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Abstract

Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress
relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed
germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds
and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous
GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on
AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAl are all involved in repressing
AtEXP2 expression, and RGLT plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant
shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt
stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is
involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis.
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Introduction

The dominant phase of the life cycle of higher plants initiates
from seed germination. The embryo of the Arabidopsis seed is
surrounded by a single-cell endosperm layer and testa (seed coat)
[1-2], thus, the emerging radicle needs to overcome the dual
constraint of these structures to complete germination, therefore
seed germination is defined as a two stage process with testa
rupture followed by endosperm rupture [1,3]. Physiologically the
rupture of endosperm and testa is associated with cell division and
enlargement, which are accompanied by cell wall expansion and
loosening [4-5]. The cell wall is an extracellular layer surrounding
the cell that plays an important role in maintaining cell shape and
provides mechanical strength and rigidity [4]. The cell wall is
composed of cellulose microfibrils, hemicellulose, pectin, lignin,
and proteins, these cell wall polymers interact together to form a
polymeric network then to confer the structural rigidity to cell wall
[4]. Therefore, cell wall enlargement needs to destroy this
structural rigidity by modifying cell wall extensibility.

Many enzymes are involved in modifying matrix polysaccha-
rides including endo-B-mannanase and other endoglucanases [6].
In addition to those enzymes, expansins are involved in cell wall
extensibility modification [7-8]. Expansin was firstly identified
from young cucumber seedlings for its ability to mediate the acid-
induced extension of cucumber hypocotyl walls [7,9]. Expansins
induce cell wall extension by disrupting non-covalent linkages
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between cellulose microfibrils and the cross-linking matrix glycans
in cell wall [8-10].

Expansins are encoded by a multigene family and highly
conserved in gymnosperms and angiosperms [10—-12]. Expansins
can be divided into four divergent subfamilies based on genomic
and phylogenetic analyses, denoted as o-expansin (EXPA), B-
expansin (EXPB), EXP-like A (EXLA) and EXP-like B (EXLB)
[10,13], and there are thirty-six expansins encoding by 26 EXPAs,
6 EXPBs, 3 EXLAs and 1 EXLBs in Arabidopsis (http://www.
personal.psu.edu/fsl/ExpCentral).

The extensive occurrence of the expansins superfamily in plants
suggests that expansins play multiple roles during the plant life
cycle [14-15], and in the past several decades numerous studies
have accumulated evidence about their involvement in diverse
developmental processes, including seed germination [16-17],
seedling morphogenesis [18], root architecture [19-26], leaf
development [27-30], fruit ripening [31-32], stoma opening
[33-34], pollination [35], abscission, stress responses [36-43] and
others. However, those characterized expansins only represent a
small proportion of the expansins superfamily in the plant
kingdom, and the individual functions of other expansin coding
genes still remains to be elucidated.

In the present study, we investigated the expression pattern of
AtEXP2 in Arabidopsis, found that the expression of AtEXP2 is
associated with seed germination and subject to GA and stress
regulation. Our molecular analyses demonstrate that ALEXP2 plays
a key role in controlling seed germination through GA signaling.
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Figure 1. Expression pattern of AtEXP2 gene. (A) Tissue-specific expression of AtEXP2. Various tissues of Arabidopsis wild type plants were
harvested for RNA extraction. (B) Time course of AtEXP2 expression. Dry seeds and imbibed seeds of Col-0 were harvested for RNA extraction.
Transcript levels of AtEXP2 were measured by real-time RT-PCR, and the values were normalized against the levels of TUB2 as a control. Error bars
represent SD. (C) GUS staining in germinating seeds of the pAtEXP2:GUS transgenic line. Seeds from T3 homozygous plants of the pAtEXP2:GUS

transgenic line were analyzed. Bar=1 mm.
doi:10.1371/journal.pone.0085208.g001

Materials and Methods

Plant Materials and Growth Conditions

Arabidopsis thaliana ecotype Columbia-0 and Landsberg erecta
were used as the wild types in this study. The T-DNA insertion
mutant exp? (Salk_117075) was obtained from the Nottingham
Arabidopsis Stock Centre (NASC). The gal-3, rgll-1, 1gl2-1, rga-12,
gai-t6 and della multiple mutants have been described previously
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[44-46]. The plants were grown in a growth room under a 16-
h-light (100 pmol'm™2-s~!, 22°C) and 8-h-dark (19°C) photo-
period.

