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Abstract Introduction: Trials in Alzheimer’s disease are increasingly focusing on prevention in asymptom-
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atic individuals. We hypothesized that indicators of mild cognitive impairment (MCI) may be present
in the content of spoken language in older adults and be useful in distinguishing those with MCI from
those who are cognitively intact. To test this hypothesis, we performed linguistic analyses of spoken
words in participants with MCI and those with intact cognition participating in a clinical trial.
Methods: Data came from a randomized controlled behavioral clinical trial to examine the effect of
unstructured conversation on cognitive function among older adults with either normal cognition or
MCI (ClinicalTrials.gov: NCT01571427). Unstructured conversations (but with standardized prese-
lected topics across subjects) were recorded between interviewers and interviewees during the inter-
vention sessions of the trial from 14 MCI and 27 cognitively intact participants. From the
transcription of interviewees recordings, we grouped spoken words using Linguistic Inquiry and
Word Count (LIWC), a structured table of words, which categorizes 2500 words into 68 different
word subcategories such as positive and negative words, fillers, and physical states. The number of
words in each LIWC word subcategory constructed a vector of 68 dimensions representing the lin-
guistic features of each subject. We used support vector machine and random forest classifiers to
distinguish MCI from cognitively intact participants.
Results: MCI participants were distinguished from those with intact cognition using linguistic fea-
tures obtained by LIWC with 84% classification accuracy which is well above chance 60%.
Discussion: Linguistic analyses of spoken language may be a powerful tool in distinguishing MCI
subjects from those with intact cognition. Further studies to assess whether spoken language derived
measures could detect changes in cognitive functions in clinical trials are warrented.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction and motivation

Awell-documented literature has identified characteristic
early disruption of normative patterns and processing of
speech and language in patients with Alzheimer’s disease
(AD) as well as in prodromal dementia states such as mild
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cognitive impairment (MCI) [1]. Early foundational clinical
studies of language have highlighted changes in verbal
fluency and naming [2–4]. More recent studies using
automated or semiautomated speech and language analysis
approaches have identified linguistic as well as acoustic
features that characterize early AD or MCI such as pause
frequency and duration, and linguistic complexity
measures [5,6].

Almost all of these latter studies have used elicited speech
paradigms to generate speech and language samples, for
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example, asking patients to describe what they observe in
pictures briefly presented to them or to recall specific stories
they are exposed to during a testing session. In addition to
analyzing the conversations in these structured, mostly con-
strained within a clinical setting, there are some studies
which have used more spontaneous speech [7,8]. In spite
of the potential advantages of capturing spontaneous
speech in conversations, major barriers have existed to
implementing this approach for persons with MCI or AD
in more natural settings. A major impediment has been
limitations in the recording technology paradigms that
could be deployed. This has been both a problem of
practicality such as the form factor of recording devices
and power requirements for long-term recording, as well
as automated speech and linguistic analysis challenges.
Despite these challenges, pioneering early studies using
somewhat obtrusive worn or carried recording devices
have shown the potential power of this approach in younger
populations. For example, Pennebaker and Mehl have illus-
trated the value of inferring social contexts from audio life
logs using a lexicon of salient words, termed Linguistic In-
quiry andWord Count (LIWC) 2001 [9]. They demonstrated
that social context and other information from audio life logs
can be used to quantify participants’ social life (interaction
and engagement), cognitive function, emotional conditions,
and even health status [10]. To the best of our knowledge,
LIWC analyses have not been used to examine the cognitive
status of older adults. In this study, we use LIWC on a corpus
of spontaneous speech samples generated during the course
of a 6-week randomized clinical trial of daily online video
chats to improve social engagement and cognition in older
adults with and without MCI [11,12]. These conversations
between the interviewer and the participant provided an
opportunity to analyze potential differences in the
conversational output of persons with MCI and cognitively
intact adults.
1.1. Language and mild cognitive impairment

Although the most typical early cognitive deficit
observed in Alzheimer’s disease involves the memory
domain, linguistic ability is also clearly affected. For
example, secondary verbs per utterance, percentage of
clauses, percentage of right-branching and left-branching
clauses, propositions per utterance, conjunctions per utter-
ance, mean duration of pauses, and standardized phonation
time have all been reported to show significant differences
between healthy older adults and subjects with MCI or AD
[5,13–20]. A major barrier to taking advantage of these
language-based discriminators has been the effort required
to manually score relevant features from speech samples;
the proposed work addresses this through automatic scoring.

