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BACKGROUND Life-threatening arrhythmias resulting from ge-
netic mutations are often missed in current electrocardiogram
(ECG) analysis. We combined a new method for ECG analysis that
uses all the waveform data with machine learning to improve detec-
tion of such mutations from short ECG signals in a mouse model.

OBJECTIVE We sought to detect consequences of Na1 channel
deficiencies known to compromise action potential conduction in
comparisons of Scn5a1/- mutant and wild-type mice using short
ECG signals, examining novel and standard features derived from
lead I and II ECG recordings by machine learning algorithms.

METHODS Lead I and II ECG signals from anesthetized wild-type
and Scn5a1/- mutant mice of length 130 seconds were analyzed
by extracting various groups of features, which were used by
machine learning to classify the mice as wild-type or mutant. The
features used were standard ECG intervals and amplitudes, as well
as features derived from attractors generated using the novel Sym-
metric Projection Attractor Reconstruction method, which reformu-
lates the whole signal as a bounded, symmetric 2-dimensional
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attractor. All the features were also combined as a single feature
group.

RESULTS Classification of genotype using the attractor features
gave higher accuracy than using either the ECG intervals or the
intervals and amplitudes. However, the highest accuracy (96%)
was obtained using all the features. Accuracies for different
subgroups of the data were obtained and compared.

CONCLUSION Detection of the Scn5a1/- mutation from short
mouse ECG signals with high accuracy is possible using our Symmet-
ric Projection Attractor Reconstruction method.
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Introduction
The electrocardiogram (ECG) is an investigational tool
fundamental to much electrophysiological study and clinical
diagnosis of abnormal cardiac activity. These often arise
from reentrant arrhythmias resulting from slowed action
potential conduction. The latter process depends on Na1

channel activation.1 Deficiencies in these form the major
cause, accounting for 15%–30% of cases, of the hereditary
Brugada syndrome (BrS) associated with 4%–12% of
clinically reported sudden cardiac deaths.2 In the clinical con-
dition, visible electrocardiographic features, including right
precordial ST-segment elevation,2,3 occur in only some BrS
cases, necessitating invasive drug challenge testing that
nevertheless produces false-negative results,4 unmasking
only 33% of asymptomatic patients in 1 study.2 This suggests
either that the ECG is not a reliable signal to be used for iden-
tification of BrS or that the ECG does carry the signature of
BrS but that current analysis techniques are insufficient to
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KEY FINDINGS

- We considered the problem of detecting an Scn5a1/-

mutation in mice from their electrocardiogram (ECG)
signal. It was not clear whether the ECG carries the
signature of the mutation. Our results show that using
enhanced analysis techniques, which combine our Sym-
metric Projection Attractor Reconstruction method
with machine learning, mice with the Scn5a1/- muta-
tion can be distinguished from wild-type mice with
high accuracy (96%) by analyzing their ECG signal.

- For mice, sex (M/F) and age (old/young) can be deter-
mined from the ECG signal but with lower accuracy than
for genotype. For these classifications, the standard
ECG interval and amplitude measures performed poorly
and there was a significant improvement using Sym-
metric Projection Attractor Reconstruction features.

- Symmetric Projection Attractor Reconstruction is a
robust technique and always performs better than stan-
dard ECG interval and amplitude measures in the
context of discriminating between Scn5a1/- genotype,
sex, and age in mice. However, the best classification
performance is typically obtained by combining both
sets of features.
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reliably detect it. The aim of this paper is to consider new
ECG analysis techniques to determine whether consistent
detection from the ECG is possible.

A number of mathematical approaches have been
developed to provide concise representations of the ECG
waveform, and thereby simplify analysis.5 Heart rate vari-
ability methods, which analyze beat-to-beat (R-R) intervals,
are extensively used.6 However, these reflect only the single,
albeit important, aspect of heart rhythm, but omit information
concerning the many remaining processes associated with
arrhythmias. Although it has been suggested that heart rate
variability metrics are more variable in symptomatic than
asymptomatic BrS patients, this has not been shown to
have diagnostic value.7 Another mainstay of ECG signal
analysis determines particular points on the signal from
which various time intervals and amplitudes can be derived.
This approach still does not incorporate all of the available
waveform morphology. Some differences have been identi-
fied in interval measures for BrS patients,8 but they do not
appear to be sensitive or specific enough to improve on cur-
rent identification, and further novel metrics are suggested.9

In populations of wild-type and Scn5a1/- mutant mice, only
2 out of 6 ECG intervals were found to differ significantly
between the 2 groups.10 Thus, it appears that identification
of BrS patients from their ECG would be challenging.

