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Abstract: A proteogenomics-based neoantigen prediction pipeline, namely ProGeo-neo, was pre-
viously developed by our team to predict neoantigens, allowing the identification of class-I major
histocompatibility complex (MHC) binding peptides based on single-nucleotide variation (SNV)
mutations. To improve it, we here present an updated pipeline, i.e., ProGeo-neo v2.0, in which
a one-stop software solution was proposed to identify neoantigens based on the paired tumor-
normal whole genome sequencing (WGS)/whole exome sequencing (WES) data in FASTQ format.
Preferably, in ProGeo-neo v2.0, several new features are provided. In addition to the identifica-
tion of MHC-I neoantigens, the new version supports the prediction of MHC class II-restricted
neoantigens, i.e., peptides up to 30-mer in length. Moreover, the source of neoantigens has been
expanded, allowing more candidate neoantigens to be identified, such as in-frame insertion-deletion
(indels) mutations, frameshift mutations, and gene fusion analysis. In addition, we propose two more
efficient screening approaches, including an in-group authentic neoantigen peptides database and
two more stringent thresholds. The range of candidate peptides was effectively narrowed down to
those that are more likely to elicit an immune response, providing a more meaningful reference for
subsequent experimental validation. Compared to ProGeo-neo, the ProGeo-neo v2.0 performed well
based on the same dataset, including updated functionality and improved accuracy.

Keywords: bioinformatics; neoantigen; proteogenomic; tumor immunotherapy

1. Introduction

Neoantigens are tumor-specific antigens (TSAs), which are expressed only in tumor
cells and not in normal cells [1]. Neoantigens are often derived from a range of non-
synonymous mutations, including single-nucleotide variation (SNV), insertion-deletion
(INDEL), frameshift mutations, gene fusions, and structural variants [2]. Neoantigens are
more immunogenic and more likely to elicit an immune response than common antigens
because they do not undergo negative screening of the thymus. Mutated mRNA and
protein sequences are generated after the transcribed and translation of non-synonymous
genetic changes [3]. Mutated proteins are proteolytically cleaved into peptides, and then
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are naturally presented on the tumor cell surface by the MHC [4]. Eventually, the resultant
complex can be recognized by cytotoxic T cells to generate an anti-tumor response on the
tumor cell surface. The MHC genes, commonly known as human leukocyte antigen (HLA)
in humans, are found on chromosome 6, including HLA-class I and HLA-class II. HLA-class
I molecules are located on the surface of normal cells, which can be recognized by cytotoxic
CD8+ T cell receptors. Most HLA-class II molecules are located on antigen-presenting
cells (APCs), which can be recognized by cytotoxic CD4+ T cells [5]. The expression or
non-expression of HLA-II molecules directly determines the development and intensity
of the immune response. Changes in the expression levels of HLA class II molecules
have also been associated with the development of certain autoimmune diseases, tumors,
immunodeficiencies, and other disorders. Therefore, HLA-II molecules are of great value
for immunological studies [6].

The discovery of neoantigens has made it possible to create personalized therapeutic
cancer vaccines tailored for tumor patients. New evidence suggests that neoantigens can be
recognized by the immune system and can be targeted to increase anti-tumor immunity [7].
Sahin’s team revealed in 2017 that cancer vaccines created by screening “neoantigens”
from melanoma could activate CD8+ and CD4+ T cell proliferation, leading to tumor
regression [8]. Furthermore, vaccines originally designed to target CD8+ T cells mediated
a higher number of CD4+ T cells, raising concerns about the important role of HLA-II
molecules in antitumor activity.

