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Interleukin-32 (IL-32) is a cytokine inducing crucial in-
flammatory cytokines such as tumor necrosis factor-α 
(TNFα) and IL-6 and its expression is elevated in various in-
flammatory autoimmune diseases, certain cancers, as well 
as viral infections. IL-32 gene was first cloned from activated 
T cells, however IL-32 expression was also found in other im-
mune cells and non-immune cells. IL-32 gene was identified 
in most mammals except rodents. It is transcribed as multi-
ple-spliced variants in the absence of a specific activity of 
each isoform. IL-32 has been studied mostly in clinical fields 
such as infection, autoimmune, cancer, vascular disease, and 
pulmonary diseases. It is difficult to investigate the precise 
role of IL-32 in vivo due to the absence of IL-32 gene in 
mouse. The lack of mouse IL-32 gene restricts in vivo studies 
and restrains further development of IL-32 research in clinical 
applications although IL-32 new cytokine getting a spotlight 
as an immune regulatory molecule processing important 
roles in autoimmune, infection, and cancer. In this review, we 
discuss the regulation and function of IL-32 in inflammatory 
bowel diseases and rheumatoid arthritis.
[Immune Network 2014;14(3):123-127]
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INFLAMMATORY BOWEL DISEASE (IBD)

IL-32 synergizes with nucleotide oligomerization domain 

(NOD) 1 and NOD2 for inflammatory cytokine production in 

peripheral blood mononuclear cells (PBMCs) (1). The activa-

tion of mucosal immunity requires nonspecific innate signals 

by various bacterial products via pattern-recognition recept-

ors. IL-32 activity is enhanced by the intracellular NODs. The 

synergistic effect of IL-32 and NOD2 ligand synthetic muramyl 

dipeptide (MDP) on inflammatory cytokine productions is 

abolished in PBMCs of Crohn’s disease (CD) possessing 

3020insC mutation (1). This in vitro synergism between IL-32 

and NOD2 ligand MDP is associated with high expression of 

IL-32 in human colon epithelial tissues. In addition, IL-32 syn-

ergizes with synthetic ligand of NOD1 FK-156 on cytokine 

productions but the effect is absent in NOD1-deficient macro-

phages (1). These results suggest that IL-32 and NODs path-

way has important role in mucosal immunity.

  Imaeda et al. has identified a new IL-32 isoform from hu-

man colonic subepithelial myofibroblasts (SEMFs). The new 

IL-32 isoform is named IL-32ε and lacks exon 3 and 4 of 

the longest IL-32γ isoform. The transcript of IL-32ε is sig-

nificantly elevated in the inflamed mucosa of IBD patients. 

TNFα induces transcript of new IL-32ε in a dose and time 

dependent manner (2). Interestingly, stable transfection of 
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Figure 1. Schematic drawing of IL-32 in mucosal epithelial cells after 
pathogen infection. Mucosal epithelial cells-released IL-32 stimulates 
monocytes to produce inflammatory mediators and also differentiates 
monocytes into macrophage or dendritic cell (DC) like. The macro-
phages and DC like cells release inflammatory cytokines such as TNFα, 
IL-1β, and IL-6. Inflammatory mediators-released from the macro-
phages and DC like cells in the inflamed area recruit and proliferate 
T-cells resulted in protecting the host against the pathogens and 
clearing the infections. However, the recruited various immune 
cells-produced inflammatory cytokines in the absence of endogenous 
immune suppressor provokes a large number of neutrophil infiltration. 
Mucosal tissue damages in IBD and CD occur in consequence of the 
neutrophil proteinases released from the infiltrated neutrophil.

IL-32ε significantly decreased TNFα-mediated IL-8 transcript 

in HT-29 cells, but the expression of IL-32α, shortest isoform 

lacking exon 3 and 7, has no effect on TNFα-mediated IL-8 

transcript. Whereas, other study has shown that the level of 

IL-32α protein and mRNA transcript are evaluated in inflamed 

epithelial mucosa of IBD patients compared to colonic epi-

thelial cells of normal individuals (3). With intestinal epithelial 

cell lines, the expression of IL-32α transcript and protein is 

increased by IL-1β, interferon-γ (IFNγ) and TNFα. TNFα 

plus IFNγ exert synergistic effect on IL-32α expression and 

also IL-32α is highly expressed particularly in epithelial cells 

of IBD and CD patients. In the ileal tissues of patients with 

AS and intestinal chronic inflammation, significant up-regu-

lation of IL-32 levels was found as compared with non-in-

flamed AS patients and controls (4). Further studies suggested 

that the biological activity of IL-32 plays important roles 

through interaction with other inflammatory cytokines such as 

TNFα, IL-1β, and IFNγ in the pathophysiology of IBD and 

CD (5-7).