We have recently described a new approach, Symmetric
Projection Attractor Reconstruction (SPAR), for analyzing
the morphology of “approximately periodic” signals,11,12

which we apply here to the problem of distinguishing
between wild-type and BrS hearts from short ECG signals.
This technique has a fundamentally different approach, as
it employs all of the available high-fidelity waveform data.
It thus preserves more information about the underlying
processes being measured. The SPAR method compactly
encapsulates the entire signal in the form of a symmetric 2-
dimensional attractor, providing both a simple visualization
of the waveform and a means of easy quantification. The
method also reduces the effect of baseline variation and
factors out changes in heart rate in order to concentrate on
changes in the waveform morphology. In a physiological
context, we have previously applied our SPAR method to
various signals, including blood pressure,11,13 photoplethys-
mogram signals,14 and ECG,15,16 where it was shown that
SPAR could accurately discriminate male from female sex
in human ECG signals.

Previous studies have modeled proarrhythmic changes
and their possible underlying mechanisms in BrS in popula-
tions of Na1 channel–deficient hearts with a single clear-cut
Scn5a1/- mutation.17 The latter provide genetically homoge-
neous experimental systems with specific monogenic ion
channel abnormalities, not available to clinical investiga-
tions. Despite the anatomically smaller size and higher heart
rate, mice share with humans considerable genetic
homology, similar cardiac conduction systems, and arrhyth-
mogenic features related to genetic change. They are
therefore amenable to exploration of the SPAR technique
for examining the physiological effects of a single clear-cut
mutation bearing on the fundamental property of action
potential conduction on ECG waveforms obtained from
whole animals.17

Methods
Data
The research reported in this paper used data acquired from a
previous study10 that conformed to the ARRIVE guidelines.
All procedures in that study complied with the UK Home
Office regulations (Animal [Scientific Procedures] Act
1986) following ethical review by the University of
Cambridge Animal Welfare and Ethical Review Body. The
mice were housed in an animal facility at 21oC with 12-
hour light/dark cycles and were fed sterile chow (RM3Main-
tenance Diet; SDS, Witham, Essex, UK) with free access to
water. Both the wild-type (WT) and Scn5a1/- (SCN5A)
mice used were bred on a 129/sv background to avoid
strain-related variations. Experimental procedures, fully
described earlier,10 placed the anesthetized mice supine on
a temperature-regulated platform maintaining a 37oC body
temperature, with small strips of adhesive tape lightly
attached to the limbs to reduce small movements to avoid
ECG recording artefacts. Two-millimeter-diameter needle
recording electrodes (MLA1204; ADInstruments, Colorado
Springs, CO) were connected to an input box leading to
amplification (NL104) and filter (NL126) units (settings:
low-frequency cut-off: 50 Hz; high-frequency cut-off: 500
Hz) mounted within an NL900D chassis and power supply
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(NeuroLog-Digitimer, Hertfordshire, UK). Our approach to
the placement of needle electrodes has been described
previously.10 To reduce variability in placement of needle
electrodes, the same individual placed the needle electrodes
for all the animals used in the study. This was undertaken
by a veterinarian with previous clinical experience. A key
reason for changes in amplitude is if (1) there are any small
limb twitches (typically occurring when animals are not
adequately anesthetized) or (2) the needle electrode becomes
loose when limbs move. In our study all animals were
adequately anesthetized and the limbs were secured with ad-
hesive tape to ensure no movements, thus reducing motion
artefacts. Moreover, our analysis normalizes the amplitude
of the signals, so any variability in the magnitude of the signal
is removed at this stage.

Recordings were performed within a grounded Faraday
cage. Analog-to-digital conversion of ECG signals at 5000
Hz used a CED 1401 series interface (Cambridge Electronic
Design, Cambridge, UK) connected to a computer. Spike II
software (Cambridge Electronic Design) was used to record
and perform initial processing of ECG recordings.