Personalized neoantigen vaccines are currently considered to be highly effective and
safe in immunotherapy strategy. Therefore, timely and effective identification of neoanti-
gens is in urgent need. Recently, with the development of next-generation sequencing
(NGS) and bioinformatics techniques, various neoantigen prediction tools have been devel-
oped internationally. For example, specific tumor mutations were identified by integrating
tumor mutation and expression data (DNA-seq and RNA-seq) in pVAC-seq [9]. As a ma-
chine learning approach, Neopepsee [10] was used to predict neoantigens by selecting nine
strongly correlated features from fourteen neoantigen-related features. A neoantigen pre-
dictive pipeline, namely TSNAD, was developed by Zhejiang University in China, which
can predict extracellular mutations in membrane proteins or mutant peptides presented
by class I major histocompatibility complex molecules [11]. However, most neoantigen
prediction pipelines published internationally are based on genomics. As far as we know,
few pipelines can comprehensively predict neoantigens from various mutations, especially
HLA class II-restricted neoantigens.

Advances in high-throughput NGS and mass spectrometry-based proteomics have led
to the development of “proteogenomics”, which combines genomics and proteomics [12].
We previously reported on the construction of a proteogenomic predictive neoantigen
(ProGeo-neo v1.0) pipeline, a tool that has been adopted by many groups [13]. In this
paper, we present ProGeo-neo v2.0 with new improvements and features. The new version
(i) updates all embedded tools to the latest version or replaces them with better-performing
tools, (ii) adds the prediction of neoantigens from INDELs and gene fusions, (iii) increases
the prediction of HLA class II-restricted neoantigens, (iv) starts the analysis from the
WGS/WES data in FASTQ format, (v) information on mutations at the DNA level through
intermediate files, (vi) is packaged as a one-stop software for ease to use. The source code
of ProGeo-neo v2.0 is freely available at https://github.com/kbvstmd/ProGeo-neo2.0
(1 April 2022).

2. Material and Methods
2.1. Data

The same data used to build ProGeo-neo v1.0 were used to build ProGeo-neo v2.0. Ju-
rkat’s WGS data is available at the NCBI’s Sequence Read Archive (SRA) study SRP101994 [14]
(https://www.ncbi.nlm.nih.gov/sra/SRP101994 (16 March 2017)). Paired-end 200 bp se-
quencing RNA-seq data of Jurkat cell lines generated by Illumina HiSeq 2000, which was
downloaded from the NCBI’s Gene Expression Omnibus (GEO) [15] repository under the

https://github.com/kbvstmd/ProGeo-neo2.0
https://www.ncbi.nlm.nih.gov/sra/SRP101994


Genes 2022, 13, 783 3 of 12

accession number GSE45428 [16]. LC-MS/MS of Jurkat proteomics data may be down-
loaded via FTP from the PeptideAtlas data repository by accessing the following link:
(http://www.peptideatlas.org/PASS/PASS00215 (15 April 2013)).

We downloaded human normal protein sequences in FASTA format from the Uniprot
Database [17] (http://www.uniprot.org/ (14 May 2021)). The commonly contaminated lab-
oratory protein sequences in FASTA format were downloaded from the common Repository
of Adventitious Proteins (cRAP) (http://www.thegpm.org/crap/ (5 July 2021)).

2.2. Description of the ProGeo-Neo v2.0

As illustrated in Figure 1, the ProGeo-neo v2.0 workflow consists of five modules.
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Figure 1. Workflow of ProGeo-neo v2.0. Including detection of SNV/INDEL based on tumor/normal
WGS/WES data; HLA allele prediction, gene fusion detection, and gene expression detection based
on tumor RNA-seq data; neoantigen screening by raw proteomics data (LC-MS/MS); neoantigen
prediction (peptides-HLA class I/II); screening and filtering of candidate neoantigens.