1.1.1. Related computational works
Recently, there has been considerable interest in automat-

ically analyzing acoustic and language properties of speech
samples to create more sensitive quantitative assessments of
patients with cognitive impairment [1,21–23]. For example,
Jerrold and colleagues [24] evaluated the ability of machine
learning methods to differentiate dementia subtypes,
including AD, based on semistructured conversational
speech recordings. Their proposed method uses both
acoustic features such as duration of consonants, vowels,
and pauses, as well as lexical features such as frequency of
nouns and verbs derived from automatic transcriptions pro-
vided by a speaker-independent automatic speech recogni-
tion (ASR) system.

Combining these two profiles of features derived from 48
participants, including nine healthy controls, nine AD pa-
tients, and 30 frontotemporal lobar degeneration (FTLD) pa-
tients (nine with behavioral variant frontotemporal
dementia, 13 with semantic dementia, and eight with pro-
gressive nonfluent aphasia), they obtained 61% accuracy in
detecting the subjects’ FTLD subtype, significantly better
than the random diagnosis condition, which had 20% accu-
racy. In a binary classification setting, they obtained 88% ac-
curacy in distinguishing nine participants with AD from nine
healthy controls. Similarly, Lehr et al. [25] developed an
automated assessment system and applied it to spoken re-
sponses of subjects on a delayed recall test (Wechsler
Logical Memory test). First, they automatically transcribed
the recordings using an ASR system, then they extracted
the story elements using the Berkeley aligner [26], and
finally they compared those to the story elements manually
identified by the expert examiner. Using a support vector
machine (SVM) classifier applied to 72 participants, they
showed ASR-derived features can distinguish 35 partici-
pants with MCI from 37 healthy controls with a classifica-
tion accuracy of 81%. More recently, Toth et al. [27]
presented an automatic approach for detecting MCI from
speech samples in which participants were asked to talk
about a 1-minute long animated film. They used an ASR sys-
tem to transcribe the recordings and extract acoustic bio-
markers including articulation rate, speech tempo, length
of utterance, duration, and number of silent and filled pauses
(hesitation). Their results show that the SVM classifier
trained on the aforementioned acoustic features can distin-
guish 32 participants with MCI from 19 healthy controls
with an accuracy of about 80%. Based on this prior work,
we sought to improve the ability to extract meaningful
markers of cognitive change from the spontaneous speech
of individuals with MCI or those at risk for MCI.
2. Methods

2.1. Data collection and corpus

The present study was a part of a larger randomized
controlled clinical trial that assessed whether frequent
conversations conducted via webcam and Internet-
enabled personal computers could improve cognitive
function in older persons with either normal cognition



Table 2

Baseline characteristics of participants

Variable Intact, n 5 27 MCI, n 5 14 P-value

Age 78.9 (5.5) 83.4 (8.8) .10

Gender (% women) 63 86 .17

Years of education 16.6 (2.4) 14.0 (2.6) .003

MMSE 28.7 (1.3) 26.9 (2.1) .008

Abbreviations: MCI, mild cognitive impairment; MMSE, Mini–Mental

State Examination.
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or MCI (ClinicalTirals.gov registration number:
NCT01571427). The study protocol and the results have
been described in detail elsewhere [12]. Briefly, in the
larger intervention trial, social interaction sessions were
conducted using semistructured conversations with trained
interviewers for 30 minutes a day, 5 days a week for 6
weeks (i.e., 30 sessions) among the intervention group;
the control group did not have daily video-chat sessions.
Inclusion and exclusion criteria are listed in Table 1.
There was high adherence to the daily video-chat protocol
(89%; range, 77%–100%).

The Clinical Dementia Rating (CDR) scale [28] was
used to classify participants into groups and defined MCI
as CDR 0.5 and cognitively intact as CDR 0. Out of 41 par-
ticipants randomized to the intervention group, 33 con-
sented to allow their daily conversational intervention
sessions to be transcribed for speech characteristic analyses
(21 cognitively intact; 12 MCI). In addition, eight partici-
pants (six cognitively intact, two MCI) recruited during a
pilot-testing study who went through the same intervention
protocol also consented and were included in the study
Table 1

Inclusion and exclusion criteria used in the trial

Inclusion criteria

1. Age 70 years or older

2. CDR 5 0 or 0.5

3. Sufficient vision and hearing to engage in conversation by personal

computer system.

