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Abstract: Mesenchymal stromal/stem cells (MSCs) are believed to function in vivo as a homeostatic
tool that shows therapeutic properties for tissue repair/regeneration. Conventionally, these cells are
expanded in two-dimensional (2D) cultures, and, in that case, MSCs undergo genotypic/phenotypic
changes resulting in a loss of their therapeutic capabilities. Moreover, several clinical trials using MSCs
have shown controversial results with moderate/insufficient therapeutic responses. Different priming
methods were tested to improve MSC effects, and three-dimensional (3D) culturing techniques
were also examined. MSC spheroids display increased therapeutic properties, and, in this context,
it is crucial to understand molecular changes underlying spheroid generation. To address these
limitations, we performed RNA-seq on human amnion-derived MSCs (hAMSCs) cultured in both
2D and 3D conditions and examined the transcriptome changes associated with hAMSC spheroid
formation. We found a large number of 3D culture-sensitive genes and identified selected genes
related to 3D hAMSC therapeutic effects. In particular, we observed that these genes can regulate
proliferation/differentiation, as well as immunomodulatory and angiogenic processes. We validated
RNA-seq results by qRT-PCR and methylome analysis and investigation of secreted factors. Overall,
our results showed that hAMSC spheroid culture represents a promising approach to cell-based
therapy that could significantly impact hAMSC application in the field of regenerative medicine.

Keywords: human amnion-derived mesenchymal stromal/stem cells; RNA sequencing; 3D priming;
MSC spheroids; MSC therapeutic properties; regenerative medicine

1. Introduction

In the last decade, many studies have highlighted the potential use of mesenchymal
stromal/stem cells (MSCs) as a therapeutic tool to be applied in the field of regenerative
medicine [1–5]. MSCs exhibit immunomodulatory, angiogenic, and regenerative capabil-
ities, and these properties are mediated, at least in part, by paracrine mechanisms due
to secretion of soluble factors [6–14]. Moreover, MSC abilities have raised them as a ther-
apeutic tool in several clinical trials for the treatment of many disorders. However, the
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results obtained from these studies are controversial [15–18]. This phenomenon is probably
related to the intrinsic properties of MSCs, which are derived from different sources [9,19].
Therefore, there is a need for improvement of MSC culture/production to enhance their
therapeutic properties [3,20,21].

MSCs are found in several tissues, including bone marrow [22], adipose tissue [23],
umbilical cord [24], and placenta [25], where these cells exhibit immunomodulatory [6,26–28],
angiogenic [27,29,30], and antioxidative properties [31]. Regarding the source of MSCs, because
of ethical issues and invasiveness for cell procurement, in recent years, increasing evidence
supports the use of perinatal tissues, such as umbilical cord and placenta (e.g., amniotic
membrane), as a useful source of MSCs [27,32,33]. Perinatal tissue shows several advantages,
including the number of cells that can be easily obtained without any invasiveness.

It has been shown that MSC paracrine properties can be modulated by some precon-
ditioning methods, including the growing of MSCs under three-dimensional (3D) culture
conditions. Indeed, in response to 3D MSC priming/activation, the production of factors is
switched toward a more anti-inflammatory and pro-trophic phenotype that results in an
improvement in MSC therapeutic properties [21,34–36]. Our previous studies have shown
that preconditioning of MSCs by 3D cultures enhances the secretion of functional factors. In
particular, we revealed that conditioned medium (CM) derived from MSC spheroids was
enriched with bioactive factors able to: (1) improve both wound healing and immunoregu-
latory capacity [27,37]; (2) enhance liver progenitor differentiation in an in vitro model of
human liver organoids [8]; (3) attenuate the effects of cold ischemia–reperfusion injury in
human alveolar epithelial cells [10]. Moreover, it has been demonstrated that when MSCs
are grown as spheroids, they acquire stemness properties, increase cell survival, and im-
prove their differentiation potential [34]. Therefore, spheroid formation can be considered
as an optimization of MSC culture to enhance their therapeutic potential [20,21,38,39].