2.3. Module 1: Identification of SNV/INDEL Based on WGS/WES Data

Firstly, Trimmomatic (v0.38) [18] is used to trim and crop raw WGS reads and check
quality results with FastQC (v0.11.5) [19] in ProGeo-neo v2.0. Then, BWA (v0.7.17) [20] is
used for mapping all clean reads to a human reference genome (release hg38). SAMtools
(v1.10) [21] is used to convert sequencing data formats from sequence alignment/map
(SAM) to binary alignment/map (BAM) to save storage space and to sort the resulting bam
files. GATK (v4.2.0.0) [22] is used to remove repetitive sequences and recalibrate the mass
fraction of original bases. The Mutect2 module of GATK is used to call SNVs/INDELs.
GATK’s VQSR and FilterMutectCalls modules are used for variant quality control.
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2.4. Module 2: RNA-Seq Data Processing

The RNA-seq data were processed similarly to the WGS data to obtain the amino
acid mutation. Amino acid changes caused by gene fusions are predicted by STAR-Fusion
(v1.9.0) [23]. HLA-I alleles are inferred from RNA-seq data using OptiType (v1.3.5) [24] with
default settings, and HLA-II alleles are inferred using HLAminer (v1.4) [25]. Transcripts
expression is quantified by TPM level from RNA-seq data using Kallisto (v0.46.2) [26].

2.5. Module 3: Building Protein Database and MS Searching

RNA-seq data can provide a better reference proteomics dataset than WGS/WES,
which typically has a lower read coverage. Therefore, we identify mutations at the protein
level based on RNA-seq data. A customized searchable peptide database was built using
human normal protein sequences, commonly contaminated laboratory protein sequences,
and mutant protein sequences based on tumor RNA-seq data. MaxQuant (v2.0.1.0) [27] is
then used to search raw proteomic spectra in a customized database to identify mutant pep-
tides for protein-level validation of candidate neoantigens. The parameters of MaxQuant
are set as follows: default parameters are used for peak generation; variable modifications
including protein N-terminal acetylation, methionine oxidation, and Strict trypsin speci-
ficity were required to allow for up to two deletion cuts; the fixation modification is cysteine
aminomethylation. The software automatically constructs the reverse sequence database as
a decoy database. False discovery rate (FDR) thresholds for PSM, protein, peptides, and
site were specified at 1%. The minimum required peptide length was set to 7.

2.6. Module 4: Neoantigen Prediction

ANNOVAR (Date: 08 June 2020) [28] can be used for annotation to obtain mutation
information at amino acid levels. Python (v3.7) is used to convert the amino acid mutation
data into FASTQ sequences with lengths of 8–11-mer and 15–30-mer. This is completed
as follows. First, the obtained amino acid mutation site information is used to match to
human normal protein sequences by gene name, resulting in protein sequences containing
amino acid mutation sites. Second, intercept a sequence of length k from the position k-1
in front of the mutation site with a stride of 1, ensuring that the site is included in each
sequence. Then, apply this operation to all lengths. Finally, the mutant peptides are saved
in FASTQ format for subsequent filtration. The mutant peptides interception operation is
shown in Figure 2. The binding affinity of 8–11-mer peptides for HLA class I is predicted
using the NetMHCpan (v4.1) [29] binding algorithm, and 15–30-mer peptides for HLA
class II are predicted using the NetMHCIIpan (v4.0) [30]. The predicted HLA alleles and
the mutated expressed peptides are used as input for the NetMHCpan 4.1/NetMHCIIpan
4.0 to estimate their binding affinities and predict neoantigens. FASTA files of amino
acid mutant sequences resulting from gene fusions are also input to NetMHCpan for
prediction. There are two methods to determine peptides-HLA binding affinity: half-
maximum inhibitory concentration (IC50) and percentile rank scores (%Rank). The %Rank
contains information relating to peptide-HLA binding events and previous steps in the
biological antigen presentation pathway [31]. Therefore, candidate binders are selected
based on %Rank first. Strongly (HLA-I: %Rank ≤ 0.5; HLA-II: %Rank ≤ 2) and weakly
(HLA-I: 0.5 < %Rank ≤ 2; HLA-II: 2 < %Rank ≤ 10) bound predicted neoantigens are
included in the subsequent analysis. However, the predicted IC50 value is retained for
subsequent candidate peptides filtration.

