## **Supplementary Online Content**

O'Sullivan JW, Grigg S, Crawford W, et al. Accuracy of smartphone camera applications for detecting atrial fibrillation: a systematic review and meta-analysis. *JAMA Netw Open*. 2020;3(4):e202064. doi:10.1001/jamanetworkopen.2020.2064

eAppendix 1. Search Strategy and Positive and Negative Predictive Values eAppendix 2. Sensitivity Analyses eFigure 1. Study Flow Diagram eFigure 2. PPV and NPV of All Specific Applications Using Undiagnosed AF Prevalence Estimate of 1.3% eFigure 3. PPV and NPV of All Specific Applications Using Undiagnosed AF Prevalence Estimate of 1.3% and 3.2% Among Individuals Aged 65 Years and Older With Hypertension eFigure 4. PPV and NPV for Each Application Using the AHA AF Prevalence Estimates eFigure 5. PPV for All Age Groups Using AHA AF Prevalence Estimates eFigure 6. Summary Receiver Operating Characteristic Curve for Meta-analyzed Sensitivity and Specificity for All Applications Combined eTable 1. Algorithm Details for Each Application eTable 2. Extended Characteristics of Included Studies eTable 3. Diagnostic Odds Ratio eTable 4. PPV and NPV eTable 5. Full QUADAS-2 Assessment eTable 6. Meta-analyzed Sensitivities and Specificities eTable 7. Metaregression eTable 8. Meta-analyzed Sensitivity and Specificity for Individual Applications eReferences

This supplementary material has been provided by the authors to give readers additional information about their work.

## eAppendix 1. Search Strategy and Positive and Negative Predictive Values

#### Search strategy

Our search strategy for MEDLINE is as follows:

"Smartphone"[Mh] OR "smartphone camera"[tw] OR "mobile phone"[tw] OR "mobilephone"[tw] OR "Pulse Wave Analysis"[Mh] OR "Photoplethysmography"[Mh] OR "PPG"[tw] OR "photoplethysmograph\*"[tw] OR "cardiio"[tw] OR "Cardiio Rhythm"[tw] OR "FibriCheck"[tw] OR "Qompium"[tw] OR "Cardiio Rhythm Mobile Application"[tw] OR "CRMA"[tw] OR "Photo AFib Detector"[tw] OR "cardiac diagnosis"[tw] OR "preventicus"[tw] OR "iPhone"[tw] OR "samsung"[tw] OR "apple"[tw] OR "huawei"[tw] OR "oppo"[tw] OR "google pixel"[tw]) AND ("Atrial Fibrillation"[Mh] OR "Atrial Flutter"[Mh] OR "AF"[tw] OR "atrial"[tw] OR "Atrial Fibrillation"[tw] OR "Atrial Flutter"[tw] OR "AFib"[tw])

### Our search strategy for EMBASE is as follows:

('iphone\*':ti,ab,kw OR 'smartphone\*':ti,ab,kw OR 'mobile phone\*':ti,ab,kw OR 'mobile ecg':ti,ab,kw OR 'cell phone\*':ti,ab,kw OR 'mobile application\*':ti,ab,kw OR 'pulse wave analysis':ti,ab,kw OR 'photoplethysmography':ti,ab,kw OR 'ppg':ti,ab,kw OR 'photoplethysmograph\*':ti,ab,kw OR 'cardiio ':ti,ab,kw OR 'cardiio rhythm':ti,ab,kw OR 'fibricheck':ti,ab,kw OR 'qompium':ti,ab,kw OR 'cardiio rhythm mobile application':ti,ab,kw OR 'crma':ti,ab,kw OR 'photo afib detector':ti,ab,kw OR 'preventicus':ti,ab,kw OR 'iphone':ti,ab,kw OR 'samsung':ti,ab,kw OR 'apple':ti,ab,kw OR 'atrial':ti,ab,kw OR 'nuawei':ti,ab,kw OR 'oppo':ti,ab,kw OR 'google pixel':ti,ab,kw) AND ('af':ti,ab,kw OR 'atrial':ti,ab,kw OR 'atrial flutter':ti,ab,kw)

#### Positive and Negative Predictive Values

For these analyses, we extracted published data on a) AFib USA prevalence, b) the total USA population (including breakdowns of population by age-group for certain analyses) and for two analyses c.1) the prevalence of hypertension in the US population and the c.2) prevalence of people with AFib who also have hypertension. The below table reports the data we extracted and the source it comes from. For the secondary analyses using the AHA AFib prevalence estimates, 2010 census data was used for the total US population because the estimate of USA AFib prevalence from the AHA and USPTF is from 2010 (note this is a secondary analysis).