  The function of IL-32 in intestinal inflammation is inves-

tigated in vivo experiment by using IL-32γ transgenic mouse 

(IL-32γ-TG) expressing human IL-32γ in mouse. Although 

IL-32γ-TG mice are healthy, constitutive serum and colonic 

tissue levels of TNFα are increased. Compared with wild type 

(WT) mice, IL-32γ-TG exhibited a modestly enhanced acute 

inflammation early following the initiation of dextran sodium 

sulfate (DSS)-induced colitis (8). However, after day 6, there 

is less colonic inflammation and improved survival rate com-

pared with WT mice. Associated with attenuated tissue dam-

age, the colonic level of inflammatory cytokine is significantly 

reduced in IL-32γ-TG-treated with DSS and also constitutive 

level of IL-32γ itself in colonic tissue is decreased (8). These 

results suggest that IL-32γ emerges as an example of how 

innate inflammation worsens as well as protects intestinal 

integrity.

  Fig. 1 illustrates induction of IL-32 from mucosal epithelial 

cells after infection of pathogens. IL-32 stimulates monocytes 

for inflammatory cytokines as well as differentiates monocytes 

into macrophage or dendritic cell (DC) like (9). Also IL-32 

directly stimulates neutrophils to produces IL-6 and IL-8 

(8,10,11). The differentiated macrophages and DCs are potent 

producers of key inflammatory cytokines in IBD and CD such 

as TNFα, IL-1β, and IL-6. These inflammatory cytokines in 

the inflamed area recruit T-cells, which are proliferated by the 

differentiated DCs to protect a host against the pathogens. On 

the other hand, increased numbers of various immune cells 

in the absence of proper immune suppressor molecules in-

duces infiltration of neutrophil population in the inflamed 

area resulted in releasing a large amount of neutrophil protei-

nase such as elastase, proteinase 3 (PR3), and cathepsin G. 

These serine proteinase family enzymes are strong mediators 

of mucosal tissue damage exacerbating inflammation in IBD 

and CD. Although IL-32 expressions are elevated in inflamed 

mucosa epithelial cells of IBD and CD patients the biological 

activity of IL-32 in vitro and in vivo is inconsistent. Eight IL-32 

mRNA transcripts generate five IL-32 isoform proteins 

(unpublished data). The discrepancy of in vitro and in vivo 

data could be because each investigator has studied a distinct 

IL-32 isoform or the regulation and function of IL-32 is 

complexity. Further studies are necessary to evaluate the pre-

cise function of IL-32 in IBD and CD.

RHEUMATOID ARTHRITIS (RA)

The effects of the most biologically active IL-32γ isoform on 

the differentiation of osteoclasts and IL-32 expression in rheu-

matoid arthritis (RA) have been investigated. Monocytes CD14＋ 

from healthy volunteers or RA patients as well as synovial 
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tissue of RA have been used to investigate the role of IL-32 

in RA. The levels of IL-32γ are elevated in RA patients and 

IL-32 exacerbates mice models of experimental inflammatory 

arthritis (11-13). The osteoclastogenic effect and resorbed 

area are enhanced in the presence of soluble receptor activa-

tor of nuclear factor κ-B ligand (sRANKL) and the effect is 

more significant in the IL-32γ-treated cultures than that of 

IL-17 (11). The data suggested that IL-32γ is a potent media-

tor of active osteoclast generation in the presence of sRANKL. 

IL-32 is highly expressed in RA synovial tissue biopsies, 

whereas IL-32 was not observed in synovial tissues from pa-

tients with osteoarthritis (OA) by immune staining (14). The 

level of IL-32 expression is correlated with erythrocyte sed-

imentation rate, a marker of systemic inflammation. IL-32 is 

a potent inducer of prostaglandin E2 release in mouse macro-

phages and human blood monocytes. In TNFα-deficient 

mice, IL-32-driven joint swelling is absent and cell influx is 

markedly reduced suggesting that IL-32 activity is TNFα-de-

pendent in RA (14).