2.7. Module 5: Neoantigen Filtration

The neoantigen filtration module is the most critical part of the ProGeo-neo v2.0.
Four screening strategies are used in ProGeo-neo v2.0: (a) Gene expression level filtration:
the gene expression detected in Module 2 is a filter to remove the peptides generated by
mutations in unexpressed genes (TPM < 0), which could improve the accuracy of the final
prediction. (b) Protein level filtration: the mutant peptides obtained after the MaxQuant
library search in Module 3 were used as filters for candidate neoantigens. (c) Neoantigen
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database filtration: Sequence similarity filtering of data from in-house neoantigen database
dbPepNeo v2.0 using the BLASTp tool [32,33]. A total of 801 high-confidence peptides
(directly verified by experiment to elicit the immune response) and 251 medium-confidence
peptides (verified by MS and WGS/WES) were used as filter libraries. (d) Strict threshold
filtration for HLA class I restricted neoantigens: A more stringent threshold for HLA class I
restricted neoantigens, (i.e., binding intensity ≤ 34 nM and tumor abundance ≥ 33 TPM)
was proposed by Wells DK et al. based on their study was used to screen candidate
peptides [34].
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3. Results
3.1. Features Updated from ProGeo-Neo v1.0

In the first version of ProGeo-neo, candidate neoantigens are first identified from
tumor genomic variants by using NetMHCpan-4.0, and then a customized database is
created by analyzing RNA-seq data for variant peptides, and HLA alleles are inferred
from RNA-seq data. In the whole process, several tools are applied, including Sickle,
BWA, SAMtools, Bcftools, ANNOVAR, and OptiType. Some tools have been updated or
deprecated with time, so in the new version, we update or replace them with other tools.
The specific adjustment is as follows: (i) BWA, SAMtools, GATK, Kallisto, ANNOVAR,
MaxQuant, and NetMHCpan are updated to a newer version. (ii) The Sickle tool has been
replaced with Trimmomatic to remove low-quality reads, and the Bcftools tool has been
replaced with the Mutect2 module of GATK to the call mutation. GATK’s Mutect2 has a
complete analysis flow of calling somatic SNVs and Indels, which is more appropriate for
ProGeo-neo v2.0 to run from tumor-normal paired WGS/WES sequencing data. (iii) New
function was provided based on WGS/WES raw sequencing data analysis by combining
GATK’s Mutect2 pipeline to call SNVs/INDELs. (iv) Added functionality for fusion genes
being detected from RNA-seq data by STAR-Fusion. (v) Added functionality for predicting
neoantigens based on peptide-HLA class II binding affinity by NetMHCIIpan.

There are two main improvements in the filtering of candidate peptides, which are
as follows: we first used our group’s own authentic neoantigen peptides database for
filtering, which effectively narrowed down the range of candidate peptides. Candidate
peptides were obtained, which were more likely to elicit immune responses, providing a
more meaningful reference for subsequent experimental validation. In addition, we have
also adjusted the tumor abundance and peptides-HLA class I binding affinity cutoffs more
strictly by referring to the suggested thresholds given in a recent study on neoantigen
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prediction [34]. These two strict thresholds have also been shown to indeed improve the
quality of candidate neoantigens.

The information in our output results file is more detailed to give the user more
references. Detected tumor abundance and peptides-HLA class I binding affinity have
been added to the results file. Intermediate files with mutation information at the base
level for mutant peptides are provided in ProGeo-neo v2.0. Further, result files are stored
according to different mutation types, namely SNV, in-frame INS, in-frame DEL, frameshift,
and fusion.

The source code of ProGeo-neo v2.0 is freely available at https://github.com/kbvstmd/
ProGeo-neo2.0 (1 April 2022).