Primary analysis

| Metric | Data | Source |
|--------|------|--------|
|        |      |        |

| USA AFib Prevalence                                                             | 1.3%               | Mintu P. Turakhia , Jason Shafrin,<br>Katalin Bognar, Jeffrey Trocio,<br>Younos Abdulsattar, Daniel<br>Wiederkehr, Dana P. Goldman.<br>Estimated prevalence of<br>undiagnosed atrial fibrillation in the<br>United States. <i>PLOS One. 2018 Apr</i><br><i>12;13(4):e0195088</i> <sup>1</sup>                                |  |
|---------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                 | 3.2%               | The Apple Heart Study <sup>2</sup>                                                                                                                                                                                                                                                                                           |  |
| USA AFib Prevalence in those aged $\geq 65$ years                               | 1.3% * 0.82        | 82% of AFib occurs in participants aged $\ge 65^3$                                                                                                                                                                                                                                                                           |  |
|                                                                                 | 3.2% * 0.82        |                                                                                                                                                                                                                                                                                                                              |  |
| The prevalence of AFib in those aged over 65 and with                           | (1.3% * 0.82)*0.84 | As stated above, 82% of AFib<br>occurs in those aged $\ge 65^3$ and                                                                                                                                                                                                                                                          |  |
| hypertension.                                                                   | (3.2% * 0.82)*0.84 | hypertension <sup>4</sup>                                                                                                                                                                                                                                                                                                    |  |
| Total US population over the<br>age of 65 and with a history of<br>hypertension | 40,267,984*0.782   | 40,267,984 is the number of<br>people aged $\geq$ 65 in 2010 US<br>census. <sup>7</sup> 78.2% of 2 65 have<br>hypertension. <sup>1</sup> The AFib<br>prevalence estimate for those<br>aged $\geq$ 65 and with<br>hypertension was calculated<br>using the following formula:<br>((1.3% * 0.82)*0.84) /<br>(40,267,984*0.782) |  |

Secondary analysis

| Metric              | Data        | Source                                             |
|---------------------|-------------|----------------------------------------------------|
| USA AFib prevalence | 2.7 million | The American Heart Association (AHA) Heart Disease |
| (2010)              | 6.1 million | Preventative Task Force (USPTF) <sup>6</sup>       |

| USA AFib Prevalence (2010) in those aged $\geq$                                 | Using 2.7 million<br>estimate (0.82*2.7<br>million) = 2,214,000    | 82% of AFib occurs in participants aged $\geq 65^3$                                                                                           |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 65 years                                                                        | Using 6.1 million<br>estimate (0.82<br>*6.1million) =<br>5,002,000 |                                                                                                                                               |
| The prevalence of AFib in<br>those aged over 65 and with<br>hypertension.       | (2.7m or 6.1m*<br>0.82)*0.84                                       | As stated above, 82% of AFib occurs in those aged $\geq$ 65 <sup>3</sup> and 84% of those with AFib have hypertension <sup>14</sup>           |
| Total US population over<br>the age of 65 and with a<br>history of hypertension | 40,267,984*0.782 =<br>31,489,564                                   | As stated above and below there were 40,267,984 2 65 years in 2010 US census and 78.2% of people aged over 65 have hypertension. <sup>1</sup> |
| USA population                                                                  | 218 years =<br>234,564,071                                         | The 2010 US census outlines these. <sup>7</sup>                                                                                               |
|                                                                                 | 2 45 years =<br>121,757,429                                        |                                                                                                                                               |
|                                                                                 | 2 65 years =<br>40,267,984                                         |                                                                                                                                               |

### eAppendix 2. Sensitivity Analyses

We assessed the effect of including the one study which used an imperfect reference standard<sup>7</sup> in our analyses (this study used a chest belt to measure a one lead EKG as a reference standard). The inclusion of this study did not substantially, nor meaningfully alter the results from our primary analysis (appendix tables 5-8); the meta-analyzed sensitivity (for all apps collectively) did not change and the specificity decreased by 0.2%. Similarly, the meta-analyzed sensitivity and specificity for the Preventicus app did not substantially change (the study which used an imperfect reference standard<sup>7</sup> assessed the Preventicus app) : the meta-analyzed sensitivity increased by 0.5% and the meta-analysed specificity decreased by 0.8%. Lastly, the meta-regression confirmed the non-significant effect of the inclusion of an imperfect reference standard in our meta-analysis (the meta-regression coefficient and its corresponding 95%CI are reported in appendix table 6).

Our sensitivity analyses investigating the effect of verification bias on our results similarly showed non-meaningiful, tiny changes in meta-analyzed estimates of sensitivity, specificity and DOR. The meta-regression model also confirmed the non-significant effect of verification bias on our results (appendix tables 2, 5-7).

Next, we conducted a sensitivity analysis to investigate the effect of the index and reference test not being applied concurrently. Two studies<sup>8,9</sup> did not state if the index and reference test were performed immediately after each other, or concurrently. Similar to the above sensitivity analyses, we found no significant effect on our results (appendix tables 2, 5-7).

Fourth, we assessed the effect of risk of bias on our results. As we did for the above analyses, we conducted a sensitivity analysis excluding studies that were rated as having a high risk of bias in at least one domain (five studies<sup>7,8,10-12</sup>). Again, there were no significant effect of high risk of bias on our results (appendix tables 2, 5-7).

Lastly, we investigated the difference in results between case-control designs and cohort designs. We observed no significant effect of the different designs in our meta-regression, nor did we observe a meaningful difference in meta-analyzed sensitivity, specificity, or DOR.

#### eFigure 1. Study Flow Diagram



eFigure 2. PPV and NPV of All Specific Applications Using Undiagnosed AF Prevalence Estimate of 1.3%

![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_0.jpeg)

eFigure 3. PPV and NPV of All Specific Applications Using Undiagnosed AF Prevalence Estimate of 1.3% and 3.2% Among Individuals Aged 65 Years and Older With Hypertension

![](_page_9_Figure_0.jpeg)

eFigure 4. PPV and NPV for Each Application Using the AHA AF Prevalence Estimates

![](_page_10_Figure_0.jpeg)

eFigure 5. PPV for All Age Groups Using AHA AF Prevalence Estimates

eFigure 6. Summary Receiver Operating Characteristic Curve for Meta-analyzed Sensitivity and Specificity for All Applications Combined

![](_page_11_Figure_1.jpeg)