4. Sufficient English language skills to complete all testing.

5. General health status that will not interfere with ability to complete

longitudinal study. Conditions that will likely lead to this problem are

listed in the following in the study exclusions list.

Exclusion criteria

1. Plan to start taking new classes, traveling which requires more than

two nights of stay away, or having significant social events such as a

family wedding or a family reunion, during the scheduled prevention

trial.

2. Diseases associated with dementia such as AD, ischemic vascular

dementia, normal pressure hydrocephalus, or Parkinson’s disease.

3. Significant disease of the central nervous system such as brain

tumor, seizure disorder, subdural hematoma, cranial arteritis.

4. Current (within the last 2 years) alcohol or substance abuse

5. Current major depression, schizophrenia, or other major psychiatric

disorder

6. Unstable or significantly symptomatic cardiovascular disease such as

coronary artery disease with frequent angina, or congestive heart

failure with shortness of breath at rest.

7. Active systemic cancer within 5 years of study entry.

8. Illness that requires .1 visit per month to a clinician.

9. Progressive vision loss (age-related macular degeneration already

beginning to significantly degrade vision).

10. Need for oxygen supplementation for adequate function.

11. Medications:

A. Frequent use of high doses of analgesics.

B. Sedative medications except for those used occasionally for

sleep (use limited to no more than twice per week).

C. Applicable to CDR 5 0.5 group only: subjects on unstable

dosing of cholinesterase inhibitors (need to be stable dosing for

2 months).

Abbreviations: CDR, Clinical Dementia Rating; AD, Alzheimer’s disease.
described here, resulting in a total of 41 participants. The
transcribed interviewees’ speech during their daily chat ses-
sions over 6 weeks was analyzed in this study. Table 2 re-
ports the baseline characteristics of participants including
age, education, gender, and Mini–Mental State Examina-
tion scores.

2.2. Language analysis using LIWC

Our proposed method explores automating the identifica-
tion of individuals withMCI using computational analysis of
narrative language samples. We extract linguistic features
using LIWC from manual transcription of unstructured con-
versations between interviewers and participating older
adults as indicators of how participants and interviewers
interact during the conversation.

LIWC2001, which we refer to as LIWC in this study, in-
cludes more than 2500 words or word stems categorized
into groups of words known as “word subcategories” that
tap a particular cluster of related words (e.g., negative
emotion words). There are 68 word subcategories in
LIWC each titled with a representative term that generates
an overall “subcategory scale.” For example, a group of
job-related words such as “Employ,” “Boss,” and “Career”
are grouped into a word subcategory of “Occupation.”
These word subcategories further cluster into five broader
domains termed “word categories”: (1) Linguistic Dimen-
sions, (2) Psychological Processes, (3) Relativity, (4) Per-
sonal Concerns, and (5) Spoken Categories [9]. Each of
these broad word categories includes words that represent
a particular conceptual domain; for example, Linguistic Di-
mensions groups all personal and impersonal pronouns.
Psychological processes denotes affective or emotional cat-
egories of words such as “Positive Emotion” and “Negative
Emotion” subcategories, as well as cognitive processes
such as a “Causation” subcategory, and social processes
such as “Family” and “Friends” subcategories. Relativity
includes a group of words that denote “Time” such as
the tense of verbs, “Space,” and “Motion.” Personal Con-
cerns includes a group of categories associated with per-
sonal matters such as occupation, financial issues, and so
forth. Finally, the Spoken Categories class includes three
categories of “Swear Words” such as crap and goddam,
“Nonfluencies” such as hm and umm, and “Fillers” such
as youknow. Table 3 provides a comprehensive list of the
default LIWC word categories, subcategory scales,
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Table 3