Signals were collected from a total of 42 anesthetized
mice. Lead I and lead II recordings were obtained from 36
mice while a single lead recording was obtained from the re-
maining 6 mice (3 lead I and 3 lead II), giving 78 animal lead
recordings in total. The duration of the recordings ranged
from 21 seconds to 10 minutes. Close to equal numbers of
old and young, male and female, and Scn5a1/- and WT
mice were studied. The 78 animal lead signals could be
grouped by lead (39 lead I, 39 lead II), sex (42 male, 36
female), age (39 young, 39 old), and genotype (42 WT, 36
SCN5A). Young mice were up to 3 months old while the
old mice were at least 12 months old. The number of mice
in the young female, old female, and young male groups
was 5 and in the old male group was 6 for both the WT and
SCN5A classes. Two lead recordings were made for all the
WT mice, giving 42 signals. For the SCN5A mice, only 1
lead was recorded for 6 of the mice, resulting in 36 signals.
Symmetric Projection Attractor Reconstruction
analysis of ECG signals
The SPAR approach is a new mathematical method that
examines the ECG using a fundamentally different approach
from other techniques.11,12 The method replots all of the
high-fidelity time series data of the ECG in a bounded box.
The resulting attractor is an easily visualized 2-dimensional
representation of the signal. (An animation that illustrates
the method for generating an attractor is included as
supplementary material.) It is overlaid with a density to
clarify which parts are visited more or less frequently, and
are therefore of higher or lower density. We can then extract
metrics from the attractor to quantify the morphology and
variability of the underlying ECG. In this study we used these
metrics to classify whether an ECG signal is from a wild-type
or an Scn5a1/- mutant animal.
For the SPAR analysis, we did not perform any further
filtering or other preprocessing of the ECG signals. The full
data with 5000 Hz sampling frequency was used, although
thewave profile would still be clearly definedwith data down-
sampled to a lower frequency, so we would anticipate similar
results in this case. The first step was to find the average car-
diac cycle length for the ECG data in a given time window.
Peak detection (with outlier correction) was used to determine
the R-R intervals, and the mean of these was taken as the
average cycle length of the window. (This is different from
the method proposed in Aston et al11 for blood pressure
data, as the prominent R peaks in clean ECG data make this
a viable alternative.) The interval between 3 equally spaced
points traversing the signal is the time delay parameter t,
which was taken as one-third of the average cycle length.11,12

Signals were also normalized such that the average height of
the R peaks was 1. The size of the attractor is dependent on the
amplitude of the signal, so this normalization ensured that the
generated attractors are of comparable size. The scaling factor
of the normalization for each window was also taken as an at-
tractor measure.

In contrast to the generally triangular nature of the attrac-
tor generated from blood pressure or photoplethysmogram
signals,11,14 the attractor of a lead I or II ECG typically has
3 long arms, predominantly representing the R peak in the
signal, and a central core region, whose features depend
more on the T- and P-wave morphologies (Figure 1; see
also ref. 15). Mouse lead I and II ECG data may have deep
S peaks, and in some cases deep Q peaks as well. These
give rise to shorter arms of the attractor in the opposite
direction from the long arms associated with the R peaks,
so that a typical mouse attractor has 6 arms in total (Figure 1).

In addition to the average heart rate and the vertical
normalization scaling factor, a further 72 manually defined
features were derived from the attractor, giving 74 features
in total that related to the density, size, and symmetry of
the attractor. The derived features mostly relate to either
the central core or the arms of the attractor, as these are
associated with different parts of the signal.

Figure 1 shows a sample of lead I ECG data from young,
female wild-type and mutant mice and their corresponding
attractors generated from a 10-second window of data. This
comparison demonstrates clear qualitative differences
between the attractors. Of course these are only small
samples from 2 mice. The problem we address is to achieve
high accuracy in predicting these differences using the data
from all the mice.
ECG intervals and amplitudes
We sought to benchmark results obtained using our SPAR
method against those derived using more standard features.
Thus, we also derived standard ECG intervals and amplitudes
using LabChart (ADInstruments, Oxford, UK). Again, no
further filtering or other preprocessing was used. Deriving
these intervals required setting various parameters for each
signal individually. Moreover, the same parameters could