False Positive Rate

| eTable 1. | Algorithm | Details for | Each A | Application |
|-----------|-----------|-------------|--------|-------------|
|-----------|-----------|-------------|--------|-------------|

| Study name | Арр         | Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Algorithm methods paper<br>reference                                                                                                                                                                                                                                                                                                         |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brasier    | Preventicus | This app used an algorithm called the "Heartbeats algorithm (Version 20171120)", which detects changes in time and morphology of PPG signals. Specifically it detects changes in the following parameters in the Time Domain: Standard deviation of the NN intervals (where NN interval is the RR interval, sdNN), Mean squared differences of consecutive NN intervals (rmssd), Rmssd normalized to the length of the tachogram (norm rmssd) and Shannon entropy ("Describes the variability of the observed values in bits") and the following parameters in the morphology Domain: Power in the low-frequency range; 0.04-0.15 Hz, Power in the high-frequency range; 0.15-0.4 Hz, Variance of all NN intervals; :S0.4 Hz, Normalized low-frequency power, Normalized high-frequency power.' | Koenig N et al. Validation of<br>a New Heart Rate<br>Measurement Algorithm for<br>Fingertip Recording of Video<br>Signals with Smartphones.<br>Telemed J E Health. 2016<br>Aug;22(8):631-6                                                                                                                                                   |
| McManus    | Pulsesmart  | This app used an algorithm that had threshold values for time<br>and morphology to classify a rhythm as sinus rhythm, AFib, or<br>other (ectopic or non-sinus atrial and ventricular beats). The<br>parameters they used to classify rhythm were: Root Mean<br>Square of Successive Difference of RR intervals (RMSSD),<br>Shannon Entropy (ShE), and Poincare plot (or Turning Point<br>Ratio), using thresholds of: RMSDD = 0.1093, ShE = 0.4890,<br>Poincare Plot = 0.2.                                                                                                                                                                                                                                                                                                                     | Dash S et al. Automatic real<br>time detection of atrial<br>fibrillation. Ann Biomed Eng.<br>2009 Sep;37(9):1701-9.<br>Tateno K, Glass L. Automatic<br>detection of atrial fibrillation<br>using the coefficient of<br>variation and density<br>histograms of RR and deltaRR<br>intervals. Med Biol Eng<br>Comput. 2001<br>Nov;39(6):664-71. |

| Krivoshei  | Preventicus       | This app used an algorithm that assessed variation in time and<br>morphology of PPG signals: it assessed variation in Root mean<br>square of successive difference of RR intervals (RMSSD),<br>Shannon entropy (ShE), and SD1/SD2 (this ratio is taken from<br>a Poincare plot, a Poincare plot plots RR interval against RR<br>interval + 1, the SD1/SD2 ratio represents the variation ofdata). | Koenig N et al. Validation of<br>a New Heart Rate<br>Measurement Algorithm for<br>Fingertip Recording of Video<br>Signals with Smartphones.<br>Telemed J E Health. 2016<br>Aug;22(8):631-6 |
|------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rozen      | Cardiio<br>Rhythm | This app used a "a supervised machine learning technique" to<br>classify PPG signals. This supervised machine learning<br>algorithm is known as "support vector machine"; they state this<br>algorithm uses feature extraction to assess the "degree of<br>self-similarity of a PPG waveform", but do not state further the<br>underlying methodology, nor give a further reference               | Not stated                                                                                                                                                                                 |
| Yan        | Cardiio<br>Rhythm | This app assessed repeated patterns in time and morphology of PPG waveforms and "classified the patterns using a previously trained support vector machine."                                                                                                                                                                                                                                      | Not stated                                                                                                                                                                                 |
| Chan       | Cardiio<br>Rhythm | This app assessed the pattern of PPG waveforms, a lack of<br>repeating pattern led to a diagnosis of AFib. Previously trained<br>Support Vector Machine were used to classify patterns as<br>non-repeating (AFib) or repeating (non-AF).                                                                                                                                                          | Not stated                                                                                                                                                                                 |
| Grieten    | Fibricheck        | Not stated                                                                                                                                                                                                                                                                                                                                                                                        | Not stated                                                                                                                                                                                 |
| Karim      | Preventicus       | Not stated                                                                                                                                                                                                                                                                                                                                                                                        | Not stated                                                                                                                                                                                 |
| Vandenberk | Fibricheck        | Not stated                                                                                                                                                                                                                                                                                                                                                                                        | Not stated                                                                                                                                                                                 |
| Mortelmans | Fibricheck        | The algorithm methodology is not stated in full, all that is stated<br>is: "The raw single-lead signal quality was also scored by the<br>filter software of the FibriCheck app (0: poor signal, unreliable<br>result; 1: good signal, reliable result). QRS-complexes were<br>detected using the Pan-Tompkins method"                                                                             | Pan J, Tompkins WJ. A<br>real-time QRS detection<br>algorithm. IEEE Trans<br>Biomed Eng. 1985, Mar;<br>32(3):230-6                                                                         |

To reach an AF diagnosis, these smartphone camera apps obtain a PPG signal from a user's fingertip pulse via a smartphone camera. The regularity of this PPG signal is then analyzed, both in terms of its morphology and its timing. A diagnosis of AF is made if the PPG signal reaches a threshold of irregular timing and a consecutive period of non-identical morphology (typically >30 seconds, measured in Hz) is observed. The irregularity of PPG timing is typically measured by Root Mean Square of Successive Difference of RR intervals (RMSSD), Shannon Entropy (ShE), and Poincare plots. The RMSSD represents beat-to-beat variation in heart rate and is obtained by first measuring the time difference between successive heartbeats (in ms). Then, the square of each value is calculated, averaged and then the square root of the total is calculated.<sup>13</sup> Shannon entropy is a statistical quantification of the probability of a random variable being observed. It is expressed on a scale of 0 to 1, where 1 implies the probability of a random variable being observed is consistent e.g. a person's heart rate is at a regular, consistent rate. A result <1 implies a less consistent probability - i.e. a irregular heart rate (and this becomes less consistent as 0 is approached.<sup>14</sup> Lastly, Poincare plot shows the RR interval against RR interval + 1 and provides a visual description of the variation in RR interval plots. A SD1/SD2 ratio can be extracted from this plot and can quantify the variation in data.<sup>7</sup> The smartphone camera apps in our included studies measured the pulse for on average 2 minutes (range 1-5 minutes).