Recently, specific “omics” techniques were utilized to describe different biological
processes. In particular, transcriptome analysis was used to understand MSC biological
changes related to specific priming treatments (e.g., IL-17, IFN-γ, and hypoxia) [40,41] or to
compare cells derived from different sources [42,43]. In recent years, total RNA sequencing
(RNA-seq) using next-generation sequencing (NGS) platforms has greatly improved the
analysis of whole transcriptomes, allowing for the individuation and quantification of the
expression of a large number of genes. This technology can provide an unbiased analysis
of the MSC activity with crucial insights into the affected cellular pathways. Thus, genome-
wide molecular characterization of MSCs can allow the identification of their properties.
This is very crucial to understand the appropriate culture methods to make MSCs suitable
in the field of regenerative medicine.

In this work, we used RNA-seq analysis to provide a holistic view of transcriptome
changes after 3D culture generation of human amnion-derived MSCs (hAMSCs). We ob-
served extensive changes in gene expression profile (>9000 genes) following 3D cultures.
Among 9000 deregulated genes, >4000 genes were upregulated, and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) pathways analysis
revealed that 30 upregulated genes were potentially implicated in crucial pathways in-
volved in the regenerative processes. These findings highlight the importance of optimizing
culture methods to maximize the therapeutic potential of MSCs. Understanding cellular
responses following appropriate culture methods will help evaluate MSC application for
specific biomedical applications.

2. Results
2.1. Isolation, Characterization, and Culture of hAMSCs

Primary cultures of MSCs were derived from the human amniotic membrane of the
placenta, and adherent cells were expanded in vitro until Passage 2. Then, hAMSCs were
grown in parallel in two-dimensional (2D) cultures (displaying morphologic and molecular
characteristics that define MSCs) (Figure 1a–c) and in a suspended state (3D cultures), where
cells spontaneously aggregated and formed compact multicellular spheroids (Figure 1a,
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right). Flow cytometry data showed positive expression of CD90 (98.50%), CD73 (96.60%),
and CD13 (83.80%) and negative expression of hematopoietic lineage markers CD45 (0.73%)
and HLA-DR (0.30%) (Figure 1b,c).
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Figure 1. Human amnion mesenchymal stem cells (hAMSCs) grown as both monolayer and spheroids.
(a) Representative DIC images of hAMSCs grown in monolayer (2D cultures) or as spheroids (3D
cultures). (b) Representative images of flow cytometry analysis for quantification of both positive
and negative surface markers in hAMSCs at Passage 0. Green represents isotype control, and
blue represents stained cells. (c) Graphic depicts the percentage of each marker. DIC, differential
interference contrast.

2.2. Gene Expression Profiles in 2D and 3D hAMSCs Revealed Enhanced Regenerative Properties
of the hAMSC Spheroids

We used RNA-seq to examine gene expression changes in both 2D and 3D hAMSC
cultures. We applied transcripts per kilobase million (TPM) to normalize and quantify
each gene expression. About 19,000 genes were identified in both cultures (Figure 2a). In
each sample, a relatively high expression (TPM ≥ 50) of 18.9% (2D hAMSCs) and 19.5%
(3D hAMSCs) was detected (Figure 2a). Among these genes, the volcano plot (p < 0.05
and FC > 1.5) revealed 9221 significant differentially expressed genes (DEGs) (Figure 2b),
where 3899 were downregulated, and 5322 were upregulated in 3D hAMSCs compared to
2D hAMSCs (Figure 2c). Interestingly, principal component analysis (PCA) and the heat
map of DEGs clustered the samples into two distinct groups based on 2D or 3D cultures
(Figure 2c,d).