LIWC2001 output variable information

Category

Subcategory

scale Examples

Count of

words

Linguistic

processes

Total pronouns I, our, they 70

1st person singular I, me, my 9

1st person plural we, us, our 11

Total 1st person I, we, me 20

Total 2nd person you, you’ll 14

Total 3rd person she, their, them 22

Negations no, not, never 31

Assent agree, OK, yes 18

Articles a, an, the 3

Prepositions to, with, above 43

Numbers Second, thousand 34

Personal

concerns

Occupation work, class, boss 213

School class, student, college 100

Job employ, boss, career 62

Achievement goal, hero, win 60

Leisure activity TV, chat, movie 102

Home apartment, kitchen 26

Sports football, game, play 28

TV and movies TV, sitcom, cinema 19

Music tunes, song, CD 31

Money income, cash, owe 75

Metaphysical God, church, coffin 85

Religion altar, church, mosque 56

Death dead, coffin, kill 29

Physical states ache, breast, sleep 285

Body states ache, heart, cough 200

Sex and sexuality lust, penis, fuck 49

Eating eat, swallow, taste 52

Sleeping sleep, bed, dreams 21

Grooming wash, bath, clean 15

Psychological

processes

Affective happy, ugly, bitter 6

Positive emotion happy, pretty, good 261

Positive feelings happy, joy, love 43

Optimism Certainty, pride, win 69

Negative emotion hate, worthless, enemy 345

Anxiety nervous, afraid, tense 62

Anger hate, kill, pissed 121

Sadness grief, cry, sad 72

Cognitive process cause, know, ought 312

Causation because, effect, hence 49

Insight think, know, consider 116

Discrepancy should, would, could 32

Inhibition block, constrain 64

Tentative maybe, perhaps, guess 79

Certainty always, never 30

Sensory process see, touch, listen 111

Seeing view, saw, look 31

Hearing heard, listen, sound 36

Feeling touch, hold, felt 30

Social process talk, us, friend 314

Communication talk, share, converse 124

Other references 1st, 2nd, 3rd 54

Friends pal, buddy, coworker 28

Family mom, brother, cousin 43

Humans boy, woman, group 43

Relativity Time hour, day, o’clock 113

Past verb walked, were, had 144

Present verb walk, is, be 256

Future verb will, might, shall 14

Space around, over, up 71

(Continued )

Table 3

LIWC2001 output variable information (Continued )

Category

Subcategory

scale Examples

Count of

words

Up up, above, over 12

Down down, below, under 7

Inclusive with, and, include 16

Exclusive but, except, without 19

Motion walk, move, go 73

Spoken

categories

Swear words damn, fuck, piss 29

Nonfluencies uh, rr* 6

Fillers youknow, Imean 6

Abbreviation: LIWC, Linguistic Inquiry and Word Count.

NOTE. List of the default LIWC word categories (first column), subcat-

egory scales (second column), a few examples from word subcategories

(third column), and frequency of words found in each word subcategory

(forth column).
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examples from word subcategories, and count of words that
exist in each word subcategory. The selection of words
defining the LIWC categories involved multiple steps
over several years, initially, to collect groups of words rep-
resenting basic emotional and cognitive dimensions. Here,
we briefly review the development steps of LIWC and refer
readers to the LIWC user’s manual [9] for more detail.

First, sets of words were generated for each word sub-
category. Next, using several sources, such as the positive
and negative affect scales [29] for the Psychological Pro-
cesses word category, relevant words were generated by a
group of 3–6 judges for all word subcategories. Then, three
independent judges indicated whether each suggested word
properly fits within its word subcategory. Words for which
judges could not decide on appropriate category placement
were discarded. A majority voting among judges deter-
mined final candidates to each word subcategory. Percent-
ages of agreement for judges ratings were acceptable for all
LIWC word subcategories ranging from a low of 86%
agreement for the subcategory of “Optimism” to 100%
agreement for the subcategory of “Humans.” One should
note that each word or word stem may be part of one or
more word subcategories in LIWC. For example, the
word “cried” is part of four word subcategories: “Sadness,”
“Negative Emotion,” “Affective,” and “Past Tense Verb.”
Detailed information about LIWC word categories can be
found in [30]. LIWC has been widely used in a range of
applications, and its reliability has been validated for a
range of problems such as linguistic analysis of social me-
dia [31] or analyzing and discovering personality traits
[32]. In this study, we use LIWC to automatically distin-
guish participants with MCI from healthy controls using
linguistic features extracted from the content of sponta-
neous conversation.