| eTable 2. Extended Characteristics of Included Stu | idies |
|----------------------------------------------------|-------|
|----------------------------------------------------|-------|

| Study<br>name | Арр               | Device                                   | Time<br>length of<br>index test | Average Age                                                                                                    | Percentage<br>female                             | No.<br>with<br>AF<br>(%) | No. with hypertension (%)                                                      |
|---------------|-------------------|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------------------------------------|
| Brasier       | Preventi<br>cus   | iPhone<br>4S                             | 5 mins                          | Median: 78 (interquartile range 13)                                                                            | 45%                                              | 248<br>(42%)             | 427 (72.1%) in total, 241<br>(70.1%) in SR group, 186<br>(75%) in AFib group   |
| McMan<br>us   | Pulsesm<br>art    | iPhone<br>4S                             | 2 mins                          | Mean: 65.9 (SD: 12.2) in<br>AF group, mean 66 (SD:<br>11.9) in SR group                                        | 18%                                              | 104<br>(86%)             | 70 (71.4%) in the AF group, 63 (69.2%) in the SR group                         |
| Krivosh<br>ei | Preventi<br>cus   | iPhone<br>4S                             | 5 mins                          | Mean: 80 (SD: 8) in AF<br>group, mean 75 in SR<br>group (SD: 7)                                                | 30% in the AF<br>group, 27.5% in<br>the SR group | 40<br>(50%)              | Not stated                                                                     |
| Rozen         | Cardiio<br>Rhythm | iPhone<br>(generat<br>ion not<br>stated) | 3x20<br>seconds                 | Mean: 67.7 (SD: 10.5)                                                                                          | 25%                                              | 96<br>(98%)              | Not stated                                                                     |
| Yan           | Cardiio<br>Rhythm | iPhone<br>6S                             | 3x20<br>seconds                 | Mean: 70.3 (SD: 13.9) in<br>total. Mean in AF group:<br>75 (SD: 10), mean in<br>non-AF group: 67.8 (SD:<br>15) | 29%                                              | 75<br>(35%)              | 130 (59.9%) in total, 53<br>(70.7%) in AF group, 77<br>(54.2%) in non-AF group |

| Chan           | Cardiio<br>Rhythm | iPhone<br>4S  | 3x17.1<br>seconds | Mean: 68.4 (SD: 12.2)                                                               | 53%                                                             | 28<br>(2.8%) | 916 (90.4%) in total                                                          |
|----------------|-------------------|---------------|-------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|-------------------------------------------------------------------------------|
| Grieten        | Fibriche<br>ck    | Not<br>stated | 60<br>seconds     | Mean: 59 (SD: 15)                                                                   | 59%                                                             | 8<br>(0.8%)  | Not stated                                                                    |
| Karim          | Preventi<br>cus   | Not<br>stated | Not stated        | Mean: 74 (SD: 12) in AF<br>group, mean: 60 (SD: 20)<br>in the SR group              | 40% in the AF<br>group, 34% in<br>the SR group                  | 70<br>(50%)  | Not stated                                                                    |
| Vanden<br>berk | Fibriche<br>ck    | Not<br>stated | 60<br>seconds     | Not stated                                                                          | Not stated                                                      | 173<br>(50%) | Not stated                                                                    |
| Mortelm<br>ans | Fibriche<br>ck    | iPhone<br>5S  | 3x60<br>seconds   | Mean: 78 (SD: 8) in total,<br>80 (SD: 8) in AF group, 76<br>(SD: 8) in non-AF group | 51.5% in total,<br>47.7% in AF<br>group, 43% in<br>non-AF group | 92<br>(48%)  | 198 (83.5%) in total, 102 (92%)<br>in AF group, 96 (76.2%) in<br>non-AF group |

# eTable 3. Diagnostic Odds Ratio

| Analysis                                                                                                 | Diagnostic Odds Ratio (DOR)<br>(95%CT) | Logged DOR<br>(95%CT) |
|----------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|
| Primary: All studies except those with                                                                   | 400 5 (204 8 to 783 2)                 | 6.0.(5.3  to  6.7)    |
| Sensitivity analysis 1: All studies                                                                      | 380.6 (205.6 to 704.6)                 | 5.9 (5.3 to 6.6)      |
| Sensitivity analysis 2: Exclude studies with verification bias                                           | 508.2 (215.3 to 1199.5)                | 6.2 (5.4 to 7.1)      |
| Sensitivity analysis 3: Exclude studies<br>with non-immediate/simultaneous index<br>and reference timing | 332.4 (166.5 to 663.8)                 | 5.8 (5.1 to 6.5)      |
| Sensitivity analysis 4: Case-control design only                                                         | 404.5 (156.0 to 1048.7)                | 6.0 (5.1 to 7.0)      |
| Sensitivity analysis 4: Cohort design only                                                               | 523.3 (175.8 to 1557.5)                | 6.3 (5.2 to 7.4)      |
| Sensitivity analysis 5: Exclude studies<br>with at least one domain high RoB                             | 363.7 (172.5 to 766.9)                 | 5.9 (5.2 to 6.6)      |
| Sensitivity analysis 6: Exclude conference abstracts and theses                                          | 401.7 (157.3 to 1025.6)                | 6.0 (5.1 to 7.0)      |

