [27]. The sex of

the cloned pigs was female, and the species of the enucleated

oocytes, somatic cell donors, and recipient pigs were all of the

Landrace breed. Three wild-type female pigs with the same genetic

background and housed under the same husbandry conditions were

used as normal controls. The control body weight was calculated as

the average weight of normal newborn piglets from ten litters (98

piglets) of the Landrace breed of the same age as the cloned pigs.

Animals were housed and handled according to the guidelines of the

Animal Care Committee of the Animal Technology Institute

Taiwan (ATIT approval ID: 93021). Physiological characteristics,

including birth weight, life span, death weight, and major defects,

were collected. Compared with wild-type piglets of the same age,

the birth and death weights of all cloned piglets were significantly

reduced. Tissues from all three germ layers of cloned pigs, including

ectoderm-derived tissues (ear, brain), mesoderm-derived tissues

(heart, muscle, kidney), and endoderm-derived tissues (liver, lung),

and also extra-embryonic placenta were sampled. Tissues were

separated into two parts for DNA and RNA extraction, snap-frozen

in liquid nitrogen, and stored at 280uC until use [28].

Isolation of genomic DNA
High-molecular-weight genomic DNAs were extracted by the

proteinase K/SDS method as described in our previous report [29].

Briefly, 300 mg of each tissue was homogenized and resuspended in

230 ml lysis buffer (50 mM Tris-HCl, 100 mM NaCl, 100 mM

EDTA, pH 8.0), followed by adding 400 ml lysis buffer, 70 ml 10%

SDS, 10 ml RNase A (10 mg/ml) and 35 ml proteinase K (10 mg/

ml). The tissue-digested reaction was mixed well and incubated at

55uC for 16 h. The reaction mixture was cleaned twice by adding

equal volumes of phenol/chloroform (1:1). The supernatant was

transferred, 1.56volume of pure ethanol was added to precipitate

DNA, and the genomic DNA pellet was washed twice with 70%

ethanol. The dried DNA pellet was then dissolved in 40 ml of

distilled deionized water and stored at 220uC.

Southern blot combined methylation-sensitive enzyme
digestion

The pig H19 and IGF2 probes used for Southern blot

hybridization were prepared by PCR amplification, with cloning

and sequencing using the pGEM-T easy TA Cloning Kit

(Promega, Madison, WI). The PCR primer sets were designed

as follows: H19 probe: 59-GTGATCGGACTTCTGACCCT-39

and 59-TCTCCACACCCACAAGCCG-39; IGF2 DMR1 probe:

59-AGGGACCTGCCGCTCTGCT-39 and 59-AGGACTGG-

GAAAG GAGAGGA-39. To analyze the DNA methylation status

in a specific locus, 10 mg of genomic DNA was completely digested

with a CpG island cutter (PvuII or NlaIII) alone or together with a

methylation-sensitive restriction enzyme (EagI or BstUI; New

England Biolabs, Ipswich, MA) and then electrophoresed on 1.2%

agarose gels. DNA was transferred onto Hybond N+ membranes

(GE Healthcare, Piscataway, NJ) in 206 SSC [30]. Single-

stranded sense and antisense probes were radio-labeled with

a[32P]-dCTP using the Rediprime II random prime labeling

system (GE Healthcare) as previously described [31]. Hybridiza-

tions were carried out overnight in a 42uC incubator, and

membranes were washed according to our previous report [32].

After autoradiograph exposure, the image plate was scanned

under a phosphoimager (Typhoon 9200; GE Healthcare).

Methylation-specific PCR (MS-PCR)
Genomic DNA (0.5 mg) was treated with sodium bisulfite

according to the manufacturer’s recommendation (EZ DNA

DNA Methylation of Imprinted Genes in Cloned Pigs
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Methylation KitTM; Zymo Research Corp., Orange, CA) and

amplified with specific primers for methylated or unmethylated

DNA. All PCR reactions were performed on an ABI 2720

thermocycler (Applied Biosystems, Foster, CA) and in 25 ml

volumes using the Platinum Taq DNA polymerase system

(Invitrogen, Carlsbad, CA). PCR products were separated in

1.5% agarose gels. The M-set primers (H19 M-set: 59-

TTTATTGTATTTTTGAACGGCG-39 and 59-CTAAAAACC-

GAAACG AACCCG-39) contained at least three CpG sites to

distinguish the methylation status of the investigated region. U-set

primers (H19 U-set: 59- TTTTGAATGGTGTTGATGGTTTG-

39 and 59-TAACCCATACTAAAAACCAAAACA-39) overlap-

ping the M-set primers were used to amplify the unmethylated

region.