Figure 1 A sample of lead I electrocardiogram (ECG) data from a young, female, wild-type mouse (top) and from a young, female, Scn5a1/- mutant mouse
(bottom) with the corresponding attractors.
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not be used for all signals, as the standard parameters resulted
in incorrect intervals being identified in some cases, so
manual adjustments were made where necessary. The
features extracted were:

� ECG intervals: R-R, PR, P duration, QRS, QTc (Bazett),
JT, Tpeak to Tend

� ECG amplitudes: P amplitude, Q amplitude, R amplitude,
S amplitude, ST height, T amplitude

Machine learning
Our study sought to determine whether it was possible to
distinguish between WT and Scn5a1/- mutant mice from
short ECG signals, and was therefore addressing a simple
binary classification of genotype. It also undertook binary
classifications of sex and age from the same records.

For each of the ECG signals, we chose for analysis a 130-
second interval of data free from artefactual noise, which
was divided into 13 nonoverlapping 10-second windows.
The only exception was 1 dataset that had a length of 21 sec-
onds (lead I, Female, Old, Wild-Type), which was divided
into 13 windows of length 1.6 seconds. (The average heart
rate for this animal was just under 200 beats per minute, so
each window contained just over 5 complete cycles, which
was sufficient to generate an attractor as well as the intervals
and amplitudes.) Thus, there were 13 windows of data for
each ECG signal. For each window, an attractor was
generated and the 74 features extracted together with the 7
ECG intervals and 6 ECG amplitudes. Thus, we had 3 sets
of features, each containing 13 ! 78 5 1014 records. We
also generated a further feature set by combining all of the other
feature groups; thus we present results for the 4 feature groups:

� ECG intervals (Int)
� ECG intervals 1 amplitudes (Int1Amp)
� SPAR features (SPAR)
� SPAR 1 intervals 1 amplitudes (SPAR1Int1Amp)
Our machine learning approach for the classification
used a k-nearest neighbors algorithm with the common
choice of k 5 3.18 We explored other values of k but
overall k 5 3 gave the highest accuracy of classification.
We also explored a similar process that employed a
(nonlinear with Gaussian kernel) support vector machine
(SVM).

We applied a “leave 1 animal out” cross-validation, where
we removed the 26 records (13 from lead I and 13 from lead
II) for an animal and trained a machine on the remaining 988
records. The 26 removed records were then tested individu-
ally. This process was repeated for all 36 animals for which
there were lead I and II recordings. For the remaining 6
mice, we formed a further 3 test sets, each also consisting
of 26 records, by combining a lead I and lead II recording
from different animals. The accuracies from the 39 cross-
validation cycles were then averaged. For a small dataset,
this gives a more consistent result than would be obtained
by holding out 1 small test dataset and also helps to avoid
overfitting the data.

For each group of features we used forward feature se-
lection19 to reduce the number of features up to a maximum
of 20, selecting the number of features that gave the highest
classification accuracy from the cross-validation. For the k-
nearest neighbors approach, the highest classification
accuracy was taken from an ensemble of 20 runs in which
the order of the features was shuffled randomly before
each run, as this allowed selection of different variables
that have equal highest accuracy on a particular run. We
report the classification accuracy both for individual re-
cords (n 5 1014) and for a majority vote in which the clas-
sification for each animal lead is obtained as the majority
prediction from the 13 individual records (n 5 78). We
did not perform multiple runs for the SVM method owing
to the significantly greater computational time required
for this method.



Table 1 Machine learning results for binary classifications

Classification Int Int1Amp SPAR SPAR1Int1Amp

Genotype 70.9%
74.3%

83.0%
85.9%

85.9%
87.2%

90.9%
96.2%

Sex 60.4%
59.0%

67.7%
71.8%

76.7%
83.3%

78.3%
80.8%

Age 66.2%
71.8%

70.2%
73.1%

79.2%
84.6%

83.0%
88.5%

For each classification, the top row is the accuracy of individual records
(n 5 1014) and the bottom row is the accuracy for animal leads using
majority vote (n 5 78).