\*All Sensitivity analyses (after Sensitivity analysis 1) have Krivoshei excluded

### eTable 4. PPV and NPV

| Age                | Prevalence | Predictive<br>Value | Value (%) |
|--------------------|------------|---------------------|-----------|
| ≥65                | 1.30%      | PPV                 | 19.4      |
| ≥65                | 1.30%      | NPV                 | 99.9      |
| ≥65                | 3.20%      | PPV                 | 37.5      |
| ≥65                | 3.20%      | NPV                 | 99.8      |
| ≥65 + Hypertensive | 1.30%      | PPV                 | 20.5      |
| ≥65 + Hypertensive | 1.30%      | NPV                 | 99.9      |
| ≥65 + Hypertensive | 3.20%      | PPV                 | 39.2      |
| ≥65 + Hypertensive | 3.20%      | NPV                 | 99.8      |

4.1 Primary analysis PPV and NPV (All apps, using undiagnosed AFib prevalence estimates)

Appendix table 4.2 Primary analysis PPV and NPV (Specific apps, using undiagnosed AFib prevalence estimates)

| Age | Prevalence | Predictive<br>Value | Арр            | Value (%) |  |
|-----|------------|---------------------|----------------|-----------|--|
| ≥65 | 1.30%      | PPV                 | Preventicus    | 44.3      |  |
| ≥65 | 1.30%      | NPV                 | Preventicus    | 99.9      |  |
| ≥65 | 1.30%      | PPV                 | Pulse Smart    | 13.7      |  |
| ≥65 | 1.30%      | NPV                 | Pulse Smart    | 99.9      |  |
| ≥65 | 1.30%      | PPV                 | Fibricheck     | 20.5      |  |
| ≥65 | 1.30%      | NPV                 | Fibricheck     | 99.9      |  |
| ≥65 | 1.30%      | PPV                 | Cardiio Rhythm | 16.4      |  |
| ≥65 | 1.30%      | NPV                 | Cardiio Rhythm | 99.9      |  |
| ≥65 | 3.20%      | PPV                 | Preventicus    | 66.6      |  |
| ≥65 | 3.20%      | NPV                 | Preventicus    | 99.8      |  |
| ≥65 | 3.20%      | PPV                 | Pulse Smart    | 28.4      |  |
| ≥65 | 3.20%      | NPV                 | Pulse Smart    | 99.9      |  |

| 3.20% | PPV                                                                                                      | Fibricheck                                                                                                                                                                                                                                                | 39.2                                                                                                                                                                                                                                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.20% | NPV                                                                                                      | Fibricheck                                                                                                                                                                                                                                                | 99.9                                                                                                                                                                                                                                                                                                                                                  |
| 3.20% | PPV                                                                                                      | Cardiio Rhythm                                                                                                                                                                                                                                            | 32.8                                                                                                                                                                                                                                                                                                                                                  |
| 3.20% | NPV                                                                                                      | Cardiio Rhythm                                                                                                                                                                                                                                            | 99.8                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | PPV                                                                                                      | Preventicus                                                                                                                                                                                                                                               | 46.1                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | NPV                                                                                                      | Preventicus                                                                                                                                                                                                                                               | 99.9                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | PPV                                                                                                      | Pulse Smart                                                                                                                                                                                                                                               | 14.5                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | NPV                                                                                                      | Pulse Smart                                                                                                                                                                                                                                               | 99.9                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | PPV                                                                                                      | Fibricheck                                                                                                                                                                                                                                                | 21.7                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | NPV                                                                                                      | Fibricheck                                                                                                                                                                                                                                                | 99.9                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | PPV                                                                                                      | Cardiio Rhythm                                                                                                                                                                                                                                            | 17.4                                                                                                                                                                                                                                                                                                                                                  |
| 1.30% | NPV                                                                                                      | Cardiio Rhythm                                                                                                                                                                                                                                            | 99.9                                                                                                                                                                                                                                                                                                                                                  |
| 3.20% | PPV                                                                                                      | Preventicus                                                                                                                                                                                                                                               | 68.2                                                                                                                                                                                                                                                                                                                                                  |
|       | 3.20%<br>3.20%<br>3.20%<br>3.20%<br>1.30%<br>1.30%<br>1.30%<br>1.30%<br>1.30%<br>1.30%<br>1.30%<br>3.20% | 3.20% PPV   3.20% NPV   3.20% PPV   3.20% NPV   1.30% PPV   1.30% NPV   1.30% PPV   1.30% PPV   1.30% PPV | 3.20%PPVFibricheck3.20%NPVFibricheck3.20%PPVCardiio Rhythm3.20%NPVCardiio Rhythm1.30%PPVPreventicus1.30%NPVPreventicus1.30%NPVPulse Smart1.30%NPVFibricheck1.30%NPVCardiio Rhythm1.30%NPVCardiio Rhythm1.30%NPVFibricheck1.30%NPVFibricheck1.30%NPVFibricheck1.30%NPVCardiio Rhythm1.30%NPVCardiio Rhythm1.30%NPVCardiio Rhythm1.30%NPVCardiio Rhythm |

| ≥65 + Hypertension       | 3.20% | NPV             | Preventicus    | 99.8 |
|--------------------------|-------|-----------------|----------------|------|
| ≥65 + Hypertension       | 3.20% | PPV Pulse Smart |                | 29.9 |
| $\geq 65 + Hypertension$ | 3.20% | NPV             | Pulse Smart    | 99.9 |
| $\geq$ 65 + Hypertension | 3.20% | PPV             | Cardiio Rhythm | 34.5 |
| ≥65+ Hypertension        | 3.20% | NPV             | Cardiio Rhythm | 99.8 |
| ≥65 + Hypertension       | 3.20% | PPV             | Fibricheck     | 41.0 |
| ≥65 + Hypertension       | 3.20% | NPV             | Fibricheck     | 99.9 |