Methylation analysis by COBRA
For the amplification of the pig INS, IGF2 exon IX, and IGF2R

intron II putative DMRs, PCR was performed using 10 ng of the

bisulfite-converted genomic DNA as a template. The primer sets

of COBRA-PCR were listed as follows: IGF2 DMR2: 59-

GGGATAGGGGTTGGGGGGTTA-39 and 59-ATCTCAAA-

AAAAAAACCTAATAAAA AC-39; IGF2R DMR: 59-TTTT-

GTAGTAGTGTGAGATTTGG-39 and 59-TAACCTC ATAC-

TTCCTAAAAACC-39; INS DMR: 59-TTGAAAGGGGTTAG-

TAGTAG-39 and 59- CTAAAAACCAAACTATCCCC-39. CO-

BRA-PCR products were purified with phenol/chloroform,

followed by ethanol precipitation. The DNA was resuspended in

8.5 ml of distilled deionized water. Purified PCR products were

then digested with 10 U of restriction enzymes (New England

Biolabs) as follows: putative DMR products of INS and IGF2 exon

IX were digested with BstUI at 60uC; putative DMR products of

IGF2R intron II were digested with HpyCH4IV at 37uC. The

products of these digestions were electrophoresed in a 6% native

acrylamide gel, stained with 200 mg/ml ethidium bromide (EtBr;

Sigma, St Louis, MO), and visualized and quantified using a

Kodak 1D Image Analysis Software (Eastman Kodak, Rochester,

NY).

Bisulfite sequencing
To determine the methylation status of CpG sites within the INS

of putative DMRs, primers were designed according to bisulfite

standards (no CpG sites within primers) as described in the

COBRA above. PCR reactions were performed in a total of 25 ml

for each imprinted locus. Individual PCR products were purified

with phenol/chloroform followed by ethanol precipitation.

Purified PCR products were cloned into a pGEM T-easy Vector

(Promega). Plasmid DNA was isolated using a Mini-MTM Plasmid

Purification Kit (Viogene, Taipei, Taiwan) and sequenced using a

BigDye Terminator cycle sequencing kit with an ABI PRISM

3100 DNA sequencer (Applied Biosystems).

RNA isolation and semi-quantitative RT-PCR
Total RNA was isolated from homogenized tissues using

TriReagentTM (Invitrogen) according to the manufacturer’s

recommendations. One microgram of total RNA was treated

twice with 10 U RNase-free DNase I (Invitrogen) to degrade any

contaminating DNA, and the reaction was halted by heat-

inactivation. First-strand cDNAs were synthesized from 2 mg

RNA with an oligo (dT) primer and MMLV reverse transcriptase

(Promega) in a total volume of 25 ml [33]. RT-PCR was conducted

using specific sets of primers for each imprinted gene analyzed:

H19: 59- ATTCTGGAGCCACTACACTACTTGA-39 and 59-

AGGAGAGGAAAGAAGAGAAGA GAAAA-39; INS: 59- GG-

AGGCGCTGTACCTGGTGT-39 and 59- AGGGAACAGAT-

GC TGGTGCAG-39; IGF2: 59- CTACTTTGGTGGCGACTG-

CTACT-39 and 59- GGGTGG TGGATAAAGAGGACGG-39;

IGF2R 59- CTGCGAAGGAGAGGAGTACG-39 and 599- TAC-

CGGAGGGTCTGATTCTG-39; b-actin: 59- CATCACCATCG-

GCAACGA-39 and 59- TTCCTGATGTCCACGTCGC-39. The

mRNA expression levels of each imprinted gene present in the

cloned and normal swine genomes were quantitatively measured

by Kodak 1D densitometer software and normalized to the level of

b-actin mRNA expression [29].

The analysis and quantification of methylation changes
The definition of hypermethylation or hypomethylation (610%

compared to the wild-type tissues) was as previously published in

an analysis of the methylation changes of human cancer [34]. The

methylation percentage of the H19 putative DMR was calculated

according to the Southern blot and MS-PCR data. Southern

blotting bands were quantified as previously described [35]. The

following formula was used to calculate the methylation

percentage from MS-PCR results used: (intensity of M-set

band)/(intensity of M-set band + intensity of U-set band)6100

(%). The methylation percentages of INS, IGF2, and IGF2R were

based on the COBRA data. The quantification method of

COBRA was as previously published [36].