Our linguistic analysis of transcriptions began with
grouping spoken words into 68 LIWC word subcategories.
Note that raw transcriptions are stemmed before splitting
into word categories. The stemming process refers to
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extracting the stem or root of words so that words with the
same roots such as “book” and “books” fall into the same
word subcategory. Next, we count the number of words
that fall into each word subcategory. This generates a vec-
tor of 68 dimensions referring to 68 word counts on each
word subcategory. Some words may not belong to any of
LIWC word categories and these are discarded; 39.8% of
words were found unclassifiable to any of the 68 word cat-
egories. Because the total number of words spoken by par-
ticipants at interview sessions is not equal, the dynamic
range of features may vary among participants and this
may confound classification performance. To address
this issue, we normalize each count by dividing it by
the total number of words. We treat this vector as an input
feature vector to our classification algorithm. Moreover, to
study the relative importance of each group of the five
word categories for distinguishing participants with MCI
from those with intact cognition, we train five different
classifiers each with linguistic features derived only
from one of the main groups of word categories in a sec-
ondary analysis. Fig. 1 represents the block diagram of
our proposed method for extracting and modeling linguis-
tic features of participants’ transcriptions to distinguish
participants with MCI from those with intact cognition.
In the next section, we present the learning strategies
and experimental setup.
2.3. Learning strategies

To explore the effectiveness of different learning methods
in distinguishing participants with MCI from those with
intact cognition, we trained statistical models based on
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Fig. 1. Block diagram of extracting and modeling linguistic features of participan

cognition. Abbreviation: MCI, mild cognitive impairment.
extracted linguistic features using two widely employed
machine learning algorithms: (1) SVM [33] and (2) random
forest classifier (RFC) [34].

2.3.1. Problem definition
Distinguishing participants with MCI from those with

intact cognition can be cast into a hypothesis test problem,
in which true and null hypotheses,H1 andH0, are the predic-
tion of the participant as MCI and cognitively intact, respec-
tively. Given a set of linguistic features derived from the
transcription of conversational interviews, one must first
train statistical models of MCI and cognitively intact classes
that well represent inherent characteristics of bothH1 andH0

hypotheses. The efficiency of this process, known as model
training, depends on the quality of extracted features as well
as the discriminant power of the learning algorithm that sep-
arates classes with the highest margin. Let the D-dimen-
sional linguistic feature vectors (D is total number of
features) extracted from the transcription of a participant
be xi and yi˛{11,21} his or her class label where 1 and 21
represent the participant’s cognitive status (MCI vs. intact).
Thus, we need to learn a classification function f(x), that
predicts the subject’s label from the available training
data D 5 (xi,yi); i 5 1,.,n, where n is the total number of
participants.

2.3.2. Classification algorithms
SVMs [33] are among the best supervised learning

methods widely used in pattern recognition, classification,
and regression problems. A SVM classifier constructs a
hyperplane in a high-dimensional space to best discriminate
data points belonging to different classes. In nonlinear cases,
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SVM leverages from a mathematical technique called
Kernel trick [35] to first map input features into a high-
dimensional space and then find a hyperplane that maxi-
mizes the class margin. One of the main advantages of
SVM is its effectiveness in cases where the dimension of
feature vectors is greater than the number of training sam-
ples. This makes the use of SVM particularly suitable in
our experiment where there is a relatively small pool of sub-
jects versus the minimum feature dimension of 68. We train
a linear SVM classifier as well as a nonlinear SVM classifier
with a radial basis function (RBF) kernel used from the
open-source Scikit-learn toolkit [36] independently for
different sets of features from LIWC. In the machine
learning literature [35], a nonlinear SVM is recommended
for classifying data points that are not linearly separable.
We also use an RFC [34] that trains a number of decision
tree classifiers on randomly drawn subsamples of the data
set and then combine these decision tree classifiers to
improve the predictive accuracy and to control overfitting.
When a new input sample is entered into the RFC, it is first
classified by all of the decision trees and then votingmajority
criteria will estimate the class label of the input sample. The
simplest classification function, referred to as “Chance” in
our experiments, is a random classifier that corresponds to
randomly classifying all subjects into two classes.

2.3.3. LIWC features
Before describing our different modeling strategies, we

outline the feature extraction procedure in this task. Tran-
scriptions of the recordings were produced by nonprofes-
sional transcribers via the Amazon Mechanical Turk
(AMT) crowd-sourcing platform. To assess the quality of
transcriptions, we randomly picked four interview sessions
(125 minutes total) and evaluated the word error rate
(WER) between transcriptions provided by AMT nonprofes-
sional and professional transcribers. The WER that
measured the percentage of deleted, inserted, and substituted
words in the AMT transcriptions with respect to the refer-
ence (gold standard) professional transcriptions was approx-
imately 15% suggesting an acceptable agreement between
AMT-derived and reference transcription. From the tran-
scription of interviewees recordings, we grouped spoken
words using the LIWC lexicon into 68 different subcate-
gories and counted the number of words grouped in each
subcategory of LIWC as a representative feature. This
resulted in a 68-dimensional feature vector representing
the linguistic information of each participant. As noted
earlier, each feature was normalized by the total word count
of each participant. In addition, we examined the relative
importance of each main group of word categories of
LIWC in our classification problem.