Both KEGG and GO enrichment analysis revealed that, among the top 3000 upreg-
ulated genes found in 3D hAMSCs, many DEGs were linked to immunomodulation,
proliferation/differentiation, and angiogenesis. For example, KEGG analysis showed that
the only two significant enriched pathways were the “TNF signaling pathway” and the
“NF-kappa B signaling pathway” (Figure 3a). Many of the GO terms (ranked by p-value)
associated with DEGs for 3D hAMSCs were also related to aspects of immune regula-
tion, cellular growth, differentiation, and angiogenesis, including the terms “regulation
of neuroinflammatory response”, “inflammatory response”, “positive regulation of glial
cell differentiation”, “positive regulation of p38MAPK cascade”, “cytokine activity”, and
“growth factor activity” (Figure 3b,c).
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Figure 2. Gene expression profiles and differential expression in human amnion mesenchymal stem
cells (hAMSCs) grown as both monolayer (2D) and spheroids (3D). (a) Gene expression distribution
in both 2D and 3D hAMSCs. (b) Volcano plot analysis of differentially expressed genes (DEGs) in 3D
vs. 2D hAMSCs (p < 0.05 and fold change >1.5). (c) Expression clusters (z-scores) of both up- and
downregulated genes after volcano plot analysis in 2D and 3D hAMSCs. (d) Principal component
analysis (PCA) of both 2D and 3D hAMSCs.
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Figure 3. Functional enrichment analysis on KEGG pathways and Gene Ontology (GO) terms from
the top 3000 upregulated genes in 3D vs. 2D hAMSCs. (a) Significant KEGG functional pathways
(p < 0.05). (b) Significant GO terms of associated biological processes (p < 0.05). (c) Significant GO
terms of associated molecular function (p < 0.05).
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After pathway enrichment analysis, we used qRT-PCR to validate RNA-seq results,
detecting 30 randomly selected DEGs. In particular, as shown in Figure 4a–c, 30 genes
we found upregulated by RNA-seq in 3D hAMSCs were significantly correlated with
qRT-PCR results, indicating the reliability and accuracy of RNA-seq expression/analysis.
The STRING database was used to construct a protein–protein interaction (PPI) map of the
30 aforementioned genes. After, using Cytoscape software, we identified a network with
three protein clusters belonging to immune modulation, proliferation/differentiation, and
angiogenesis pathways (Figure 4d).
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Figure 4. Transcriptomic analysis revealed 3D-induced hAMSC bioactivity. Upregulated genes
involved in (a) proliferation/differentiation, (b) immunomodulatory, and (c) angiogenesis pathways
were validated using qRT-PCR, indicating a similar trend. (d) Protein–protein interaction (PPI)
network relied on experimentally derived functional and/or structural evidence, including the
upregulated genes found.

2.3. Spheroid Formation of hAMSCs Induced Changes in Methylation Status and Increased the
Production of Bioactive Factors

Using bisulfite sequencing analysis, we examined the methylation status of the
30 upregulated genes found in 3D hAMSCs by both RNA-seq and qRT-PCR (Table 1).

We observed a clear decrease in the methylation levels (all sites) of sixteen genes in
3D hAMSCs compared to 2D hAMSCs (Table 1, bold). Thus, we analyzed the protein
expression of the above-described cytokines/chemokines and growth factors in medium
conditioned by both 2D and 3D cultures. We detected variable levels of those proteins. In
particular, as shown in Figure 5, compared with hAMSCs 2D cultures, 3D spheroids showed
significantly enhanced secretory activity for C-X-C motif chemokine ligand 12 (CXCL12),
leukemia inhibitory factor (LIF), vascular endothelial growth factor A (VEGF-A), hep-
atocyte growth factor (HGF), brain-derived neurotrophic factor (BDNF), interleukin-6
(IL6), epidermal growth factor (EGF), prostaglandin E2 (PGE2), chemokine (C-C motif)
ligand 20 (CCL20), bone morphogenetic protein 2 (BMP2), transforming growth factor
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beta 1 (TGFB1), C-X-C motif chemokine ligand 1 (CXCL1), C-C motif chemokine ligand
2 (CCL2), growth differentiation factor 15 (GDF15), interleukin-11 (IL11), and chemokine
(C-C motif) ligand 7 (CCL7) (9.5-, 8.4-, 7-, 6.9-, 6.6-, 5.7-, 4.7-, 4.2-, 4-, 4-, 3.9-, 3.5-, 3.5-, 3-,
1.8-, and 1.8-fold, respectively).

Table 1. Methylation levels (all sites) of upregulated genes in 2D and 3D hAMSCs.

Gene Chromosome Start End Description 2D hAMSCs (%) 3D hAMSCs (%)

AREG 4 75480629 75490486 Amphiregulin 74.70 73.60
BDNF 11 27676440 27743605 Brain-derived neurotrophic factor 14.08 10.24
BMP2 20 6748311 6760910 Bone morphogenetic protein 2 7.32 4.45
CCL2 17 32582313 32584222 Chemokine (C-C motif) ligand 2 24.41 12.93

CCL20 2 228678558 228682272 Chemokine (C-C motif) ligand 20 84.90 77.06
CCL3 17 34415602 34417515 Chemokine (C-C motif) ligand 3 42.86 56.67
CCL7 17 32597240 32599261 Chemokine (C-C motif) ligand 7 45.19 39.34