Results

Identification of putative DMRs of imprinted genes in the
swine genome

The DMRs of imprinted genes have regions that are highly

conserved across various mammal species. First, we compared the

well-known DMRs of IGF2, H19, INS, and IGF2R in the human,

bovine, and mouse genomes to identify the counterparts of these

DMRs in pig genome. The putative DMR1 of the pig IGF2 gene

was predicted to be located in intron 3, and the putative DMR2 of

pig IGF2 was in exon 9 (Figure 1A). The putative DMR of the pig

H19 gene was located upstream of the promoter, between 22856

and 21489 nucleotides (nt). We used the online software

MethyPrimer with restrictive conditions (GC percent .50.0%,

CpG observe/expect .0.6) to identify the distribution of CpG

islands. The putative DMR of the pig INS gene was located before

exon 1. Previously, there was no pig IGF2R intron sequence

available in GenBank. The entire second intron of the pig IGF2R

gene was newly cloned and sequenced (GenBank accession

no. GQ888762) in this study. It contained a putative DMR based

on comparisons with other species (Figure 1A). We further

demonstrated that these selected regions of the four imprinted

genes exhibited potentially differential methylation patterns in

various tissues from wild-type pigs via Southern blot, MS-PCR,

and COBRA (Figure 1B). The four putative DMRs in these

imprinted genes were used to estimate the methylation perturba-

tions in cloned pig genomes.

Aberrant methylation of the H19 gene in various tissues
from cloned pigs

The H19 gene is a classical maternally expressed imprinted

gene, and the aberrant methylation of the H19 DMR often occurs

in genetic diseases, growth retardation, prenatal lethality, and

many kinds of cancer [37,38]. We examined pig genomic DNA to

determine whether an aberrant methylation pattern of the H19

putative DMR occurred in adult cloned pigs compared with wild-

type pigs (Figure 2B). Southern blot analysis indicated that the

H19 DMR in wild-type pigs showed three methylation patterns: a

full methylation pattern (2.6 kb band), a partial methylation

pattern (967 bp band), and an unmethylated pattern (689 bp

DNA Methylation of Imprinted Genes in Cloned Pigs
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band) (Figure 2B). Our data suggest that the CpG methylation of

the first EagI restriction site (near the CTCF1-binding site of H19)

exists as a unique methylation pattern of the cloned pig genome.

However, extremely aberrant methylation of H19 DMR observed

in the cloned pig genomes, including the lack of a 967 bp band in

the placenta (Pl) and a 689 bp band in the ear (Ea) of CP2 (arrows

in Figure 2B). We further categorized the extent of methylation

into two levels. Level-1 was determined by three probed bands

(2643 bp, 967 bp, and 689 bp). Level-2 was determined by two

probed bands (967 bp and 689 bp). In the level-1 methylation,

CP1 muscle, CP2 muscle, CP2 placenta, and CP3 heart showed

hypomethylation patterns. In the level-2 methylation, CP2 muscle,

CP2 ear, and CP4 placenta showed hypermethylation patterns,

but CP2 placenta and CP3 brain showed hypomethylation

patterns. Furthermore, we designed a primer set for MS-PCR

upstream of the first EagI (black arrowheads in Figure 2A) to

Figure 1. Identification of the putative DMRs of four imprinted genes and their normal differential methylation patterns in the
different tissues of wild-type pigs. (A) Schematic of CpG site distributions in the putative DMRs of four imprinted genes, IGF2, H19, INS, and
IGF2R. Vertical black lines represent each CpG site. Horizontal gray bars represent analyzed regions. Horizontal reticular bars represent putative DMRs
in the imprinted genes. Horizontal solid black bars represent probes used for Southern blot hybridization. The upper line indicates the scale bar for
DNA length. The putative DMR of H19 is located between nt 30,856 and nt 33,489 (GenBank accession no. AY044827). The CpG island of H19
corresponds to our designed probe, which ranges from nt 31,411 to nt 31,818. The putative DMR1 of pig IGF2 is located between exon 3 and exon 4
and ranges from nt 17,620 to nt 18,796 (GenBank accession no. AY044828). The CpG island of IGF2 corresponds to our designed probe, which ranges
from nt 17,733 to nt 18,048. The putative DMR2 of IGF2 is located in exon 9, nt 27,441 to nt 27,819 (GenBank accession no. AY242102.1). The putative
DMR of pig INS is located between nt 1,456 and nt 2,323, and the probe ranges from nt 1,663 to nt 1,986 (GenBank accession no. AY242112). The
putative DMR of IGF2R is located between exon 2 and exon 3 (GenBank accession no. AF339885). (B) The normal differential methylation patterns of
the four imprinted genes in several tissues of wild-type pigs. The methylation statuses of IGF2, INS, and IGF2R were assayed by COBRA. The
methylation status of H19 was assayed with Southern blot analysis. The numbers under the images indicate the average methylation percentage in
the different tissues of three wild-type pigs (n = 3). Mu: muscle; He: heart; Ea: ear; Li: liver; Lu: lung; Ki: kidney; Br: brain; Pl: placenta.
doi:10.1371/journal.pone.0032812.g001

DNA Methylation of Imprinted Genes in Cloned Pigs

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e32812



confirm the methylation status in the H19 promoter region. The

wild-type (WT) control panel showed a normal methylation

pattern in this region; however, various tissues from cloned pigs

exhibited aberrant methylation statuses compared to the wild-type

pig. CP1 kidney, CP2 ear, CP3 liver, CP3 kidney, and CP4 liver

showed extremely aberrant methylation in the putative DMR of

H19 (Figure 2C; also see Table S1).