2.3.4. Cross-validation
To validate how our statistical analyses and experi-

mental results were independent of our data sets, we used
cross-validation (CV) techniques in which the train and
test sets are rotated over the entire data set. We used a
five-fold cross-validation scheme, setting all model param-
eters using four of the sets as the training set, and using the
fifth one only for reporting the performance estimates.
Parameters of the optimal SVM model were determined
on the training set separately for each fold via grid search
and cross-validation.

2.3.5. Performance criteria
To evaluate the performance of the proposed classifier,

we adopted the following evaluation metrics: (1) Accu-
racy—in our binary classification, accuracy is the propor-
tion of participants that are correctly identified in both
intact and MCI classes divided by the total number of par-
ticipants. The accuracy itself does not represent the per-
formance of the model due to the imbalanced number of
participants in our cohort; (2) Sensitivity—the portion of
correctly identified MCI participants (true positives).
Sensitivity (SE) assesses the capability of the model to
distinguish MCI from cognitively intact participants; (3)
Specificity—the portion of correctly identified cognitively
intact participants (true negative). Specificity (SP) mea-
sures how well the model is at avoiding false positives;
(4) Area under the curve of receiver operating character-
istics (AUC-ROC)—the most common method for evalu-
ating the performance of a binary classifier is the
receiver operating characteristics [37], which plots the
sensitivity (true positive rate) of the classifier versus 1
2 specificity (false positive rate) of the classifier as the
classification threshold varies. We use a classification
threshold in a grid search schema to cover the most pos-
itive threshold (everything true) to the most negative
threshold (everything false). In our experimental setup,
we report the average over five iterations of the CV for
every performance criteria.

2.3.6. Imbalanced data
Because of the imbalanced number of participants in

our cohort, partitioning data into train and test sets via
CV could result in an imbalanced test set. For example,
in a five-fold scenario, randomly assigning 20% of 41 par-
ticipants, 14 with MCI and 27 cognitively intact, into the
test set might result in a case where one MCI participant
coincides with seven cognitively intact participants in the
test set. This will result in a highly imbalanced test set in
which performing CV will negatively affect the overall
conclusion on the performance of the classifier. We tackle
this potential issue through an iterative process. First, we
randomly permute the entire data, perform five-fold CV,
and accumulate averaged scores at the end of each itera-
tion. Next, we calculate the overall performance by taking
the average of 5-fold CV scores across iterations. The iter-
ation is repeated until the overall performance converges
to a steady state. Our experiments showed that after about
200 iterations of 5-fold CV, the overall performance
converged.



Table 4

Comparison of performance of different classifiers distinguishing

participants with MCI from those with intact cognition

Classifier Sensitivity Specificity Accuracy AUC-ROC

Chance 30.0 76.0 60.0 52.2

Nonlinear SVM

(RBF)

53.2 88.2 76.2 71.2y

Linear SVM 60.96 77.5 71.9 69.2y

Linear

SVM 1 L1-norm

72.7 72.4 72.4 72.5y

RFC 6.51 72.3 74.7 68.2y

Abbreviations: MCI, mild cognitive impairment; AUC-ROC, area under

the curve of receiver operating characteristics; SVM, support vector ma-

chine; RBF, radial basis function; RFC, random forest classifier.

NOTE. yP , .05.
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3. Results

Using features extracted from the LIWC lexicon, we
compared the performance of the aforementioned classifiers
for distinguishing participants with MCI from those cogni-
tively intact controls. As discussed earlier, the number of lin-
guistic features extracted from transcriptions here is larger
than the number of participants. Given this scenario, the
learning task is an ill-posed problem without a unique solu-
tion for the linear function. The simplest solution to this
problem is to automatically eliminate those features that
are not informative. This can be performed by augmenting
the cost function of the SVM classifier with a regularization
term that penalizes large values of the regression coeffi-
cients, driving them to zero when they are not useful. In
our experiments, we used a L1-norm regularization term
that is well known in applications requiring sparse solutions,
assigning zero values to useless regression coefficients [38].