3.2. The Performance of ProGeo-Neo v2.0 on Jurkat Cell Line Data

In ProGeo-neo v2.0, the types of variants that support neoantigen prediction had
been extended to include intra-frame indexing, frame-shift variants, and fusion. A total
of 14,555 non-synonymous variants, 237 in-frame ins variants, 405 in-frame del variants,
and 1123 frameshift variants were detected from the Jurkat WGS data. Fusion assay using
STAR-Fusion detected a total of 62 amino acid mutation sequences arising from fusion
genes. ProGeo-neo v2.0 predicted five HLA class I alleles from RNA-seq data from Jurkat,
including HLA-A * 03:01, HLA-B * 07:02, HLA-B * 35:03, HLA-C * 07:02, HLA-C * 04:01;
HLA class II alleles, two types: DRB4_ 0103, DRB4_0101.

NetMHCpan predicted 376,671 mutant peptides of 8–11-mer length from 16,382 mu-
tant sites based on Jurkat’s whole genome sequencing data. After NetMHCpan prediction,
a total of 52,514 candidate neoantigens binding to HLA class I were obtained. These in-
clude 43,685 candidate neoantigens from missense mutations, 625 candidate neoantigens
from in-frame ins mutations, 1088 candidate neoantigens from in-frame del mutations,
2006 candidate neoantigens from frameshift mutations, and 5110 candidate neoantigens
from fusion mutations. (Figure 3A; Additional file 1: Table S1). Candidate neoantigens
included 13,621 high-affinity peptides (%Rank ≤ 0.5) and 38,893 low-affinity peptides
(0.5 < %Rank ≤ 2). NetMHCIIpan predicts 3,479,831 mutant peptides of 15–30-mer length
from the same 16,382 mutant sites based on Jurkat’s WGS data. After NetMHCIIpan predic-
tion, a total of 289,142 candidate neoantigens binding to HLA class II were obtained. These
include 262,690 candidate neoantigens from missense mutations, 3666 candidate neoanti-
gens from in-frame ins mutations, 6838 candidate neoantigens from in-frame del mutations,
and 15,948 candidate neoantigens from frameshift mutations (Figure 3B; Additional file 2:
Table S2). Candidate neoantigens included 47,144 high-affinity peptides (%Rank ≤ 2) and
241,998 low-affinity peptides (2 < %Rank ≤ 10).
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The number of neoantigens bound to each HLA class I allele was also counted, as
shown in Figure 4. The number of the candidate neoantigens bound varies between alleles,
ranging from 9471 to 12,671. We have also observed that some candidate neoantigens bind
to different alleles simultaneously, and this type of candidate neoantigen is more valuable
to study as it may apply to a broader range of individuals.
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3.3. Performance Enhancements from ProGeo-Neo v1.0

The same data used to build ProGeo-neo v1.0 was used to build ProGeo-neo v2.0. In
ProGeo-neo v2.0, 52,514 unfiltered HLA class I restricted neoantigen candidates were re-
ported. In the original version of ProGeo-neo 36,835 neoantigens were reported. This
demonstrated that, by extending support for additional variant types as well as pre-
diction algorithms, we produced 42.6% more raw candidate neoantigens. Additionally,
289,138 HLA class II-restricted candidate neoantigens have been added.

Since ProGeo-neo v1.0 only supports the prediction of neoantigens bound to HLA class
I molecules and mutation types are limited to non-synonymous mutations, we compare
this part of ProGeo-neo v2.0’s results with the previous results. Firstly, the 636 HLA
class I molecular binding candidate peptides obtained from protein level screening were
compared for sequence similarity with the neoantigen peptides database established by our
group using BLASTp. A total of 122 mutant peptides were found to resemble the authentic
neoantigen sequences, with a matching ratio of 19.18%. (Additional file 3: Table S3). The
matching ratio is defined as follows:

matching ratio =
number of neoantigens matched to the database

number of neoantigens being compared

, with similarity threshold of 20 to 100

We have observed that most neoantigens have sequence similarity scores greater than
60, with the lowest score being 40. In general, the higher the sequence similarity, the
greater the likelihood that the neoantigen will be recognized by the T-cell receptor. These
122 mutant peptides may be recognized by the TCR, and their immunogenicity can be
further analyzed by experimental or clinical trials in leukemia patients. Second, ProGeo-neo
v2.0 filtered candidate peptides by reference to the more stringent peptide thresholds for
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peptide-MHC class I, (i.e., binding intensity ≤ 34 nM and tumor abundance ≥ 33 TPM)
proposed by Wells DK et al. A further 19 candidate peptides were left after the screen-
ing. We compared the 19 candidate peptides to the neoantigen database using BLASTp.
Four peptides were found to resemble the neoantigen sequences in the database with a
high degree of similarity, averaging 71.13 and a matching ratio of 21.05%. (Additional file 4:
Table S4) Finally, to test the method’s accuracy in recognizing mutant peptides as neoanti-
gens, we performed sequence similarity analysis on peptides obtained by NetMHCpan
prediction but not filtered. It was found that 7514 peptides out of 52,514 candidate neoanti-
gens had sequence similarity to peptides in the neoantigen database, with a matching ratio
of 14.31%, significantly lower than our previous comparison probability.

We did sequence similarity analysis of the 655 peptides obtained after filtering at the
ProGeo-neo v1.0 protein level with the neoantigen peptides database in the same way. Only
75 peptides were successfully matched, a matching ratio of 11.45%, significantly lower
than our current result, even with the worst rate of 14.31%. Additionally, ProGeo-neo
v2.0 had the best matching ratio of 21.05%. This shows a significant improvement in
our accuracy rate compared to ProGeo-neo v1.0 and provides more robust support for
subsequent validation. See Table 1 for details.

Table 1. Performance comparison between ProGeo-neo v2.0 and ProGeo-neo v1.0.

Mutant Peptides MHC I Binders Filtering by
Gene Expression Filtering by MS Aff ≤ 34 nM

TPM ≥ 33

ProGeo-neo v2.0 376,671 52,514 43,169 636 19
Matching ratio 14.31% 19.18% 21.05%

ProGeo-neo v1.0 373,046 36,835 30,142 655
Matching ratio 11.45%

3.4. Screening Validity of ProGeo-Neo v2.0

Cancer neoantigens are important targets for endogenous anti-tumor immune re-
sponses and cancer immunotherapies [35]. The accurate identification of cancer neoantigens
is still a great challenge for neoantigen-related immunotherapy. Only a small percentage of
candidate neoantigens predicted by existing bioinformatics tools elicit an immune response,
suggesting that more research is needed to improve pipelines and algorithms for neoantigen
prediction. The upgraded ProGeo-neo v2.0 combined with proteomics data in this study
is more rigorous and credible than tools that use only genomic and transcriptomic data
for prediction. ProGeo-neo v2.0 efficiently identifies and screens neoantigens and retains
the more promising high-confidence peptides through four filters. The number of peptides
obtained from the final identification was only a hundred, or even dozens (Figure 5A,B).
Additionally, our results were proven to be reliable when compared with the validated
neoantigen database, the highest matching ratio reached 21.05%. Such low-volume and
reliable results are more beneficial to researchers, leading significantly to the reduction of
time and cost at subsequent experimental validation.