Aberrant methylation of the IGF2 gene in various tissues
from cloned pigs

The IGF2 gene is paternally expressed and located upstream of

the H19 gene. The methylation status of the H19 DMR can

concurrently affect the IGF2 DMRs. The putative DMR1 of the

pig IGF2 gene was chosen as a target. It was estimated to be

located in intron 3 (Figure 3A) based on the human, mouse, and

cattle genomes. Southern blot combined with a methylation-

sensitive enzyme assay showed that the putative IGF2 DMR1 from

wild-type pigs exhibited an unmethylated status, whereas several

cloned pig tissues, such as CP1 liver, CP3 ear, CP4 placenta, and

CP4 ear, displayed a slight methylation pattern (Figure 3B). The

hybridized signal at 1.18 kb indicates full methylation and the

band at 0.68 kb indicates the absence of methylation. The second

putative DMR of IGF2 (DMR2), which was located between exon

8 and exon 9, was further analyzed (Figure 3C). COBRA showed

that this putative IGF2 DMR was differentially methylated in wild-

type pig tissues (Figure 3D). The methylation score (%) of the

COBRA data were calculated as described previously [34], and

any IGF2 DMR2 in cloned pig tissues containing more than

610% methylation changes compared with the wild-type pig was

considered aberrantly methylated (Figure 3D). For example, liver

tissues of CP1, CP2, and CP3 showed a hypermethylated pattern

in the IGF2 putative DMR2 region, but CP4 liver did not. Taking

Figure 2. Methylation status of the H19 putative DMR in cloned and wild-type pigs. (A) Schematic of the putative DMR of H19, located in
the promoter. The Southern blot hybridization probe is shown as a black box. P1, P2 and P3 indicate three CTCF-binding sites of the putative DMR. (B)
Southern blot hybridization results in the H19 DMR in cloned pigs. The level-1 methylation percentage was calculated by the bands of 2643 bp,
967 bp, and 689 bp. The level-2 methylation percentage was calculated by the bands of 967 bp and 689 bp. (C) Methylation-specific PCR analysis of
the H19 promoter region in cloned pigs. The black arrow shown in Figure 2A indicates the primer sets used in the MS-PCR assay. The number below
the panel indicates the methylation percentage. Br: brain; Ea: ear; He: heart; Ki: kidney; Li: liver; Lu: lung; Mu: muscle; Pl: placenta; Um: umbilical cord;
B: blood; S: blood treated with SssI; W: ddH2O.
doi:10.1371/journal.pone.0032812.g002
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together all of the examined tissues from the cloned pigs except the

placenta and umbilical cord, 40% showed a hypermethylated

IGF2 pattern, 0% showed a hypomethylated pattern, and 60%

showed a normal methylation pattern in the testing sample size

(see Tables S2 and S5).

Aberrant methylation of the INS gene in various tissues
from cloned pigs

The INS gene is a paternally expressed gene. The putative pig

INS DMR is located in the promoter region (Figure 4A). The

methylation status of the INS putative DMR in cloned pigs was

analyzed by COBRA-PCR and BstUI digestion. In this study, the

definition of normal methylation was based on the methylation

status of the INS putative DMR in wild-type pig tissues (Figures 1B

and 4B). Several cloned pig tissues, including CP1 placenta, CP3

ear, CP4 ear, and CP4 umbilical cord, showed almost complete

methylation of this putative INS DMR (Figure 4B; also see Table

S3). Subsequently, bisulfite sequencing was performed to confirm

the methylation pattern of these aberrant regions in the above

tissues. The overall methylation percentage of CpG sites 1–20 in

wild-type ear, CP4 liver, and CP3 ear were 75.7%, 71.8%, and

84.6%, respectively. Methylation percentage of the CpG sites 13–

20 in wild-type ear, CP4 liver, and CP3 ear was 43.8%, 48.2%,

and 75.9%, respectively. Moreover, the methylation percentage of

CpG sites 15–20 in wild-type ear, CP4 liver, and CP3 ear was

48.8%, 36.9%, and 71.4%, respectively (Figure 4C). The INS

putative DMR had a significantly hypermethylated pattern in CP3

ear tissue when compared with wild-type. Taking together all of

the examined tissues from the cloned pigs except the placenta and

umbilical cord, 50% showed a hypermethylated INS pattern, 5%

showed a hypomethylated pattern, and 45% showed a normal

methylation pattern in the testing sample size (see Table S5).