CHI3L1 1 203148059 203155877 Chitinase 3-like 1 68.58 76.02
CRLF1 19 18704037 18717660 Cytokine receptor-like factor 1 17.79 17.66
CXCL1 4 74735110 74736959 Chemokine (C-X-C motif) ligand 1 18.06 11.30

CXCL12 10 44793038 44881941 Chemokine (C-X-C motif) ligand 12 30.98 26.83
CXCR4 2 136871919 136875735 Chemokine (C-X-C motif) receptor 4 7.47 6.95

EGF 4 110834040 110933422 Epidermal growth factor 60.13 56.20
EREG 4 75230860 75254468 Epiregulin 26.62 26.19
GDF15 19 18496968 18499986 Growth differentiation factor 15 20.99 16.99
GDNF 5 37812779 37839788 Glial cell-derived neurotrophic factor 16.70 16.05
HGF 7 81328322 81399754 Hepatocyte growth factor 50.33 41.92
IL11 19 55875757 55881814 Interleukin 11 26.80 21.64
IL24 1 207070788 207077484 Interleukin 24 71.90 70.12
IL33 9 6215805 6257983 Interleukin 33 60.55 68.69
IL6 7 22765503 22771621 Interleukin 6 19.70 12.45
LIF 22 30636436 30642840 Leukemia inhibitory factor 48.59 41.73

NRG1 8 31496902 32622548 Neuregulin 1 37.85 36.44

PTGS2 1 186640923 186649559 Prostaglandin-endoperoxide
synthase 2 32.49 27.00

SPHK1 17 74372742 74383941 Sphingosine kinase 1 14.60 13.79
TGFB1 19 41836813 41859831 Transforming growth factor, beta 1 20.05 16.55
TGFB3 14 76424442 76449334 Transforming growth factor, beta 3 20.21 19.32

VEGF-A 6 43737921 43754224 Vascular endothelial growth factor A 25.56 21.88

WNT4 1 22446461 22470462 Wingless-type MMTV integration site
family, member 4 43.70 48.77

WNT5A 3 55499743 55523973 Wingless-type MMTV integration site
family, member 5A 28.81 31.67

Bold indicates a significant decrease in the methylation levels in 3D compared to 2D hAMSCs.
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3. Discussion

Many studies have widely demonstrated that MSCs represent one of the most promis-
ing cell products to treat numerous disorders in the field of regenerative medicine [44–46].
Indeed, the therapeutic action of MSCs is being currently investigated in several clinical
trials (1356 studies registered at ClinicalTrials.gov) for the treatment of many disorders,
including immune, kidney, cardiovascular, neurodegenerative, lung, liver, and orthopedics
diseases. On the other hand, MSCs have been shown to have moderate or poor efficacy, and
the results from different clinical trials are controversial [15–17]. Moreover, the variability
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and heterogeneity inter-donor or among tissue sources have been proved [47–49]. Overall,
those challenges indicate an urgent need to optimize the therapeutic use of MSCs or to
enhance MSC capabilities.

In the last decade, in order to promote MSC therapeutic use, different priming strate-
gies have been used according to the injured tissue/organ to be targeted. For instance, the
priming of MSCs with proinflammatory cytokines and 3D cultures has been mainly tested
to modulate the inflammation and to stimulate angiogenesis in injured tissues [6,27,39,50].
Three-dimensional growth of MSCs represents an easy and more physiologic culture that
usefully changes MSC phenotype. Many papers have shown the ability of 3D culture to
potentiate the therapeutic properties of MSCs, making them more suitable as cell thera-
peutic products [3,21,34]. Santos et al. demonstrated that a 3D culture model of umbilical
cord mesenchymal stromal cells can be used to prime the secretome of those cells for po-
tential clinical applications [38]. Moreover, it has been shown that dynamic 3D techniques
for in vitro MSC culture allows the formation of viable compact cellular spheroids with
therapeutic properties [20]. Our works also revealed that CM derived from 3D MSCs
contained an increased amount of immunosuppressive and growth factors compared to
2D cultures [27], and 3D MSC-CM is capable of attenuating ischemia–reperfusion injury in
an in vitro model of the lung [10]. Recently, we have also shown that the paracrine com-
ponent derived from MSC spheroids was capable of improving in vitro the differentiation
of human liver progenitor cells [8]. In that case, our work may suggest that MSCs could
also stimulate resident adult stem cells in injured tissue, improving tissue regeneration and
function recovery. Therefore, 3D cultures of MSCs can be considered as an advance for the
optimization of MSC culture to enhance their therapeutic potential.