The results are reported in Table 4 for the five-fold
cross-validations. The performance of SVM classifiers
with linear and RBF kernels as well as RFC in terms of
Sensitivity, Specificity, Accuracy, and AUC-ROC are
shown. We also repeated the experiment using a Chance
classifier which randomly assigned participants into MCI
Table 5

Comparison of performance using linguistic features extracted from five LIWC m

LIWC categories

Number of

features Sensitivity

Linguistic dimensions 17 64.37

Chance 17 30.7

Psychological processes 25 63.93

Chance 25 32.1

Relativity 10 80.77

Chance 10 30.6

Personal concerns 19 70.3

Chance 19 30.1

Spoken categories 3 43.45

Chance 3 30.7

Abbreviations: LIWC, Linguistic Inquiry and Word Count; MCI, mild cognitive

teristics (best result indicated in bold).

NOTE. yP , .05.
and intact classes. Results indicate that all SVM classifiers
and RFC perform significantly better than “Chance” (P-
value of ,.05), according to the cross-validated paired t-
test [39] (y denotes statistically significant results). As it
is shown in Table 4, the SVM model with linear kernel
and a L1-norm regularization term outperforms nonlinear
SVM with an RBF kernel as well as the RFC in terms
of AUC-ROC.
3.1. Effectiveness of LIWC dimensions in extracted
linguistic features

Word categories in the LIWC2001 are generally arranged
hierarchically, composed of five main classes of word cate-
gories: Personal Concerns, Relativity, Psychological Pro-
cesses, Linguistic Dimensions, and Spoken Categories. In
our initial experiment, we simply grouped spoken words
into 68 LIWC word categories, and the resulting 68-
dimensional linguistic features were used for learning MCI
and intact SVM models. To study the relative importance
of each group of the five word categories for distinguishing
participants with MCI from intact volunteers, we used five
different SVM models each with linguistic features derived
only from one of the main groups of word categories in a sec-
ondary analysis.

The results for five-fold cross-validation are reported in
Table 5 for the SVM model with the linear kernel and L1-
norm regularization term. In this analysis, linguistic fea-
tures extracted from the Linguistic Dimensions category
by itself are not particularly effective at this task. Features
from Spoken Categories are also not informative and under-
perform noticeably compared to other classes of features.
This might be due to the small size of the feature set
(only three features) derived from this category. In contrast,
results show that features derived from Psychological Pro-
cesses and Personal Concerns significantly outperformed
the “Chance” classifier. Features from the Relativity class
are best at distinguishing participants with MCI with sensi-
tivity of 81% and AUC-ROC of 80%. Interestingly, this
ain groups of word categories, for distinguishing MCI subjects

Specificity Accuracy AUC-ROC

55.43 69.0 62.2

76.3 60.9 53.5

67.8 62.12 64.96y

76.9 61.8 54.5

75.83 83.33 79.61y

76.2 60.9 53.4

62.60 74.60 68.30y

76.1 60.7 53.1

67.23 59.11 55.34

76.3 60.9 53.5

impairment; AUC-ROC, area under the curve of receiver operating charac-



Table 6

Baseline characteristics of subsampled participants

Variable Intact, n 5 15 MCI, n 5 14 P-value

Age 79.4 (5.1) 83.4 (8.8) .15

Gender (% women) 63% 86% .17

Years of education 14.8 (1.37) 14.0 (2.6) .31

Abbreviation: MCI, mild cognitive impairment.
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category alone noticeably outperforms the system in which
all 68 features are used.
3.2. Influence of education level

According to Table 2, there was a significant differ-
ence in the years of education between participants
with MCI and those who are cognitively intact. It is
possible that the level of education may significantly in-
fluence verbal abilities regardless of cognitive decline
[40]. To control for education, we repeated the analysis
with a subset of participants from the intact group that
better matches the education level of participants in the
MCI group. Table 6 reports the baseline characteristics
of subsampled participants of more equal educational
level and results are shown in Table 7. In this secondary
analysis, the classifier trained on the features from the
Relativity word category outperformed other classifiers.
In addition, comparing results with those previously
shown in Table 5 suggests that education plays a signifi-
cant role in this study. Finally, we performed an analysis
using a Student t-test on the averaged percentage of
words that fall into the Relativity word category across
spoken words of all participants from both MCI and
intact classes. MCI participants used significantly more
words (P , .001) than intact participants from word sub-
categories of the Relativity word category. This also indi-
cates that MCI participants use more “verbs” than healthy
controls according to Table 3. One of our speculations in
this regard is that complex sentences could involve more
words that just verbs (articles, adjectives, etc.) and there-
fore, more number of verbs indicate that sentence
complexity is simpler among the MCI subjects. However,
Table 7