Aberrant methylation of the IGF2R gene in various tissues
from cloned pigs

Various tissues of cloned porcine were investigated for their

methylation status at the putative DMR within IGF2R intron 2

(Figure 5A). The control panel showed a differentially methylated

status, ranging from 25.2% to 76.8% in wild-type tissues analyzed

by COBRA (Figure 5B). Aberrant methylation patterns were

observed in the IGF2R putative DMR of cloned pigs; for example,

the livers of CP1 and CP2 showed a hypermethylated pattern,

while a hypomethylated pattern existed in CP3 and CP4

(Figure 5B, also see Table S4). Taking together all of the

examined tissues from cloned pigs except the placenta and

umbilical cord, 15% showed a hypermethylated IGF2R pattern,

45% showed a hypomethylated pattern, and 40% showed a

normal methylation pattern in the testing sample size (see Table

S5).

Effects of DNA methylation on the expression of the
analyzed genes

Semi-quantitative RT-PCR was used to verify the aberrant

expression status of the four analysed genes. For the putative

DMR of the H19 gene, hypermethylation was shown in CP2 ear

tissue (Figure 6A). Thus, the mRNA expression of H19 was absent

in the ear tissue of CP2 (Figure 6B and 6C). Similar results were

found for the putative INS DMR in CP4 ear tissue as well as in the

putative IGF2 DMR2 in CP3 ear tissue (Figure 6B and 6C). To

validate the cause–effect relationship of putative DMR hyper-

methylation in the downregulation of imprinted genes, a

demethylation study was performed. Treatment of pig ear

fibroblasts with different concentrations (0.5–2.0 mM) of a

demethylating agent, 5-aza-29-deoxycytidine (5-aza-dc), resulted

in a reduction of the methylation levels of the IGF2, H19, and INS

putative DMRs, thereby restoring the mRNA expression of these

imprinted genes (see Figure S1).

Discussion

Our data reveal that cloned pigs exhibit widespread defects in

the methylation of imprinted genes, in addition to morphological

abnormalities. All analyzed samples of CP2 and CP4 showed

aberrant methylation patterns in the H19 and IGF2R putative

DMRs, respectively (Table 1 and Table S6). The aberrant

methylation may occur during early embryonic development.

We also found that aberrant methylation existed even though the

cloned pigs grew into adult animals. These results indicate that the

SCNT cloning process may disrupt the normal epigenetic

reprogramming during embryogenesis but that some types of

mechanisms are still maintained during normal fetal development.

The mRNA expression levels of imprinted or non-imprinted genes

can also be affected. The cloned pigs died naturally and had a

shorter life-span than wild-type pigs. In these specific cloned pigs,

physiological abnormalities occurred frequently in heart and bone

(see Figure S2).

The cloned pigs used in this experiment exhibited a lower birth

weight than wild-type pigs (Table 1). CP1 exhibited the oval

foramen phenomenon and delay in the development of the limb

skeleton. A significant reduction in birth weight was observed in

CP2, which also suffered from gastric ulcer, peritonitis, and

pericarditis, whereas CP3 showed a valvular disease and fibrosis of

the heart. CP4 showed pneumonia and scoliosis. The SCNT

processes in cloned pigs may cause the loss of regulation in gene

expression or aberrant organ development. As the results of our

methylation study suggest, the putative DMR of H19 was

dramatically modified in CP2 ear and placenta (Figure 2A). The

birth weight of all four cloned pigs was reduced. CP2 showed the

lowest birth weight (42% body weight lower than wild-type), and

the degree of aberrant methylation in CP2 was higher in the

paternally imprinted genes (80%) than in the maternally imprinted

genes (50%) (Table 1). The opposite aberrant methylation pattern

was presented in the other three cloned pigs. These results may be

associated with the fact that paternally imprinted genes tend to

inhibit embryonic growth, while the maternally imprinted genes

tend to promote embryonic growth [39].

The cytoplasm of enucleated oocytes may possess the critical

factors that control the normal reprogramming process [40].

Whereas incomplete demethylation changes are observed in

cloned cattle [41], demethylation occurs more frequently in

cloned pigs than in other species [42]. Previous studies have

examined the methylation statuses of repetitive sequences in the

cloned pig genome. The typical demethylation pattern is observed

in the 2-cell through the blastocyst stage of porcine embryo

development [42]. Wei et al. [13] also confirmed that demethyl-

ation status occurs in the first two cell cycles of the cloned porcine

due to the lack of Dnmt1 in the oocyte, which affects the

methylation of H19 and IGF2. Kang et al. [41] observed that the

satellite genes of NT bovines were hypermethylated. During DNA

methylation reprogramming, the methylation statuses of NT sheep

are higher than in vivo embryos from the 2-cell to the 16-cell stage

[43]. However, to date, there are few studies on the aberrant

methylation of imprinted genes in cloned pigs. We propose that

the typical demethylation pattern of the cloned pig genome would

affect the methylation pattern in the imprinted genes. Repetitive

sequences maintain the donor-type methylation status in cloned

rabbit and bovine embryos. Thus, the cause of demethylation in
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cloned embryo genomes seems to be determined by the recipient