Int5 electrocardiogram intervals; Int1Amp5 electrocardiogram inter-
vals 1 amplitudes; SPAR 5 Symmetric Projection Attractor Reconstruction
features; SPAR1Int1Amp5 Symmetric Projection Attractor Reconstruction
features 1 intervals 1 amplitudes.
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Results
We used machine learning with a k-nearest neighbors classi-
fier to perform binary classifications to distinguish genotype,
sex, and age. The results for individual records and majority
vote are shown in Table 1. These results demonstrate a higher
accuracy for genotype than for sex and age for all sets of
features.

We considered the 41 animal leads that were misclassified
by majority vote for genotype using either the Int, Int1Amp,
or SPAR features. Of these, only 2 animal leads were
misclassified by all 3 feature groups, but both of these were
correctly classified by the combined features. There were a
further 9 animal leads that were misclassified by 2 of the 3
groups and the remaining 17 were only misclassified by 1
of the groups, so there is little consistency in the
misclassifications, which possibly explains why the
combined features did well.

Although many results can be generated from these data,
we then concentrated on the classification of genotype, given
that the other 2 categories constitute known quantities.

We first considered the accuracy of the genotype classifi-
cation for WT and SCN5A mice to assess consistency of
prediction across the 2 classes. The confusion matrix for
the majority vote classification of the animal ECG lead for
Figure 2 The confusion matrix for the majority vote classification of genotype
Int1Amp 5 electrocardiogram intervals 1 amplitudes; SCN5A 5 Scn5a1

SPAR1Int1Amp 5 Symmetric Projection Attractor Reconstruction features 1 in
the 4 sets of features is shown in Figure 2. The row-
normalized table in Figure 2 demonstrates that the true
prediction rate for mutant mice is slightly higher than for
wild-type mice in all cases, except for the SPAR
features, in which there is a small difference in the opposite
direction.

A summary of the accuracy of the majority vote classifica-
tion of genotype for various subgroups of the data is shown in
Figure 3.When comparing the results for lead I and lead II, we
note that the interval features give identical results, which is to
be expected, as the intervals derived from the 2 leads should
be very similar. For the other feature groups, the Int1Amp
features performed best on lead II, whereas SPAR and the
combined features performed best on lead I. The accuracy
for males was higher than for females for all feature groups
except the combined group. However, the accuracy for young
animals was poorer than for old animals for 2 feature groups,
with the reverse for the other 2 groups. Overall, the ECG
intervals gave the worst results and all the features combined
gave the best results in all cases, as expected.

For the smaller groups (lower panel in Figure 3), the
results for young and old males were quite consistent across
all feature groups, whereas the accuracy for young females
was lower than for old females for the Int and Int1Amp
features, with the reverse for the other 2 feature groups. We
note that the Young Female group with the combined
features was the only group for which the classification
achieved 100% accuracy.

With the majority vote classification for animals, it was
possible to have some individual records misclassified but
still correctly classify the animal by ECG lead. A summary
of the number of votes out of 13 for the classification of
genotype is shown in Figure 4. These charts demonstrate
that many animal leads had all 13 records correctly classified,
with only a relatively small number of animal leads having be-
tween 7 and 12 correctly classified records. This was
not unexpected, as we were using fairly clean data from
anesthetized mice and clearly the category of genotype is
consistent across all 13 windows. The standard interval fea-
tures had the most animal ECG leads with 0 out of 13 correct
(left) and with row normalization (right). Int 5 electrocardiogram intervals;
/-; SPAR 5 Symmetric Projection Attractor Reconstruction features;
tervals 1 amplitudes; WT 5 wild-type.



Figure 3 The accuracy of majority vote prediction of genotype for the different feature groups and for various subgroups of animals and electrocardiogram
(ECG) leads. The green regions indicate accuracies that exceed 80%. Int5 ECG intervals; Int1Amp5 ECG intervals1 amplitudes; SPAR5 Symmetric Pro-
jection Attractor Reconstruction features; SPAR1Int1Amp 5 Symmetric Projection Attractor Reconstruction features 1 intervals 1 amplitudes.
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votes. In contrast, the SPARmethod classified at least some of
the records correctly in the majority of cases, so it is inter-
esting to note that the 3 misclassified animal ECG leads for
the SPAR1Int1Amp features all have 0 out of 13 correct
votes.