To date, the molecular mechanisms contributing to the improvement of MSC spheroid
therapeutic properties remain unclear. Several studies have been performed to find gene
expression similarity/variability among MSCs derived from different sources [42,51–53].
Moreover, transcriptome analysis was used to study gene expression variations related
to specific priming treatments, such as IL-17, IFN-γ, and hypoxia [40,41]. However, as
far as we know, no study has already investigated, by the transcriptome approach, the
molecular changes underlying the 3D growth of MSCs. Many scientific data focused on the
expression differences within MSCs derived from distinct origins [54–56], but, in the field
of MSC therapy, it has become very important also to investigate the differences among
MSCs derived from the same tissue. In particular, functional differences could come from
different methodological approaches, including chemical or physical treatment of MSCs
during culture prior to their use.

To address this, we performed RNA-seq to analyze both 2D and 3D cultures of MSCs
derived from the amniotic membrane of the human placenta (hAMSCs) and investigate
their molecular variations influencing their therapeutic properties. As shown in Figure 6
(data analysis workflow), to obtain more reliable data, we performed various approaches
for the gene screening analysis.

In particular, through RNA-seq analysis, we first revealed that 9221 genes were dereg-
ulated, 3899 downregulated, and 5322 upregulated after 3D culture (Figure 2c). Then,
we used both KEGG and GO enrichment analyses and identified that several DEGs were
related to pathways implicated in regenerative medicine, such as immunomodulation,
proliferation/differentiation, and angiogenesis (Figure 3). We used qRT-PCR analysis to
validate RNA-seq results and identified 30 DEGs belonging to the above-mentioned path-
ways (Figure 4). Secondly, on those genes, we further analyzed their methylation status
and found significant differences on only 16 genes (Table 1, bold). Finally, we analyzed the
protein expression of these genes, and we found that CXCL12, LIF, VEGF-A, HGF, BDNF,
IL6, EGF, PGE2, CCL20, BMP2, TGFB1, CXCL1, CCL2, GDF15, IL11, and CCL7 were more
secreted by 3D hAMSCs compared to 2D hAMSCs.
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Many researchers have previously demonstrated the pleiotropic role of the factors
we found upregulated in hAMSC spheroids. It has been shown that BDNF, VEGF-A, IL6,
and HGF stimulate angiogenesis both in vitro and in vivo [30,57–60], and EGF, VEGF-A,
and HGF were shown to be significantly higher in MSC-treated ischemic tissue, mediating
neovascularization effects [61]. The factors described above have also been shown to
have immunomodulatory capabilities. Indeed, although we do not yet know the detailed
mechanisms by which those factors suppress/modulate immune responses, it has been
revealed that MSCs are able to affect immune responses secreting soluble factors, such
as TGFβ1, HGF, PGE2, IL6, LIF, and GDF15 [6,27,62,63]. Moreover, it was demonstrated
that CCL2, CXCL12, and BMP2 produced by MSCs were able to affect M1 polarization
macrophages in favor of the M2 phenotype [64,65], and IL11 was able to induce Th2
polarization of human CD4+ T cells [66]. Interestingly, the above-described factors have
also been implicated in tissue regeneration processes. In particular, it was shown that MSC-
derived CM was enriched in factors, including IL6, HGF, and VEGF-A, and this secretome
was able to induce liver regeneration [5,67]. Gothelf and collaborators demonstrated that the
CM derived from neurotrophic factor-secreting MSCs was enriched with BDNF, VEGF-A,
and HGF and has been used effectively to have protective effects in several animal models
of neurodegenerative diseases [68]. EGF stimulates the growth of numerous epidermal
and epithelial tissues [69], and activation of TGF-β is also involved in the recruitment of
stem/progenitor cells in tissue regeneration/remodeling processes [70]. Furthermore, it
has been proven that LIF, which plays a crucial role in blastocyst implantation, is able
to regulate some regenerative processes after injury in several tissues [71]. Oka et al.,
in an in vivo model, showed that both GDF15 and IL6 cooperate to induce survival of
transplanted brown adipose tissues [72]. Finally, high levels of IL6, CCL2, and CXCL1 in
the wound microenvironment were associated with tissue repair [73].