oocyte but not by the donor cell [44]. This finding suggests that

the mechanisms involved in epigenetic reprogramming are

species-specific. As expected, the reduction of body weight in this

study agreed with the results of previous reports [6,18]. Different

strains of mouse oocytes with different epigenetic inheritance show

differential cloning efficiency [40], which suggests that the factors

that exist in oocytes may be critical to maintaining proper

reprogramming processes during the embryonic development of

cloned animals. Recent reports also suggest that the factors in the

normal fibroblast cytosol can restore the aberrant imprinting status

of tumor cells to the normal pattern [45]. Therefore, the

Figure 3. Methylation status of the putative IGF2 DMR in cloned and wild-type pigs. (A) Schematic of the location of the putative DMR1
and DMR2 in the IGF2 gene. Southern blot hybridization was performed with a probe, shown as a black box. E indicates the exon, and the reticular
black line indicates CpG sites. (B) Southern blot hybridization results for the IGF2 putative DMR1 in cloned pigs. Arrows indicate slight methylation in
cloned pig tissues. (C) Schematic representation of the restriction enzyme site and the length of the COBRA product at the IGF2 putative DMR2.
Horizontal reticular line indicates the analytic region. Horizontal candy-striped line indicates the putative DMR2. (D) COBRA analysis of the IGF2
putative DMR2 of exon 9 in cloned pigs and wild-type pigs. Methylation percentages are shown below the panel. The numbers under the figure in
the control panel indicate the average methylation percentage of three wild-type pigs. Br: brain; Ea: ear; He: heart; Ki: kidney; Li: liver; Lu: lung; Mu:
muscle; Pl: placenta; Um: umbilical cord; B: blood; S: blood treated with SssI; W: ddH2O.
doi:10.1371/journal.pone.0032812.g003
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procedure of nuclear transfer may prevent the accumulation or

activity of factors that regulate the normal reprogramming

process.

The methylation status of mouse and human H19 DMRs shows

a semi-methylation pattern. Interestingly, a unique methylation

pattern of the initial CpG sites of the H19 putative DMR existed in

cloned pig genomes near the CTCF1 P1 site (Figure 2B). The

CTCF binding sites (P1, P2, and P3) in the H19 DMR are

sensitive to methylation changes in cloned porcine genomes or

human cancers [46,47]. The aberrant pattern observed in cloned

porcine showed either hyper- or hypo- methylation in the H19

CTCF3 binding site, but there was no significant change in

methylation status in the CTCF1- or CTCF2- binding sites [44].

Aberrant methylation of DMRs results in the loss of regulation of

imprinted genes [48–50]. Therefore, the reprogramming process

may be disrupted by the nuclear transfer technique, which may

lead to LOI in the H19 gene. Moreover, mRNA expression of

other genes that are controlled by events downstream of H19 may

become dysregulated in a normal expression pattern [31]. Here,

the aberrant methylation pattern in cloned pigs frequently

appeared near the CTCF1 P1 site of the H19 DMR.

IGF2 and H19 are reciprocally imprinted genes in a boundary

regulation phenomenon. The imprinting pattern (uniparental

RNA expression and DMR characteristics) of IGF2 and H19 has

also been confirmed in the porcine genome [51,52]. Based on

Southern blotting, the putative DMR1 region of pig IGF2 showed

no methylation in wild-type pig tissues (Figure 3B). However, the

CpG sites of exon 9 in the IGF2 putative DMR2 showed a

differential methylation phenomenon (Figure 3D). In the IGF2

putative DMR1, a few tissues of cloned pigs (CP4 placenta and

ear, CP1 liver, and CP3 ear) showed some methylation. In the

IGF2 putative DMR2, various tissues exhibited abnormal

methylation in cloned pigs when compared with wild-type. These

data indicate that DMR2, but not DMR1, exhibits a differential

methylation phenomenon and easily acquires aberrant methyla-

tion in cloned pigs. These data agreed with previous findings that

the putative DMRs of pig H19 and IGF2 exhibit a specific parental

methylation at the 2-cell and blastocyst stages [53,46].