We also considered the features that were selected in the
classification. When classifying for genotype, all the inter-
val measures other than the QRS and R-R intervals were
selected. Thus, the features used in the classification reflect
atrial and repolarization activity. For the interval and
amplitude measures together, features reflecting repolariza-
tion remained key, with amplitudes and intervals involving
the T wave being selected, as well as the S-wave amplitude
and ST height. For the SPAR features, the classification
selected 7 features, predominantly those reflecting the
density distribution and symmetry in the arm regions of
the attractor. When SPAR, interval and amplitude measures
were combined, machine learning predominantly selected
SPAR features (16 out of 20), with the remaining features
being the ST height, P and R amplitudes, and the PR inter-
Figure 4 Histograms showing the distribution of votes for the classification of gen
5 electrocardiogram intervals; Int1Amp 5 electrocardiogram intervals 1 amp
SPAR1Int1Amp 5 Symmetric Projection Attractor Reconstruction features 1 in
val. One of the classic indicators for BrS is ST-segment
elevation in the precordial leads V1–V3,

1 so it is interesting
to see that the ST height is selected in both feature groups
that include the amplitudes.

The results obtained using an SVM classifier had
slightly lower accuracies on average than those obtained
using the k-nearest neighbors approach. The SVM method
achieved classification with only a small number of variables
in each case, and much less than the k-nearest neighbors
method used.

Discussion
Overview
The present study applied a SPAR approach combined with
machine learning to classify short ECG signals from murine
wild-type and Scn5a1/- hearts by genotype, age, and sex for
the first time. The main limitation of this study was the small
number of mice from which the ECGs were collected.
However, this is typical of studies involving animals, as it
is labor intensive to collect these data. Nevertheless, our
otype. The green/red bars indicate votes that give correct/incorrect results. Int
litudes; SPAR 5 Symmetric Projection Attractor Reconstruction features;
tervals 1 amplitudes.
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available data were sufficient to demonstrate that the SPAR
approach better distinguishes signals from wild-type and
Scn5a1/- mice than did standard ECG intervals or intervals
and amplitudes. It also provides a higher accuracy of classifi-
cation of sex (male/female) and age (young/old). However,
the best results in all cases were obtained by combining all
the features. These results confirm the robustness of the
SPAR method.

Methodological issues
Deriving the ECG intervals and amplitudes required setting
parameters in LabChart for each dataset, with some manual
adjustment of the standard parameters being necessary in
some cases; thus, the extraction of these features was not
automatic. The SPAR features were obtained by setting
parameters initially and then processing all the signals, and
so did not require the manual effort involved in obtaining
the intervals and amplitudes.

It may seem unfair to have extracted so many measures
from the attractor in comparison to the 13 interval and
amplitude features. However, finding individual points
on an ECG in a consistent way from noisy signals is
not an easy task, which is why these few points, associ-
ated with the dominant features of the signal, are
commonly used in practice. With the SPAR method,
because the averaging process of finding the attractor is
done before extracting features, it is much easier to eval-
uate a variety of features from the attractor in a stable and
consistent way.

When trying to understand which features of the attractor,
and hence of the signal, are important for the classification, it
may be better to work with the SVM features, as this was
typically a much smaller set than was selected by the k-near-
est neighbors method.

Clinical implications
The present results suggest that applications of SPAR to
distinguish human cardiac electrophysiological conditions
merit testing. The most direct extension might examine
human BrS ECG data, bearing in mind the greater genetic
heterogeneity of human populations and clinical BrS
compared to the monogenic murine model explored here.
Broader applications could screen and attempt SPAR
characterizations of conditions with discrete conduction
abnormalities exemplified by right or left bundle branch
block extending, or accessory bundles, as in Wolff-
Parkinson-White syndrome, shortening conduction times.
They could extend to SPAR analysis of ECG recordings
beyond leads I and II; BrS is most frequently diagnosed
using ECG leads V1–V3,

2 but valuable information may
be extracted from other leads. ECG analysis might then
provide simple, potentially valuable, noninvasive
clinical screening detection of proarrhythmic tendency,
amenable to continuous monitoring for intermittent cardiac
abnormalities.
Conclusions
We have shown that it is possible to distinguish between wild-
type and Scn5a1/- mutant mice with high accuracy (96%) us-
ing short ECG signals. This suggests that the answer to the
question we posed in the introduction is that there is indeed
sufficient information in the ECG to detect this specific genetic
mutation in mice using enhanced analysis techniques.
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