Appendix table 4.3: Secondary analysis PPV and NPV (All apps, using AHA prevalence estimate)

| Age       | Prevalence (million) | PPV   | NPV   |
|-----------|----------------------|-------|-------|
| ≥18       | 2.7                  | 20.6% | 99.9% |
| ≥45       | 2.7                  | 33.6% | 99.9% |
| ≥65       | 2.7                  | 56.4% | 99.7% |
| ≥65 + HTN | 2.7                  | 58.3% | 99.6% |
| ≥18       | 6.1                  | 37.3% | 99.8% |
| ≥45       | 6.1                  | 54%   | 99.7% |
| ≥65       | 6.1                  | 76%   | 99.2% |
| ≥65 + HTN | 6.1                  | 77.4% | 99.1% |

| Арр           | Prevalence (millions) | Age                      | PPV (%)    | NPV (%) |
|---------------|-----------------------|--------------------------|------------|---------|
| Preventicus   | 2.7                   | ≥18                      | 46.2       | 99.9    |
| Pulse Smart   | 2.7                   | ≥18                      | 14.6       | 99.9    |
| Cardio Rhythm | 2.7                   | ≥18                      | 17.4       | 99.9    |
| Fibricheck    | 2.7                   | ≥18                      | 21.8       | 99.9    |
| Preventicus   | 2.7                   | ≥45                      | 62.6       | 99.8    |
| Pulse Smart   | 2.7                   | ≥45                      | 25.0       | 99.9    |
| Cardio Rhythm | 2.7                   | ≥45                      | 29.2       | 99.8    |
| Fibricheck    | 2.7                   | ≥45                      | 35.2       | 99.9    |
| Preventicus   | 2.7                   | $\geq$ 65 + Hypertensive | 82.3       | 99.5    |
| Pulse Smart   | 2.7                   | $\geq$ 65 + Hypertensive | 48.0       | 99.8    |
| Cardio Rhythm | 2.7                   | $\geq$ 65 + Hypertensive | 53.2       | 99.6    |
| Fibricheck    | 2.7                   | $\geq$ 65 + Hypertensive | 60.0       | 99.8    |
| Preventicus   | 2.7                   | ≥65                      | 81.1       | 99.6    |
| Pulse Smart   | 2.7                   | ≥65                      | 46.079907  | 99.8    |
| Cardio Rhythm | 2.7                   | ≥65                      | 51.351785  | 99.6    |
| Fibricheck    | 2.7                   | ≥65                      | 58.2096576 | 99.8    |
| Preventicus   | 6.1                   | ≥18                      | 66.3492157 | 99.8    |
| Pulse Smart   | 6.1                   | ≥18                      | 28.1706669 | 99.9    |
| Cardio Rhythm | 6.1                   | ≥18                      | 32.6336686 | 99.8    |
| Fibricheck    | 6.1                   | ≥18                      | 38.9955489 | 99.9    |
| Preventicus   | 6.1                   | ≥45                      | 79.5701498 | 99.6    |
| Pulse Smart   | 6.1                   | ≥45                      | 43.652796  | 99.8    |

Appendix table 4.4: PPV and NPV (Specific apps) using AHA AF prevalence (not just undiagnosed AF)

| Cardio Rhythm | 6.1 | ≥45                      | 48.8988158 | 99.6 |
|---------------|-----|--------------------------|------------|------|
| Fibricheck    | 6.1 | ≥45                      | 55.8048799 | 99.8 |
| Preventicus   | 6.1 | $\geq$ 65 + Hypertensive | 91.9       | 98.9 |
| Pulse Smart   | 6.1 | $\geq$ 65 + Hypertensive | 69.3       | 99.5 |
| Cardio Rhythm | 6.1 | $\geq$ 65 + Hypertensive | 73.6       | 99.0 |
| Fibricheck    | 6.1 | $\geq$ 65 + Hypertensive | 78.6       | 99.5 |
| Preventicus   | 6.1 | ≥65                      | 91.2847079 | 98.9 |
| Pulse Smart   | 6.1 | ≥65                      | 67.568195  | 99.6 |
| Cardio Rhythm | 6.1 | ≥65                      | 72.0150509 | 99.0 |
| Fibricheck    | 6.1 | ≥65                      | 77.2504957 | 99.5 |