The presence of a variable-number tandem repeat (VNTR) in

the 59 region of the INS promoter suggests that INS is potentially

an imprinted gene, and its imprinting status could be associated

with insulin-dependent diabetes mellitus [54]. The paternal

Figure 4. Dissection of the methylation status of the putative INS DMR in cloned and wild-type pigs. (A) A schematic diagram of the pig
INS gene showing the relative positions of promoter, exon 1 and CpG islands. The black arrow indicates the location of the primer set. The striped box
indicates the putative DMR. The horizontal line indicates the CpG site. The PCR product was digested with BstUI. (B) The putative DMR of the
maternally imprinted INS gene in cloned pigs and wild-type pigs was analyzed by COBRA. The numbers under the figure in the WT panel indicate the
average methylation percentage of three wild-type pigs. (C) Bisulfite sequencing of the INS putative DMR in WT ear, CP4 liver, and CP3 ear. Open and
closed circles indicate unmethylated and methylated CpG sites, respectively. The top number indicates the CpG site position of the analyzed INS
putative DMR. The bottom line indicates the BstUI recognition site. Fourteen clones of each tissue were sequenced. The methylation percentage
calculations were divided into three parts: CpG sites 1 to 20 (all), CpG sites 15 to 20, and CpG sites 13 to 20. For example, WT ear showed a total
methylation percentage of 75.7 (212 methylated CpG sites/20 CpG sites 614 clones = 75.7%). M1: Bio 100 DNA ladder; M2: 500 bp DNA ladder; Br:
brain; Ea: ear; He: heart; Ki: kidney; Li: liver; Lu: lung; Mu: muscle; Pl: placenta; Um: umbilical cord; B: blood; S: blood treated with SssI; W: ddH2O.
doi:10.1371/journal.pone.0032812.g004

DNA Methylation of Imprinted Genes in Cloned Pigs

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e32812



Figure 5. Methylation status of the IGF2R putative DMR of intron 2 in cloned pigs and wild-type pigs by COBRA analysis. (A)
Schematic diagram showing the distribution of CpG sites of the pig IGF2R gene. (B) COBRA data showing the methylation status of the IGF2R intron 2
putative DMR in control and wild-type pigs. The numbers under the figure in the control panel indicate the average methylation percentage of three wild-
type pigs. Br: brain; Ea: ear; He: heart; Ki: kidney; Li: liver; Lu: lung; Mu: muscle; Pl: placenta; Um: umbilical cord; B: blood; S: blood treated with SssI; W: ddH2O.
doi:10.1371/journal.pone.0032812.g005

Figure 6. The aberrant methylation of the H19, INS and IGF2 genes and their mRNA expression levels in cloned pigs. (A) DNA
methylation statuses of H19, INS, and IGF2 in CP2 ear, CP4 ear, and CP3 ear, respectively. (B) mRNA expression levels of H19, INS and IGF2 gene in CP2
ear, CP4 ear, and CP3 ear, respectively. (C) mRNA levels from panel B relative to b-actin.
doi:10.1371/journal.pone.0032812.g006

DNA Methylation of Imprinted Genes in Cloned Pigs

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e32812



expression pattern of INS has also been found in the yolk sac of

humans and mice [55,56]. The chromosomal location of INS is the

same in the porcine, human, and mouse genome, i.e., upstream of

IGF2 [57,58]. The promoter of the porcine INS gene had high-

density CpG sites located just upstream of exon 1 (Figure 4A). By

COBRA, this INS putative DMR was identified to contain a

differential methylation pattern in the wild-type pig genome

(Figure 1B). Either hypermethylation or hypomethylation of this

INS putative DMR occurred in the cloned pig tissues (Table S7).

The precise location of the DMR was further confirmed by

bisulfite sequencing, which showed that it existed in CpG sites 15

through 20 (Figure 4C).

IGF2R and IGF2 are imprinted genes with opposing functions

[59]. These genes are also reciprocally regulated during fetal

growth. Loss of IGF2R imprinting correlates with LOS in sheep

[50,60]. We used comparative sequencing analysis to define the

organization of the pig, mouse, bovine, and human IGF2R

putative DMRs and found that it was located in intron 2 of pig

IGF2R gene (Figure 5A). A normal differentially methylated

pattern was shown in the IGF2R putative DMR of wild-type pig

tissues. However, a largely hypomethylated phenomenon was

detected in the tissues of cloned pigs (Tables S7 and S8).

In this study, the four cloned pigs we studied had many defects,

especially in the heart, lung, and gastric tissues (Table 1). These

defects may have been associated with the loss of regulation of

DNA methylation or mRNA expression during embryonic

development [45,61]. The delay in limb bone growth in CP1

may also have resulted from the NT process. A previous study of

cloned pigs also showed abnormal development in the elbow joint

bones [62]. Three hypermethylated tissue samples, CP2 ear (in the

H19 putative DMR), CP4 ear (in the INS putative DMR), and

CP3 ear (in the IGF2 putative DMR), were tested for the mRNA

expression of the hypermethylated genes. Low expression levels of

these imprinted genes were consistently observed in cloned pigs

compared with the wild-type pigs (Figure 6).