Germination Assay and Stress Treatment

For germination assays, Arabidopsis seeds were surface-steril-
ized with 5% (v/v) NaClO solution for 10 min and washed five
times with sterile water, then sown on 1/2 MS medium
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Figure 2. Relative expression levels of AtEXP2in exp2and 35S:AtEXP2 line. Seeds of wild type, exp2 and 35S:AtEXP2 overexpression line were
harvested for RNA extraction after 24 h imbibition in water. Transcript abundance was measured by real-time RT-PCR and the values were normalized
against the levels of TUB2 as a housekeeping gene. Error bars represent SD.

doi:10.1371/journal.pone.0085208.9g002

containing 0.8% (w/v) agar supplemented with or without emergence. Lxperiments were repeated three times on five
additional sucrose (150 or 250 mM), NaCl (100 or 200 mM), plates with about 100 seeds for each genotype.

mannitol (200 or 400 mM), paclobutrazol (1 or 5 uM), then

plates were transferred to a tissue culture room at 22°C under a GA and ABA Treatments

16 h-light/8 h-dark photoperiod. Germination rates were scored For measuring the effect of GA applications on gene
daily until the 7th day after sown based on radicle tip expression, Col-0 wild type seeds were imbibed in 10 uM
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Figure 3. Germination phenotype of the wild type, exp2 and 35S5:AtEXP2 line. Non-dormant seeds of wild type, exp2 and 35S:AtEXP2
overexpression line were employed in the germination assay. The germination frequencies were scored daily until the 7th day after sown. Error bars
represent SD. A Student’s t-test was calculated at the probability of either 5% (*P<0.05) or 1% (**P<<0.01).
doi:10.1371/journal.pone.0085208.g003
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Figure 4. Expression of AtEXP2 in response to exogenous GA application. Col-0 wild type seeds were harvested 4 h, 6 h and 8 h after
imbibition in 10 uM GA; solution for RNA extraction respectively. Transcript levels were measured by real-time RT-PCR, and the values were
normalized against the levels of TUB2 as a control. Error bars represent SD. A Student’s t-test was calculated at the probability of 1% (**P<0.01).

doi:10.1371/journal.pone.0085208.g004

GA; (Sigma-Aldrich), then were harvested 4 h, 6 h and 8 h
after treatment for RNA extraction respectively. For measuring
the effect of ABA applications on gene expression, Col-0 seeds
were imbibed in different concentrations of ABA (0.1, 0.3, 1, 3,
10 uM) (Sigma-Aldrich) and harvested 16 h after treatment for
RNA extraction.

Construction of Transgenic Lines

All the constructs (35S:AtEXP2, pAtEXP2:GUS) were prepared
using the Gateway technology (Invitrogen). For construct 35S:
AtEXP2, the EXP2 coding region was amplified from cDNA using
primers 5'-CGGTCGACTACTCATCCCCTTTTCCAC-3" and
5'-AAGCGGCCGCCTAAAATTGTCCGCCTTC-3'. The
PCR products were digested with Sal I and Not I and cloned
into pENTR-1A vector (Invitrogen), then recombined into

0.0010

0.0008

0.0006 -

0.0004

0.0002

Relative AfEXPZ expression level/ TUBZ2

0.0000 —

MOCK

10uM PAC

Figure 5. Expression of AtEXP2in response to paclobutrazol treatment. AtEXP2 expression was determined by quantitative real-time RT-PCR
in 24 h imbibed seeds treated with 10 uM PAC or without (Mock). Error bars represent SD. A Student'’s t-test was calculated at the probability of 5%

(*P<<0.05).
doi:10.1371/journal.pone.0085208.9005
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destination vector pK2GW7 using the Gateway LR reaction
(Invitrogen). To construct pEXP2:GUS, the 1.8 kb genomic
fragment upstream of the start codon in EXP2 was amplified with
the primers 5'-CGGTCGACAAGAAGTATCTGGGTGGG-3'
and 5'-AAGCGGCCGCATGGGCTAAAGAGGAGGA-3', the
digested PCR product was cloned into pENTR-1A and recom-
bined into pHGWEFS7. All binary vector constructs were
introduced into Agrobacterium strain GV3101 and transformed into
Arabidopsis Columbia-0 using the floral dip method [47]. All the
transgenic lines were first selected based on their antibiotics
resistance and further confirmed by expression level of the EXP2
or histochemical GUS assays.