  Moon et al., has investigated extensively the signal path-

way of TNFα-mediated IL-32 induction and they have charac-

terized that TNFα-induced IL-32 is regulated through the 

spleen tyrosine kinase (Syk)/protein kinase Cδ (PKCδ)/c-Jun 

N-terminal kinase (JNK) pathways in RA synovial fibroblasts 

(12). IL-32 is elevated in fibroblast-like synoviocytes (FLS) 

from RA, whereas not in OA. TNFα-mediated IL-32 ex-

pression is specifically suppressed by inhibitors of Syk, PKCδ, 

and JNK as well as by small interfering RNA (siRNA) of these 

kinases (12). The levels of IL-32 and TNFα in the active RA 

groups are higher than those in the stable RA and control 

groups and also IL-32 level is positively correlated with other 

inflammatory markers in RA (15). IL-32 increases thymic stro-

mal lymphopoietin (TSLP) production in human monocyte 

THP-1 cell line and PBMCs. IL-32 induces the differentiation 

of monocytes via TSLP since the blockade of TSLP prevents 

the monocytes differentiation into macrophage-like cells (16). 

Gene expression in cultured FLS from RA (RA-FLS) has been 

compared with gene expression in cultured FLS from OA 

(OA-FLS) using microarray analysis and IL-32 is the most 

prominently differentially expressed gene with higher ex-

pression in RA-FLS than in OA-FLS (17).

  IL-17 induces IL-32 expression in the FLSs from RA patients 

and conversely IL-32 in the FLSs from RA patients stimulates 

IL-17 production from CD4
＋

 T cells. Unlike the previous re-

port (11), IL-32 and IL-17 synergistically induces the differ-

entiation of osteoclasts. IL-32 and IL-17 also could induce re-

sorption by osteoclasts in a RANKL-dependent manner. Both 

IL-32 and IL-17 can reciprocally influence each other's pro-

duction and amplify the function of osteoclastogenesis in the 

in RA synovium. IL-32 and IL-17 separately stimulated osteo-

clastogenesis without RANKL and IL-32 synergistically ampli-

fied the differentiation of osteoclasts in the presence of IL-17, 

which is independent of RANKL stimulation. These data are 

similar to the result of IL-32 on osteoclastogenesis, but the 

co-stimulatory effect of RANKL different from previous report 

(11).

  The serum level of IL-32 was assessed by using a clinical 

study with anti-TNFα therapy. At 24 weeks of treatment, se-

rum samples of etanercept (also known as Enbrel, TNF bind-

ing protein) plus methotrexate responders had decreased IL-6 

whereas increased IL-32 and IL-21. However, there were no 

differences in cytokine levels in non-responders (18). Pro-in-

flammatory cytokines contribute to persistent in chronic in-

flammation of RA and Etanercept therapy regulates level of 

serum cytokines. Interestingly, the serum level of IL-32 and 

IL-21 is specifically increased in etanercept responders. In 

contrary, treatment of RA patients with anti-TNFα significantly 

decreases IL-32 in synovial tissue (19). TNFα potently induces 

IL-32γ expression in FLS and the elevated TNFα, IL-1β, IL-6 

and CXCL8 (also known as IL-8) productions are detected af-

ter IL-32γ overexpression in the presence of LPS in THP-1 

cells. TNFα stimulation of FLS after IL-32γ/siRNA decreases 

IL-6 and CXCL8 production, whereas IL-32γ overexpression 

enhances IL-6 and CXCL8 (19). Additional studies are neces-

sary to resolve the inconsistency of IL-32 expression in RA 

patients.

  The overexpression of splice-resistant IL-32γ mutant in 

THP1 cells or RA synovial fibroblasts increases an important 

pro-inflammatory cytokine IL-1β compared with IL-32β (20). 

The result suggests that splicing to one less active IL-32β ap-

pears to be a salvage mechanism to reduce inflammation. 