Distinguishing 14 MCI from 15 cognitively intact participants with characteristic

LIWC categories

Number of

features Sensitivity

Chance 68 57.31

All categories 68 77.55

Linguistic dimensions 17 59.85

Psychological processes 25 69.93

Relativity 10 74.23

Personal concerns 19 65.21

Spoken categories 3 47.8

Abbreviations: MCI, mild cognitive impairment; LIWC, Linguistic Inquiry and

teristics (best result indicated in bold).

NOTE. yP , .05.
because of limited literature to support our hypothesis,
we can not provide any in-depth explanation.
4. Discussion

In summary, we have reported our experiments on dis-
tinguishing MCI from cognitively intact older adults solely
from the spontaneous speech recorded from conversational
engagement sessions held for 41 study participants. Our
results show that MCI participants can be distinguished
from cognitively intact older adults with an accuracy of
84% using LIWC-driven features. Interestingly, combining
all features from 68 word categories resulted in poorer per-
formance suggesting that some word categories in the
LIWC are not suitable for this task. We found that the lin-
guistic features derived from word subcategories belonging
to the Relativity word category are significantly better at
capturing cues with MCI participants as compared to other
classes in the LIWC lexicon and give the best classification
results. However, this study is not able to explain the
cognitive basis for the high performance achieved by the
Relativity word category achieve high performance in
this task. The linguistic approach used here could be
applied to preclinical trials where enriching the study
cohort with high-risk subjects and more sensitive outcomes
to change are required. Standardized linguistic analysis of
spontaneous conversations has the advantage of providing
a measure of cognitive function that is inherently person-
specific, conveniently captured and ecologically more valid
than commonly used constrained psychometric testing ses-
sions However, despite this promise, a current important
limitation to this approach is that the analysis relies on
high-fidelity transcription of the conversations which is la-
bor intensive. However, we anticipate that there will be
continued major advances in the accuracy of automated
speech recognition, and thus, this methodology could be
widely adopted in clinical practice to screen or identify
those at risk of MCI and/or dementia in communities as
well as for monitoring progression of disease. In addition
to improvements in automated speech recognition for
data capture, considerable work remains to improve
s reported in Table 6 using LIWC feature sets

Specificity Accuracy AUC-ROC

46.46 51.47 51.89

47.23 61.81 62.39y

55.13 65.28 57.49

37.0 52.73 53.46

78.70 76.42 76.46y

51.83 58.11 58.52

51.7 44.45 49.75

Word Count; AUC-ROC, area under the curve of receiver operating charac-
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accuracy of the classification algorithms. Our linguistic
analysis did not incorporate many other potentially useful
features, relying entirely on the LIWC feature set. This
approach ignores sentence structure and other contextual
information. The word-based approach using LIWC misses
the word context and would miss cases such as “not too
bad.” A valuable avenue for future research would be to
explore the feasibility of natural language processing tech-
niques to address this drawback using more sophisticated
methods of linguistic analysis. Furthermore, when applying
this approach in clinical trials or to the general population,
one would typically add other potentially predictive
features to the classification model such as age, gender,
education, and family history of dementia. Future studies
will need to examine larger and more diverse populations
over time and explore the possible cognitive bases
behind the findings of the present study.
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RESEARCH IN CONTEXT

1. Systematic review: Early cognitive deficit observed
in Alzheimer’s affects linguistic ability. Indicators
of mild cognitive impairment (MCI) may be present
in the content of spoken language in older adults and
can be useful in distinguishing those with MCI from
those who are cognitively intact.

2. Interpretation: We performed linguistic analysis of
spoken words to classify 14 participants with mild
cognitive impairment (MCI) from 26 with intact
cognition. Applying support vector machine classi-
fier on extracted linguistic features, we classified
MCI participants with accuracy of 84%, well above
the chance, 60%.

3. Future direction: The linguistic approach used here
could be applied to preclinical trials where enriching
the study cohort with high-risk subjects and more
sensitive outcomes to change are required.
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