RNA Extraction and Real-time RT-PCR

Total RNAs were isolated from Arabidopsis seeds according to
the protocol described previously [48], and total RNAs from other
tissues were extracted using TRIZOL reagent (Invitrogen)
following the manufacturer’s instructions. cDNA was synthesized
using the M-MLV Reverse Transcriptase (Promega) from 2 pg of
total RNA in a 25 pl reaction, and diluted 4-fold with water.
Quantitative real-time RT-PCR was performed using SYBR-
green as described in previous study [49-51]. TUBZ2 was used as
an endogenous control gene to normalize expression of the other
genes. Primers used in real-time RT-PCR as follows : EXP2-F: 5'-
CATAAACTCCGACGACAACG-3', EXP2-R: 5-TACCCA-
CAAGCACCACCCAT-3'; TUB2-F: 5'-ATCCGTGAAGAG-
TACCCAGAT-3', TUB2-R: 5'-AAGAACCATGCACTCAT-
CAGC-3' [52]. The PCR program was as follows: 30 s at 95°C,
followed by 40 cycles of 5 s at 95°C, 30 s at 60°C.

GUS Activity Analysis

Tissues were prefixed in 90% acetone on ice for 20 min and
incubated in GUS staining buffer [50 mM sodium phosphate
(pH 7.0), 10 mM EDTA, 1 mg/ml 5-bromo-4-chloro-3-indoyl-
B-D-glucuronide, 0.5 mM potassium ferricyanide, and 0.5 mM
potassium ferrocyanide, 0.1%(v/v) Triton X-100] at 37°C
overnight. Stained samples were then cleared of chlorophyll in
an ethanol series and photographed by light microscopy.

Results

AtEXP2 is Mainly Expressed in Germinating Seeds

By analyzing the available public Arabidopsis microarray
database (http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi),
we discovered that only AtEXP2 was exclusively expressed in
imbibed seeds among thirty-six Arabidopsis expansin coding genes,
which implies a probable role of At£XP2 in seed germination.
Therefore we first examined the expression pattern of AtEXP2 in
Arabidopsis by real-time RT-PCR, and we found a high expression
level in germinating seeds, but very low level in other tissues
including roots, rosette leaves, cauline leaves, mainstem, flowers
and siliques (Figure 1A). Further analysis showed that the
expression of AtEXP2 was not detected in dry seeds, but the
transcript abundance in seeds began to accumulate after
imbibition in water, and the expression level reached a peak after
24 h imbibition, and then remained at high levels 2-3 days after
imbibition (Figure 1B). These observations suggest that AtEXP2 is
a seed-specific gene and may be involved in the seed germination
process.

Next, we cloned the 1.8 kb genomic sequence upstream of
transcription start site of At£XP2 and generated the pAtEXP2:GUS
construct. The B-glucuronidase (GUS) assays in this transgenic line
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Figure 6. Germination phenotype of the wild type, exp2 and
35S:AtEXP2 line in response to GA and PAC treatment. Seeds of
wild type, exp2 and 355:AtEXP2 line were treated with 10 uM GA;3 (A),
1 uM (B) or 5 uM (C) paclobutrazol (PAC). Error bars represent SD. A
Student'’s t-test was calculated at the probability of either 5% (*P<<0.05)
or 1% (**P<<0.01).

doi:10.1371/journal.pone.0085208.g006

shows AtEXP2 promoter activity continuously detectable during
seed imbibition in water (Figure 1C). Later, GUS staining was
observed in the radicle. These results are consistent with the R'T-
PCR assays and further suggests that AZEXP2 plays a role in seed
germination and possibly root function.
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doi:10.1371/journal.pone.0085208.g007

AtEXP2 is Required in Seed Germination

In order to investigate whether AtEXP2 plays a role in seed
germination, we isolated an exp2 mutant (Salk_117075) carrying a
T-DNA insertion in the At£XP2 promoter region, which almost
completely suppresses AtEXP2 expression (Figure 2). We also
created 358:AtEXP2 overexpression transgenic lines and generated
nine independent transgenic lines, from which we selected a
representative transgenic line exhibiting significantly higher
AtEXP?2 expression level compared to wild type (Figure 2). Then
we performed the germination assay using seeds of homozygous
exp2 mutant and 35S:AtEXP2 line, the results showed that
358:AtEXP? line germinated much earlier than wild type on the
second day after sown on plates, while the rate of germination in
exp2 mutant was significantly delayed compared to wild type
(Figure 3), suggesting that AtZXP?2 is required for seed germination
in Arabidopsts.