Also the overexpression of primarily IL-32β in RA synovial 

fibroblasts decreases IL-32β secretion resulting in less in-

flammatory cytokine production. IL-32β lacks exon 3 possess-

ing 46 amino acids, which contains a weak signal peptide 

of IL-32γ isoform whereas the overexpression of splice-re-

sistant IL-32γ mutant in RA synovial fibroblasts enhances 

IL-32γ secretion. In addition, the level of TNFα and IL-6 pro-

duction is associated with IL-32γ level in RA patients. These 

data reveal that naturally occurring IL-32γ, the longest iso-

form with the greatest activity among five IL-32 isoforms (10), 

can be spliced into IL-32β, which is a less active proin-
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Figure 2. The effects of IL-32 in rheumatoid arthritis (RA). An 
unknown mechanism triggers rheumatoid arthritis (RA) although 
anti-cytokine therapies are very effective to treat RA patients. The 
influx of various immune cells, monocyte, macrophage, T-cell, 
neutrophil, osteoclast, and synovial fibroblast cell present in synovial 
fluid of RA patients. These immune cells produce inflammatory 
cytokines such as IL-32, IL-1β, IL-6, and TNFα including serine 
proteinases from neutrophil resulted in bone resorption and joint 
damage in RA patients. 

Figure 3. The regulation of IL-32 in vivo. The experiment of 
microarray in vitro by using A549 stable cells expressing IL-18Rβ
(also known as IL-1R7) treated with IL-18 has identified IL-32 
induction that is indicated by blue arrow in Fig. 3 (22). However, 
the regulation of IL-32 in vivo is the downstream of IFNγ. Th2 
immune response is induced by IL-18 after helminth infection 
whereas interacellular pathogens such as virus, M. Tuberculosis M. 
Leprae triggers Th1 immune response through IL-12/IL-18. Th1 T-cells 
and natural killer cells-released IFNγ plus viral RNA are potent 
inducers of IL-32 through activation of acquired immunity whereas 
infection directly releases proteinase 3 (PR3) from neutrophils. PR3 
cleaves IL-32, TNFα, and IL-1β and enhances these cytokine activities. 
The unrestrained innate and acquired immunity provoke local 
inflammation via cross induction of cytokine is involved in IL-32- 
related inflammatory disorders.

flammatory mediator.

  Toll-like receptor (TLR)-2, -3, and -4 ligands as well as IFNγ 

and TNFα induces IL-32β, γ and δ mRNA expression by 

RA FLSs (21). Mature IL-32 is expressed intracellularly and re-

leased by cells stimulated with the various activators. The 

IL-32α isoform was expressed intracellularly in response to 

TNFα and polyriboinosinic polyribocytidylic acid (poly I:C) 

and not released in culture supernatants. Stimulation of FLS 

with TNFα, bacterial lipoprotein (BLP), lipopolysaccharide 

(LPS), or poly I:C concomitant with IFNγ increases IL-32 ex-

pression compared with stimulation with IFNγ alone. IL-32 

synthesis by FLSs is tightly regulated by innate immunity in 

RA. Therefore, TNFα, IFNγ, double-stranded RNA (dsRNA), 

hyaluronic acid, or other damage-associated molecular pat-

terns (DAMPs) secretion in synovial tissues of RA patients 

may trigger IL-32 expression in RA patients. In inflamed syno-

vial spaces, various infiltrated immune cells producing in-

flammatory cytokines such as TNFα, IL-1β, and IL-6 stim-

ulates FLS to induce IL-32 and also DAMPs from death cells 

synergies with IL-32 further enhancement of inflammatory cy-

tokine productions (Fig. 2).

CONCLUSION

The regulation of IL-32 is described in Fig. 3. Initial discovery 

of cytokine IL-32 was identified with in vitro experiment of 

microarray by using A549/IL-18Rβ stable cells that is indicated 

by blue arrow in Fig. 3 (22). However, the major route of 

IL-32 induction in vivo is probably downstream of IFNγ. 

Helminth antigen drives Th2 immune response via IL-18 

alone whereas virus, M. Tuberculosis, and M. Leprae in-

fection derive Th1 immune response via IL-12 plus IL-18 

pathway. Activated T-cells and natural killer cells produce a 

large amount of IFNγ. Single and double stranded viral RNA 

in the presence of IFNγ are strong inducers of IL-32 in vivo 

and in vitro. In the other hand, infection directly activates 

neutrophils producing PR3, which is a mast regulator of IL-32, 

TNFα, and IL-1β. The innate and acquired immunity derived 

chronic local inflammation may contribute to IL-32-associated 

inflammatory disorders or wound healing process (Fig. 3). 

IL-32 is involved in both tissue damage and wound healing 

in the diseases, but further studies are necessary to resolve 
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specific mechanisms of the reciprocal processes.
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