# eTable 5. Full QUADAS-2 Assessment

| Study<br>author<br>name | Consecuti<br>ve or<br>random<br>sample | Case-c<br>ontrol<br>avoided<br>? | Avoid<br>inappropria<br>te<br>exclusions<br>? | RoB         | Index<br>test<br>withou<br>t<br>results<br>of ref | If<br>threshol<br>d,<br>pre-spec<br>ified? | Ro<br>B | Ref<br>standar<br>d<br>correctl<br>y<br>classify | Ref<br>test<br>withou<br>t<br>results<br>of<br>index | RoB         | Interval<br>betwee<br>n index<br>and<br>ref? | All<br>patient<br>s get a<br>ref | Did<br>patient<br>s get<br>same<br>ref | All<br>patients<br>in<br>analysis<br>? | RoB         |
|-------------------------|----------------------------------------|----------------------------------|-----------------------------------------------|-------------|---------------------------------------------------|--------------------------------------------|---------|--------------------------------------------------|------------------------------------------------------|-------------|----------------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|-------------|
| Brasier                 | No                                     | No                               | Yes                                           | High        | Yes                                               | Yes                                        | Lo<br>w | Yes                                              | Yes                                                  | Low         | Unclea<br>r                                  | Yes                              | Yes                                    | No                                     | High        |
| McManus                 | No                                     | Unclear                          | Unclear                                       | Uncle<br>ar | Uncle<br>ar                                       | Yes                                        | Lo<br>w | Yes                                              | Uncle<br>ar                                          | Low         | Yes                                          | Yes                              | Yes                                    | No                                     | Uncle<br>ar |
| Krivoshei               | Yes                                    | No                               | Yes                                           | High        | Uncle<br>ar                                       | Yes                                        | Lo<br>w | Unclear                                          | Uncle<br>ar                                          | High        | Unclea<br>r                                  | Yes                              | Yes                                    | Yes                                    | Low         |
| Rozen                   | Yes                                    | No                               | Yes                                           | Uncle<br>ar | No                                                | Yes                                        | Lo<br>w | Yes                                              | No                                                   | Uncle<br>ar | Yes                                          | Yes                              | Yes                                    | No                                     | Low         |
| Yan                     | Unclear                                | Yes                              | Yes                                           | Uncle<br>ar | Yes                                               | Yes                                        | Lo<br>w | Yes                                              | Yes                                                  | Low         | Yes                                          | Yes                              | Yes                                    | No                                     | Low         |
| Chan                    | Unclear                                | Yes                              | Unclear                                       | Uncle<br>ar | Yes                                               | Yes                                        | Lo<br>w | Yes                                              | Yes                                                  | Low         | Yes                                          | No                               | Yes                                    | No                                     | High        |
| Grieten                 | Unclear                                | Unclear                          | Unclear                                       | Uncle<br>ar | Uncle<br>ar                                       | Yes                                        | Lo<br>w | Yes                                              | Uncle<br>ar                                          | Uncle<br>ar | Unclea<br>r                                  | No                               | Yes                                    | Yes                                    | High        |
| Karim                   | Unclear                                | Yes                              | Yes                                           | Uncle<br>ar | Uncle<br>ar                                       | Yes                                        | Lo<br>w | Yes                                              | Uncle<br>ar                                          | Uncle<br>ar | Unclea<br>r                                  | Yes                              | Yes                                    | Yes                                    | Low         |
| Vandenbe<br>rk          | No                                     | Unclear                          | Unclear                                       | Uncle<br>ar | Yes                                               | Yes                                        | Lo<br>w | Yes                                              | Yes                                                  | Low         | Yes                                          | Yes                              | Yes                                    | Yes                                    | Low         |
| Mortelma<br>ns          | No                                     | No                               | Yes                                           | High        | Uncle<br>ar                                       | Yes                                        | Lo<br>w | Yes                                              | Yes                                                  | Low         | Yes                                          | Yes                              | Yes                                    | No                                     | High        |

eTable 6. Meta-analyzed Sensitivities and Specificities

| Analysis                                                                            | Sensitivity (95%CT)    | Specificity (95%CT)    |
|-------------------------------------------------------------------------------------|------------------------|------------------------|
| Primary: All studies except those with imperfect reference standard                 |                        |                        |
| (Krivoshei)                                                                         | 94.2% (92.2% to 95.7%) | 95.8% (92.4% to 97.7%) |
| Sensitivity analysis 1: All studies                                                 | 94.2% (92.3% to 95.7%) | 95.6% (92.6% to 97.4%) |
| Sensitivity analysis 2: Exclude studies with verification bias                      | 94.8% (92.6% to 96.4%) | 96.0% (90.9% to 98.3%) |
| Sensitivity analysis 3: Exclude<br>studies with<br>non-immediate/simultaneous index |                        |                        |
| and reference timing                                                                | 95.2% (93.0% to 96.7%) | 95.0% (91.2% to 97.2%) |
| Sensitivity analysis 4: Case-control design only                                    | 94.5% (91.7% to 96.4%) | 95.0% (87.0% to 98.2%) |
| Sensitivity analysis 4: Cohort<br>design only                                       | 95.2% (91.6% to 97.3%) | 97.0% (94.4% to 98.4%) |
| Sensitivity analysis 5: Exclude studies with at least one domain                    |                        |                        |
| high RoB                                                                            | 95.3% (89.6% to 98.0%) | 95.1% (89.6% to 97.8%) |
| Sensitivity analysis 6: Conference abstracts and theses excluded                    | 93.7% (90.9% to 95.6%) | 96.1% (90.4% to 98.5%) |

## eTable 7. Metaregression

| Covariate                                | Sensitivity P value | False positive rate<br>(1-specificity) P value |
|------------------------------------------|---------------------|------------------------------------------------|
| Imperfect reference standard             | 0.9                 | 0.7                                            |
| Verification bias                        | 0.6                 | 0.3                                            |
| Non-current index and reference test     | 0.06                | 0.2                                            |
| Cohort study design                      | 0.7                 | 0.3                                            |
| High risk of bias in at least one domain | 0.9                 | 0.5                                            |
| Conference abstracts and theses excluded | 0.1                 | 0.9                                            |