Aberrant DNA methylation induced obvious abnormalities in

our SCNT-derived embryos and their offspring. The abnormal

phenomenon in CP2 and CP3 included an enlarged tongue

(macroglossia), which is similar to Beckwith-Wiedemann syn-

drome, and is caused by aberrant methylation and expression of

IGF2 in humans [63]. Furthermore, the enlargement of the right

ventricle in cloned pigs has also been reported [6]. CP3 and CP4

also suffered from this heart defect.

In conclusion, we confirmed that the putative DMRs of H19,

IGF2, INS, and IGF2R in the wild-type porcine genome show

differential methylation patterns. Specific proportions of epigenetic

aberrations, either hypermethylation or hypomethylation, were

observed in the adult tissues of the examined cloned pigs. These

data will help further our understanding of the importance of

imprinted genes during the development of normal or cloned

swine and contribute to improvements in cloning techniques.

Supporting Information

Figure S1 Changes in the methylation of putative DMRs
and in the mRNA expression of four imprinted genes
after treatment of pig ear fibroblasts with 5-aza-dc for
48 h. (A) The methylation percentage was quantified by COBRA.

The methylation statuses of four imprinted genes (IGF2, H19, INS,

and IGF2R) at their putative DMRs were decreased after different

concentrations of 5-aza-dc treatment. (B) The mRNA expression

was normalized to b-actin after real-time qRT-PCR. Three genes

(IGF2, H19, and IGF2R) had increased mRNA expression after

treatment with 0.5 mM 5-aza-dc. In contrast, the mRNA

expression of INS significantly increased after treatment with

1.5 mM 5-aza-dc. The 5-aza-dc experiments were performed in 6-

cm dishes seeded with 1.26105 pig fibroblasts in DMEM. All

experiments were performed three times, and the data are

expressed as the means 6 SDs; *p,0.05, **p,0.01.

(TIF)

Figure S2 Aberrant organ development of cloned pigs.
(A) The vertical pathological dissection of the right side of the

heart showed defects in CP2. An anatomically normal wild-type

heart is shown in the left panel (WT heart). The CP2 heart

exhibited aberrant valve development and pericarditis. The heart

also showed right ventricular hypertrophy and heart hypoplasia.

(B) The femur of CP1 was shorter and obviously mineralized in the

epiphysis compared with a femur from a WT pig of the same age.

The growth of the radius of CP1 was retarded compared with

WT.

(TIF)

Table S1 Raw data of H19 putative DMR methylation
percentages in different tissues of four cloned pigs and
three wild-type pigs.

(DOC)

Table S2 Raw data of IGF2 putative DMR methylation
percentages in different tissues of four cloned pigs and
three wild-type pigs.

(DOC)

Table S3 Raw data of INS putative DMR methylation
percentages in four cloned pigs and three wild-type pigs.

(DOC)

Table 1. Body weight, survival time, and aberrant methylation status of imprinted genes in wild-type and of cloned pigs.

Cloned
pig ID Weight at birth1 (kg)

Survival time
(day) Weight at death (kg) Aberrant methylation statuses (%)

NT pigleta WT*b
(a–b)/b
(%)

NT
pigc

Same age
WTd

(c–d)/d
(%) Total P M H19 IGF2R IGF2 INS

CP1 1.3 1.5 213.3 171 53.5 88.5 239.5 55 60 50 60 60 40 60

CP2 0.87 1.5 242 355 124.1 179 230.7 65 80 50 100 60 20 80

CP3 1.17 1.5 222 195 60.5 85 228.8 65 58 50 83 33 67 33

CP4 1.34 1.5 210.6 3 1.1 1.6 231.3 56 75 25 50 100 25 50

1The body weight of control newborn piglets is an average value from 10 litters (98 piglets) of same-age piglets of the nuclear donor pig breed. WT: wild-type. M:
maternally imprinted genes (H19 and IGF2R). P: paternally imprinted genes (IGF2 and INS).
doi:10.1371/journal.pone.0032812.t001
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Table S4 Raw data of IGF2R putative DMR methylation
percentages in different tissues of four cloned pigs and
three wild-type pigs.

(DOC)

Table S5 The methylation statuses of each imprinted
gene in the analyzed cloned pig samples.

(DOC)

Table S6 The methylation statuses of each imprinted
gene in all analyzed tissues of the four cloned pigs.

(DOC)

Table S7 The overall methylation patterns of each
imprinted gene in all samples of cloned pigs.

(DOC)

Table S8 The percentage of aberrant methylation of the
four imprinted genes in all analyzed tissues of the four
cloned pigs.
(DOC)
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