The Participation of AtEXP2 in Seed Germination is
Regulated by GA

Since seed germination is largely controlled by phytohormones
GA and ABA [2,53], we next determined whether the expression
of AtEXP2 was regulated by GA and ABA. As shown in Figure 4,
the expression of AtEXP2 was significantly higher in GAs-treated
wild type seeds than in mock-treated seeds. After treating seeds
with 10 uM paclobutrazol (PAC), a gibberellin biosynthesis
inhibitor, the expression of AtFXP2 was significantly decreased
compared to the mock treatment (Figure 5), suggesting that the
expression of AtEXP2 is induced by GA in germinating seeds. In
contrast to GA induction of AtEXP2 expression, the expression of
AtEXP2 was not significantly affected when the seeds were treated
with different concentration of ABA (data was not shown).

In order to investigate whether AtEXP2 is involved in seed
germination in response to GA, we examined the germination
phenotype of wild type, exp2 mutant and overexpression line in the
present of GAs and paclobutrazol, as shown in Figure 6A, the
germination rate of exp2 seeds was significantly lower than that of
wild type seeds on the second day after sown on plates when
exogenous GA was applied, while the 555:4tEXP2 line exhibited
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significant higher germination rate than wild type, indicating that
AtEXP? likely controls seed germination through GA signaling.
However, in the presence of 1 uM and 5 uM paclobutrazol, the
exp2 seeds still showed significant lower germination rate than wild
type, while the germination of 55S5:4tEXP2 line was less inhibited
by paclobutrazol compared to wild type (Figure 6B and 6C),
implied that factors other than GA would be involved in the
AtEXP2-mediated seed germination.

To further elucidate the way AtEXP2 participates in GA
signaling during seed germination, we next examined the
expression level of AtEXP2 in the GA-deficient mutant ga/-3 and
various DELLA mutants. As shown in Figure 7, AtEXP2 expression
was significantly reduced in ga/-3, confirming our previous
conclusion that the AtEXP2 expression was induced by GA.
AtEXP?2 expression was also reduced in semi-dominant gain-of-
function DELLA mutant gai-t6 seeds compared to wild type, while
other three DELLA mutants 1gll-1, 7gl2-1 and 1ga-t2 all exhibited
significant higher expression of A#£XP2 than wild type, with rgl7-1
shown the highest expression level. These results suggest that all
four DELLA genes tested in the study contribute to the repression
of AtEXP2 expression and RGLI plays the principal role in
controlling AtEXP2 expression. However in the penta mutant,
which lacks all four DELLA proteins activities in gal-3
background, the expression of AtE£XP2 was lower than that in
1gll-1 (Figure 7), indicating that other regulators besides these four
DELLA proteins would be involved in the GA-mediated AtEXP2

expression.

AtEXP2 is Involved in Response to Salt Stress and Osmotic

Stress in Seed Germination

The expression of expansin coding genes are not only regulated
by developmental signals, but also affected by environmental cues
[17,54]. In order to investigate whether AtEXP2 is involved in
response to abiotic stress, we performed germination tests under
salt stress and osmotic stress condition. As shown in Figure 8, when
exposed to 100 mM NaCl, the germination frequency of exp2
mutant seeds was much lower than wild type and overexpression
line, and ultimately reached a proportion less than 90% at seven
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Figure 8. Germination phenotype of the wild type, exp2, and 355:AtEXP2 line in response to abiotic stresses. Seeds of wild type, exp2
and 35S:AtEXP2 line were treated with different concentrations of NaCl (100 or 200 mM), sucrose (150 or 250 mM) and mannitol (200 or 400 mM).
Error bars represent SD. A Student’s t-test was calculated at the probability of either 5% (¥*P<<0.05) or 1% (**P<<0.01).

doi:10.1371/journal.pone.0085208.g008

days after sown. In the high salt condition (200 mM), germination
of all genotypes was severely affected, with less than 15%
germination frequency in wild type, and less than 5% germination
frequency in exp2. Interestingly, the germination frequency of
358:AtEXP? line still reached approximately 60% seven days after
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sowing, suggesting that AtEXP2 was involved in seed germination
in response to salt stress.

Next, we considered the possible effect of osmotic stress on
AtEXP?2 expression. Including various concentrations of sucrose
and mannitol to the MS plates, we observed significantly lower
germination frequency in the exp2 mutant compared to the wild
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type. The overexpression line was much higher in these
conditions, moreover, the differences were more evident when
under higher concentrations of sucrose and mannitol (Figure 8).
Together, these observations indicate that exp2 mutant is more
sensitive to salt stress and osmotic stress than wild type, while the
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358:AtEXP2 overexpression line is less sensitive than wild type,
showing elevated tolerance to salt stress and osmotic stress.