| Арр               | Analysis                                                                                              | Sensitivity<br>(95%CT)         | Specificity<br>(95%CT)         |
|-------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| Preventicus       | Primary: All studies except those with imperfect reference standard (Krivoshei)                       | 92.9% (88.1%<br>to 95.8%)      | 98.7% (84.3%<br>to 99.9%)      |
|                   | Sensitivity analysis 1: All studies                                                                   | 93.4% (89.6%<br>to 95.9%)      | 97.9% (89.3%<br>to 99.6%)      |
|                   | Sensitivity analysis 2: Exclude studies with verification bias                                        | 92.9% (88.1%<br>to 95.8%)      | 98.7% (84.3%<br>to 99.9%)      |
|                   | Sensitivity analysis 3: Exclude studies with non-immediate/simultaneous index and reference timing    | N/At                           | N/At                           |
| Pulse<br>Waveform | Primary: All studies except those with imperfect reference standard (Krivoshei)                       | 97.1% (91.4%<br>to 99.1%)*     | 93.4% (87.3%<br>to 96.7%)*     |
|                   | Sensitivity analysis 1: All studies                                                                   | Same as<br>primary<br>analysis | Same as<br>primary<br>analysis |
|                   | Sensitivity analysis 2: Exclude studies with verification bias                                        | Same as<br>primary<br>analysis | Same as<br>primary<br>analysis |
|                   | Sensitivity analysis 3: Exclude studies with<br>non-immediate/simultaneous index and reference timing | Same as<br>primary<br>analysis | Same as<br>primary<br>analysis |
| Cardiio<br>Rhythm | Primary: All studies except those with imperfect reference standard (Krivoshei)                       | 93.5% (89.2%<br>to 96.2%)      | 94.8% (88.3%<br>to 97.8%)      |
| Mobile            | Sensitivity analysis 1: All studies                                                                   | Same as<br>primary<br>analysis | Same as<br>primary<br>analysis |
|                   | Sensitivity analysis 2: Exclude studies with verification bias                                        | 93.7% (89.0%<br>to 96.5%)      | 92.1% (87.8%<br>to 95.0%)      |
|                   | Sensitivity analysis 3: Exclude studies with non-immediate/simultaneous index and reference timing    | 93.5% (89.2%<br>to 96.2%)      | 94.8% (88.3%<br>to 97.8%)      |
| Fibricheck        | Primary: All studies except those with imperfect reference standard (Krivoshei)                       | 96.9% (94.1%<br>to 98.4%)      | 96.0% (86.6%<br>to 98.9%)      |

eTable 8. Meta-analyzed Sensitivity and Specificity for Individual Applications

| Sensitivity analysis 1: All studies                                                                | Same as<br>primary<br>analysis | Same as<br>primary<br>analysis |
|----------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| Sensitivity analysis 2: Exclude studies with verification bias                                     | 97.5% (94.6%<br>to 98.9%)      | 95.8% (67.7%<br>to 99.6%)      |
| Sensitivity analysis 3: Exclude studies with non-immediate/simultaneous index and reference timing | 96.9% (94.1%<br>to 98.4%)      | 96.0% (86.6%<br>to 98.9%)      |

\*There is only one study for Pulse Waveform so this is not meta-analyzed t All studies referring to this app excluded for this analysis

#### eReferences

- 1. Turakhia MP, Shafrin J, Bognar K, et al. Estimated prevalence of undiagnosed atrial fibrillation in the United States. *PLoS One.* 2018;13(4):e0195088.
- Apple Heart Study Identifies AFib in Small Group of Apple Watch Wearers American College of Cardiology. American College of Cardiology. https://www.acc.org/latest-in-cardiology/articles/2019/03/08/15/32/sat-9am-apple-heart-study-acc-20 19. Accessed March 26, 2019.
- 3. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *JAMA*. 2001;285(18):2370-2375.
- 4. Piccini JP, Hammill BG, Sinner MF, et al. Incidence and Prevalence of Atrial Fibrillation and Associated Mortality Among Medicare Beneficiaries: 1993-2007. *Circulation: Cardiovascular Quality and Outcomes*. 2012;5(1):85-93. doi:10.1161/circoutcomes.111.962688
- 5. Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. *Circulation*. 2019;139(10):e56-e66.
- US Preventive Services Task Force, Curry SJ, Krist AH, et al. Screening for Atrial Fibrillation With Electrocardiography: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2018;320(5):478-484.
- 7. Krivoshei L, Weber S, Burkard T, et al. Smart detection of atrial fibrillationt. *Europace*. 2017;19(5):753-757.
- 8. Brasier N, Raichle CJ, Dorr M, et al. Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). *Europace*. 2019;21(1):41-47.
- 9. Karim N, Aral M, Eduawor S, Finlay M. AF detection using smartphone apps. *Europace*. 2017;19 (Supplement 3):iii234.
- 10. Mortelmans C. Validation of a new smartphone application ("FibriCheck") for the diagnosis of atrial fibrillation in primary care. Vaes B, ed. 2015.

https://www.scriptieprijs.be/sites/default/files/thesis/2016-10/Manama-thesis%20Mortelmans%20Ch ristophe%20-%20Validatiestudie%20VKF.pdf.

- Chan P-H, Wong C-K, Poh YC, et al. Diagnostic Performance of a Smartphone-Based Photoplethysmographic Application for Atrial Fibrillation Screening in a Primary Care Setting. *J Am Heart Assoc.* 2016;5(7). doi:10.1161/JAHA.116.003428
- 12. Grieten L, Van Der Auwera J, Vandervoort P, Dujardin K. Using smartphone enabled technologies for detection atrial fibrillation: Is there a difference in signal quality between ECG and PPG? (Conference abstract). *Heart Rhythm.* 2018;15(5):Supplement 1 (S70-S71).
- 13. Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. *Front Public Health*. 2017;5:258.
- 14. Pathria RK, Beale PD. Statistical Mechanics. Butterworth-Heinemann; 2011.