To date, by omics techniques, very few works have analyzed the molecular mech-
anisms underlying MSC priming activation. The characterization of MSC therapeutic
properties is problematic due to the variability in the production of different bioactive
molecules according to interdonor variation and depending on their origin [49,74]. More-
over, perinatal MSCs, including amniotic-derived MSCs, possess a higher therapeutic
potential [49]. Therefore, there is the need to find an easily accessible source of MSCs
without invasiveness and to optimize detailed protocols to improve the standardization of
MSCs production with effective therapeutic properties.

In our work, we used multiple methodological approaches (RNA-seq, qRT-PCR,
methylome analysis, and evaluation of protein secretion) to analyze the gene/protein
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variations among hAMSCs grown as spheroids, which were associated with potential
therapeutic properties. We observed that 3D culture conditions generated a large amount
of DEGs belonging to the crucial pathways involved in the regenerative processes, such
as immunomodulation, proliferation/differentiation, and angiogenesis. Moreover, we
revealed that both genetic and epigenetic variations potentially contribute to functional
activation of 3D hAMSCs. MSCs derived from the human amniotic membrane of the
placenta are a new advantageous source of MSCs, and 3D culture priming of those cells,
differently to other priming systems using exogenous factors (IL-17, IFN-γ, IL1, TNFα)
could represent a useful and natural method to enhance MSC therapeutic properties in a
low manipulation setting. This is very crucial in order to implement MSC cellular therapies
to be applied in the field of regenerative medicine.

4. Materials and Methods
4.1. Isolation, Culture, and Phenotypic Characterization of Human Amnion-Derived Mesenchymal
Stromal/Stem Cells

MSCs were isolated from the amnion of the human term placenta of healthy donors.
Written informed consent and the procedure were approved by ISMETT’s Institutional
Research Review Board. Informed consent was obtained from each donor. After sepa-
ration between amnion and chorion, amniotic membrane was cut into small pieces and
decontaminated in three different solutions containing: (1) 2.5% Esojod (Esoform, Rovigo,
Italy); (2) 500 U/mL penicillin, 500 mg/mL streptomycin, 12.5 mg/mL amphotericin B,
and 1.87 mg/mL cefamezin (Pfizer, Milan, Italy); (3) 100 U/mL penicillin and 100 mg/mL
streptomycin. Amniotic fragments were digested for 9 min at 37 ◦C in HBSS (Lonza,
Basel, Switzerland) containing 2.5 U/mL dispase (Corning, New York, NY, USA) and
then maintained for 5 min in RPMI 1640 (Thermo Fisher Scientific, Waltham, MA, USA).
Afterward, the amniotic fragments were further digested with 0.94 mg/mL collagenase
A (Roche, Mannheim, Germany) and 20 mg/mL DNase (Roche, Mannheim, Germany)
for 2.5 h at 37 ◦C. The cell suspension obtained was filtered with both 100 µm and 70 µm
cell strainers (BD Falcon, San Jose, CA, USA), pelleted, and resuspended in RPMI for cell
counting. Harvested cells were cultured in polystyrene culture dishes (Corning, New York,
NY, USA) at 37 ◦C, 5% CO2, in Chang Medium (Irvine Scientific, Santa Ana, CA, USA). To
obtain hAMSCs at different passages, the cells were plated at a density of 1 × 104/cm2,
and after reaching confluence, adherent cells were trypsinized and then subcultured until
Passages 3–5. HAMSCs were phenotypically characterized by cytofluorimetric analysis
for positive markers (CD90, CD73, and CD13) and negative markers (CD45 and HLA-DR)
(BD Biosciences, San Jose, CA, USA). Analysis was performed using the FACSCanto II
flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) and FACSDiva 8.0.1 (Becton
Dickinson, Franklin Lakes, NJ, USA) software.

4.2. Mesenchymal Stromal/Stem Cell Spheroid Cultures

HAMSCs at the second passage were cultured as spheroids in a 6-well ultralow
attachment plate (Corning, New York, NY, USA), which facilitates spheroid formations and
their maintenance. HAMSC spheroids were maintained in DMEM serum-free medium at
5% CO2 and 37 ◦C.