In order to further study the function of At£XP2 in response to
abiotic stress in seed germination, we performed quantitative real-
time PCR analysis to evaluate AtZXP2 expression in response to
salt stress and osmotic stress in germinating wild type seeds, the
results showed that the expression of AtEXP2 were remarkably
reduced after NaCl, sucrose and mannitol treatments compared to
control treatments, and the reduction of expression levels were
more severe when the seeds were treated with increased
concentrations of NaCl, sucrose and mannitol (Figure 9), suggested
that abiotic stress repressed the AtEZXP2 expression in germinating
seeds. In summary, AtEXP2 overexpression could confer salt and
osmotic stress tolerance in Arabidopsis seed germination, and the
salt stress and osmotic stress inhibit seed germination by repressing
the expression of AtEXP2.

Discussion

Expansins are encoded by a large gene superfamily and are
widely distributed in plant species, consistent with the possibility
that expansins perform multiple functions in various aspects of
plant life cycle among species. Previous studies have shown that
expansins were involved physiologically in almost every develop-
mental process during the plant life cycle, related to cell growth,
cell separation and cell wall disassembly [4,55-56], and different
expansins would play diverse tissue-specific roles distinct from each
other [54-55,57-58]. Physiological change during seed germina-
tion is associated with cell enlargement and cell wall expansion,
and previous studies in tomato have revealed a role in seed
germination played by expansins [16-17]. Furthermore, LeEXP4 is
expressed specifically in the micropylar endosperm cap region and
associated with endosperm cap weakening [17]. Another two
expansin genes LeZXP8 mRNA is localized to the radicle cortex of
the embryo, and LeEXPI0 mRNA is expressed throughout the
embryo during seed germination, suggesting the specific roles of
the two expansin genes during seed germination [16]. In the
present study, we first used the public Arabidopsis microarray
database to analyze the expression profile of all thirty-six expansin
genes in Arabidopsis and found that only AtEXP2 was exclusively
expressed in germinating seeds, further real-time RT-PCR
analyses confirmed that AtEXP2 was specifically expressed in
imbibed seeds and AtZXP2 mRNA amounts peaked after 24 hours
in imbibed seeds and maintained a high level during early stage of
seed germination, consistent with previous microarray data [59—
62], Using a B-glucuronidase reporter fusion to the AtEXP2
promoter, we observed signals in the germinating seeds, consistent
with the AtE£XP2 RNA accumulation pattern.

In order to investigate the role of AtEXP2 during seed
germination, we carried out a germination assay using exp2
mutant seeds, which showed that exp2 seeds germinate later than
wild type. Further through analyzing promoter sequence of
AtEXP2 using PLACE tools (Plant cis-acting regulatory DNA
elements) [63] we found there were putative GA-responsive
elements (GARE) and ABA-responsive elements (ABRE) in the
promoter region of AtEXP2, indicated that AtZEXP2 would function
downstream of GA and ABA signaling. We then performed GA
and ABA treatments and found AtEXP? expression was GA-
inducible, but not affected by ABA treatment, which was
consistent with previous studies [1,17,60,64]. GA is well known
to be a pivotal phytohormone in breaking seed dormancy and
promoting seed germination [1-2,53]. Previous studies showed
that active GAs are synthesized mainly in the radicle and
micropylar endosperm during germination [60], stimulating
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growth potential of embryo and inducing hydrolases biosynthesis
to weaken endosperm and other structures surrounding the
embryo, thus allow the radicle emergence and complete seed
germination [65-66]. In this context, we suggest that AtEXP2 is
involved in GA-mediated promotion of seed germination by
weakening cell wall in endosperm and related structures
surrounding the embryo.

As the GA signaling pathway is mainly mediated by derepres-
sion of DELLA repressors [67-68], Stamm et al., (2012) have
shown that RGL2 downregulates two expansin encoding genes
EXPA3 and EXPA8 in seed germination [69]. In order to study
whether AtEXP2 expression is subjected to the regulation of
DELLA, we examined the AtEXP2 expression level in germinating
seeds of various DELLA mutants and found that all four DELLA
genes tested participated in the repression of AtEXP2 expression,
including RGLI, RGL2, RGA and GAI Moreover, RGLI played the
most dominant role in controlling AtEXP2 expression. Taken
together, our results suggest that GA promote AtEXP2 expression
by removing the repression effect of DELLA on AtEXP2 during
seed germination.

In addition to the regulation by phytohormones, expansin genes
are also differentially regulated by various environmental cues
[54], such as abiotic stresses including salt stress, heat stress,
drought stress, and water stress [30,37,43,70]. Here we tested the
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germination phenotype of exp2 and the overexpression line in
response to salt stress and osmotic stress, and we found that exp2
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by stress conditions and that the mechanisms underlying them are
distinct.
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