Unfortunately, strict threshold versus true neoantigen peptide database filtering is
only available for MHC class I molecularly restricted neoantigens. There are not many
studies on MHC class II molecularly restricted neoantigens prediction, ProGeo-neo v2.0
provides a potentially useful first-line reference.
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4. Discussion

ProGeo-neo v2.0 could provide one-stop neoantigen prediction based on original
WGS/WES data of normal/tumor, tumor RNA-Seq data, and LC-MS/MS data. It updated
or replaced most of the embedded tools with the latest version or a more appropriate tool in
this release. It also supports the prediction of neoantigens bound to HLA class II molecules
and provides analysis of in-frame indel, frameshift, and gene fusions. Compared with other
neoantigen prediction pipelines, ProGeo-neo v2.0 has several advantages: (i) it can start the
analysis from the raw FASTQ format data; (ii) it provides the analysis of SNVs, INDELs, and
gene fusions; (iii) it can predict HLA-II restricted neoantigens, i.e., predicted neoantigen
peptides lengths up to 30-mer; (iv) it provides a proteogenomic strategy that not only takes
into account the neoantigens presented by HLA molecules, but also directly identifies these
mutant peptides using MS data; (v) it uses a validated neoantigen peptides database for
sequence similarity screening; (vi) more stringent tumor abundance and binding affinity
thresholds referred to recent studies are used for neoantigen screening. Expanding the
mutational origin of predicted neoantigens could allow more peptides with the potential to
become neoantigens to enter subsequent studies. The software is constructed based on the
genomic and proteomic data from the Jurkat leukemia cell line but applies to the prediction
of neoantigens in other individual solid tumors.

Controlling false-positive mutations is a major challenge for neoantigen identification.
In a recent study by the Tumor Neoantigen Selection Alliance (TESLA), the overall positivity
rate of 25 teams predicting neoantigens on the same standard dataset was only 6.1%. Many
factors affect the positive rate of neoantigen prediction, such as the limitation of the
algorithm, the limitation of sequencing technology, and the heterogeneity of the tumor.
ProGeo-neo v2.0 was updated to use GATK4 Mutect2 for calling SNVs and Indels to better
filter out germline mutation sites and reduce the false-positive rate. In addition, the most
important improvement is the presentation of two new methods for screening neoantigens
in ProGeo-neo v2.0, retaining mass spectrometry-based proteogenomics in the meantime.
The addition of two new neoantigen screening methods has been shown to improve the
accuracy and usability of neoantigen prediction results significantly. Effective neoantigen
prediction relies on understanding the parameters governing epitope immunogenicity.
ProGeo-neo v2.0 performs neoantigen filtration by adjusting thresholds for immune-related
parameters and identifies candidate neoantigens with higher quality than existing processes
that predict neoantigens using genomic data alone. Additionally, the candidate new
peptides obtained by screening using actual neoantigen databases are more credible.

However, the successful elicitation of an immune response to the neo-peptide is
a complex process that requires further investigation of T cell receptor (TCR)-pMHC
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interactions, which could be considered for further screening. In addition, neoantigens
from non-coding regions should also be of interest. We will consider these aspects in our
future updates.

5. Conclusions

One-stop neoantigen prediction and screening based on original WGS/WES, RNA-
Seq, and LC-MS/MS data were provided in ProGeo-neo v2.0. ProGeo-neo v2.0 is an
integrated software written in the Python programming language (v3.8) and requires
standard third-party software. The software contains five main modules, namely: identifi-
cation of SNVs/INDELs based on WGS/WES data; RNA-seq data processing for detecting
gene fusions, accessing to HLA typing and gene expression; building customized protein
database and MS searching; prediction of neoantigens by NetMHCpan/NetMHCIIpan;
filtering candidate neoantigens by four methods.

The software is divided into five toolkits based on five modules. Before running the
toolkit, the user needs to configure the software paths and parameters. This step is of great
importance. After setting up the configuration, the user can run the pipeline by executing
the command line. More detailed information can be found in the user manual.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050783/s1, Table S1. Candidate HLA class I restricted
neoantigens. Table S2. Candidate HLA class II restricted neoantigens. Table S3. Results of HLA class I
restricted neoantigens BLASTp after protein level filtering. Table S4. Results of HLA class I restricted
neoantigens BLASTp after two strict thresholds screening.
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