4.3. Conditioned Media Preparation

To collect CM from 2D culture, after the cells reached 90–95% confluence, the medium
was replaced with serum-free DMEM medium, and the cells were grown for 2 days for CM
collection. For 3D cultures, first, we observed the initial spheroid formation for 1 day, after
the medium was changed, conditioned for 2 days, and finally collected. The supernatant
from each culture was centrifuged and frozen at −80 ◦C until use.



Int. J. Mol. Sci. 2022, 23, 863 10 of 15

4.4. Gene Expression Profiling

HAMSC total RNA was extracted with the RNeasy Mini Kit and treated with DNase ac-
cording to the manufacturer’s instructions (QIAGEN, Hilden, Germany). Then, it was con-
verted to complementary DNA using the high-capacity cDNA kit (Thermo Fisher Scientific,
Waltham, MA, USA). Gene expression was analyzed with the QuantStudio™ 7 Pro Real-
Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA) using 18S ribosomal RNA
(Hs03928985_g1) as housekeeping. We used TaqMan assays for AREG (Hs00950669_m1),
BDNF (Hs02718934_s1), BMP2 (Hs00154192_m1), CCL2 (Hs00234140_m1), CCL20
(Hs00355476_m1), CCL3 (Hs00234142_m1), CCL7 (Hs00171147_m1), CHI3L1 (Hs01072228_m1),
CRLF1 (Hs00191064_m1), CXCL1 (Hs00236937_m1), CXCL12 (Hs03676656_mH), CXCR4
(Hs00607978_s1), EGF (Hs01099990_m1), EREG (Hs00914313_m1), GDF15 (Hs00171132_m1),
GDNF (Hs01931883_s1), HGF (Hs00300159_m1), IL11 (Hs01055414_m1), IL24 (Hs01114274_m1),
IL33 (Hs04931857_m1), IL6 (Hs00174131_m1), LIF (Hs01055668_m1), NRG1 (Hs01101538_m1),
PTGS2 (Hs00153133_m1), SPHK1 (Hs00184211_m1), TGFB1 (Hs00998133_m1), TGFB3
(Hs01086000_m1), VEGF-A (Hs00900055_m1), WNT4 (Hs01573505_m1), WNT5A
(Hs00998537_m1). Reactions were run in duplicate, and calculation of the relative levels
of expression was performed according to the comparative Ct-method.

4.5. Protein Expression Analysis

The concentration of cytokine and growth factors (CXCL12, LIF, VEGF-A, HGF, BDNF,
IL6, EGF, CCL20, BMP2, TGFB1, CXCL1, CCL2, GDF15, and CCL7) in each CM (hAMSCs
grown in both 2D and 3D cultures) were determined using magnetic bead technology from
Luminex™ with the ProcartaPlex Multiplex protein assays (Affymetrix, Santa Clara, CA,
USA) according to the manufacturer’s instructions. The levels of IL11 and PGE-2 were
determined using the Human IL-11 Quantikine ELISA Kit and PGE2 Parameter Assay Kit
(R&D Systems, Minneapolis, MN, USA), respectively. The concentration of each factor was
calculated from standard curves.

4.6. RNA-Seq, Library Construction, Sequencing, and Analysis

Total RNA from 2D and 3D hAMSCs was isolated with RNeasy Micro Kit according to
the manufacturer’s instructions (QIAGEN, Hilden, Germany). Concentration and quality
of RNA were determined using the Qubit 2.0 Fluorometer (Life Technologies, Carlsbad,
CA, USA) and 4200 TapeStation System (Agilent Technologies, Santa Clara, CA, USA).
Libraries were generated from 1 µg of RNA derived from 2D and 3D hAMSC cultures.
Poly-A-enriched strand-specific libraries were generated with the TruSeq mRNA V2 sample
preparation kit with Ribo-Zero Gold (Illumina, San Diego, CA, USA). The quality and yield
of the prepared libraries were assessed using Qubit 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA) and 4200 TapeStation System (Agilent Technologies, Santa Clara, CA,
USA). Sequencing was performed on a NextSeq™ 550 (Illumina, San Diego, CA, USA)
with 2 × 76 cycles, following the manufacturer’s instructions. Quality control checks
of the sequencing raw data were conducted with FastQC (v0.11.9, Babraham Institute).
Both low-quality read removal and adapter-trimming were performed with trimmomatic
(v0.32) [75]. The remaining reads were mapped to human reference genome hg19 with
STAR (v2.7.0) [76], and transcript abundances were measured with RSEM (v1.3.3) [77]. We
normalized the gene expression level by transcripts per kilobase million (TPM). To identify
differentially expressed genes (DEGs), we set the fold change ≥1.5 or ≤0.6666. DEGs were
hierarchically clustered using an average linkage algorithm and a “Euclidean distance” for
the distance measure using R functions (v4.1.2). The same software was used to perform
principal component analysis (PCA).

4.7. Bisulfite Genomic Sequencing Analysis of DNA Methylation

We used bisulfite genomic sequencing as a method of DNA methylation analysis.
Briefly, gDNA from 2D and 3D hAMSCs was isolated with the AllPrep DNA/RNA Micro
Kit, according to the manufacturer’s instructions (QIAGEN, Hilden, Germany). Con-
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centration and quality of gDNA were determined using the Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA) and 4200 TapeStation System (Agilent Technologies,
Santa Clara, CA, USA). The SureSelect Target Enrichment System (Agilent Technologies,
Santa Clara, CA, USA) was used to identify epigenetic changes in 2D and 3D hAMSC
cultures. All samples were sequenced using the same workflow. Briefly, 1 µg of gDNA was
sheared using the Covaris sonicator (Covaris, Woburn, MA, USA) to yield 170–230 bp DNA
fragments. The DNA fragments were end-repaired, 3′-adenylated, and further ligated
with methylated primers. Following hybridization to biotinylated, plus-strand DNA-
complementary RNA library “baits” and streptavidin bead enrichment, captured DNA was
bisulfite-converted using the EZ DNA Methylation Gold Kit (Zymo Research, Irvine, CA,
USA). Subsequently, DNA samples were PCR-amplified using barcoded indexed primers
to allow for multiplexing. Quality and yield of the DNA sample libraries were assessed
using Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) and 4200 TapeStation
System (Agilent Technologies, Santa Clara, CA, USA). The pooled libraries were sequenced
with the NextSeq™ 550 (Illumina, San Diego, CA, USA).

4.8. Whole-Genome Bisulfite Sequencing Data Mapping and Quality Analysis

On raw data from both bisulfite sequencing converted and non-bisulfite sequenc-
ing converted, we performed quality analysis with FastQC (v0.11.9, Babraham Institute,
Babraham, UK), and we trimmed with Trim Galore (v0.6.5, Babraham Institute). After,
mapping was carried out with Bismark (v0.22.3, Babraham Institute) to hg19 for the hu-
man genome. We used SeqMonk software (v1.48.0, Babraham Institute) to quantify the
percentage of CpG methylation values.

4.9. Pathway Enrichment Analysis

To find both KEGG and GO terms enriched in the defined gene sets, we used the
Enrichr web tool [78]. For figures, we only reported the significant top 10 ranked terms.
After gene validation, for map visualization, pathway enrichment analysis results were
analyzed by STRING web tool [79] and then interpreted in Cytoscape 3.9.0 [80].

4.10. Statistics

All values were expressed as mean ± SD. Statistical analysis was performed using
GraphPad Prism 6.0 (GraphPad Software, San Diego, CA, USA). The Student’s t-test was
used to compare data. Differences were considered statistically significant at p < 0.05.

5. Conclusions

In conclusion, our work investigated a transcriptomic portrait of hAMSCs in which a
significant change in transcriptomic profile was observed in response to 3D culture. The
profiling of genes that we found provided new insights related to 3D molecular changes
of a new source of MSCs derived from the human amniotic membrane of the placenta.
Conventional 2D culture has been seen as a limitation in the wider use of MSC-based
therapies, and the development of 3D culture has become a current technological challenge.
Indeed, MSCs cultured in monolayer possess limited reproducibility/scalability. Moving
MSC culture from a 2D to a 3D suspension culture system allows culturing these cells in
a more physiological microenvironment that can potentiate their therapeutic properties.
Modulation of the transcriptome/secretome of MSCs is a crucial step toward achievement
of the full therapeutic potential of MSCs. Our data revealed that hAMSCs grown in 3D
culture represent a promising prime method to improve hAMSC therapeutic properties and
highlight the importance of increasing our understanding of MSC biology under different
culture/priming methods to optimize their potential therapeutic use.
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