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Small-study effects are a common threat in systematic reviews and may indi-
cate publication bias. Their existence is often verified by visual inspection of
the funnel plot. Formal tests to assess the presence of funnel plot asymmetry
typically estimate the association between the reported effect size and their stan-
dard error, the total sample size, or the inverse of the total sample size. In this
paper, we demonstrate that the application of these tests may be less appropriate
in meta-analysis of survival data, where censoring influences statistical signifi-
cance of the hazard ratio. We subsequently propose 2 new tests that are based on
the total number of observed events and adopt a multiplicative variance compo-
nent. We compare the performance of the various funnel plot asymmetry tests
in an extensive simulation study where we varied the true hazard ratio (0.5 to 1),
the number of published trials (N = 10 to 100), the degree of censoring within
trials (0% to 90%), and the mechanism leading to participant dropout (nonin-
formative versus informative). Results demonstrate that previous well-known
tests for detecting funnel plot asymmetry suffer from low power or excessive
type-I error rates in meta-analysis of survival data, particularly when trials are
affected by participant dropout. Because our novel test (adopting estimates of
the asymptotic precision as study weights) yields reasonable power and main-
tains appropriate type-I error rates, we recommend its use to evaluate funnel
plot asymmetry in meta-analysis of survival data. The use of funnel plot asym-
metry tests should, however, be avoided when there are few trials available for
any meta-analysis.
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1 INTRODUCTION

The presence of small-study effects is a common threat
to systematic reviews and meta-analyses, especially when
it is due to publication bias, which occurs when small

primary studies are more likely to be reported (pub-
lished) if their findings were positive.1,2 The presence
of small-study effects is often verified by visual inspection
of the funnel plot,3-5 where for each included study of the
meta-analysis, the estimate of the reported effect size is
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plotted against a measure of precision or sample size. The
premise is that the scatter of plots should reflect a funnel
shape, if small-study effects do not exist (provided that
effect sizes are not substantially affected by the presence
of between-study heterogeneity). However, when small
studies are predominately in one direction (usually the
direction of larger effect sizes), asymmetry will ensue.
Because an inevitable degree of subjectivity exists in the
interpretation of funnel plots, several tests have been pro-
posed for detecting funnel plot asymmetry.6,7 These tests
may regress effect estimates against their standard error
(the so-called Egger's test), their underlying sample size,8

or the inverse of their underlying sample size.9 Guidelines
for conducting funnel plot asymmetry tests recommend to
include at least 10 studies to maintain sufficient power for
distinguishing chance from real asymmetry.4,10,11

Funnel plot asymmetry tests are currently being used
for numerous types of estimates, such as odds ratios, risk
ratios, and mean differences. As far as we are aware, the
performance of these tests has never been evaluated for
survival data,4,12 and it is unclear whether 10 studies are
indeed sufficient to detect small-study effects in such data.

In this paper, we investigate several approaches to
evaluate small-study effects (funnel plot asymmetry) in
a meta-analysis of hazard (rate) ratios. We propose a
novel test that is tailored for survival data and illus-
trate its implementation in 3 exemplar reviews. After-
wards, we compare their performance in an extensive
simulation study where meta-analyses are generated on a
set of characteristics intended to reflect meta-analyses of
randomized clinical trials in the medical literature. This
simulation study adopts a new probabilistic mechanism
to generate meta-analyses that are affected by selection
but do not necessarily suffer from substantial funnel plot
asymmetry. In this manner, we aim to assess to what
extent funnel plot asymmetry test results can be used as an
indication of publication bias.

2 METHODS
Consider a meta-analysis of randomized trials, each con-
taining a treatment and control group. Let Xij and Tij
denote the allocation group (where Xij = 1 is treated)
and uncensored survival time respectively for subjects i =
1, … ,nj in trial j = 1, … ,m. Assuming a common treat-
ment effect across studies, let 𝛽 denotes the log hazard ratio
of the true treatment effect and β̂j the estimated treatment
effect in trial j. Furthermore, let Δij represents an indica-
tor variable, which denotes for each subject in each study
whether the event occurred during the study period (Δij =
1) or if the survival time was censored (Δij = 0). The total
number of events for study j is then given as dj =

∑nj

i=1 Δij.
Finally, we denote the censoring time points as Lij, such
that the observed follow-up time for each subject is given

as Zij = min(Lij,Tij) and the total follow-up time for study
j is given as zj =

∑nj

i=1 Zij.
The observed data for subject i in trial j consist of

[Xij,Δij,Zij]. Subsequently, it is assumed that each trial
yields a vector of study-level data Sj = [𝛽j, ŜE(𝛽j),nj, dj, zj].
Let V ⊆ S now denotes the study-level data for mpb ≤

m trials that are actually reported in the literature (ie,
published). Below, we consider 5 methods for examining
funnel plot asymmetry in published hazard ratios using
information from V.

The most common method to test the presence of
small-study effects is given as the following (unweighted)
regression model11:

β̂k = a + b ŜE(β̂k) + 𝜖k , 𝜖k ∼ 
(
0, 𝜎2) (E-UW)

where k = 1, … ,mpb and β̂k is the estimated log hazard
ratio in study k. The unknown parameters are the inter-
cept term a, the slope b, and the error variance 𝜎2. Whereas
a indicates the size and direction of the treatment effect,
b provides a measure of asymmetry; the larger its devia-
tion from zero is, the more pronounced the asymmetry is.
Otherwise, if b = 0, there is no association between the
estimated effect sizes β̂k and their corresponding estimates
for the standard error ŜE(β̂k) among the reported studies,
indicating no asymmetry and thus no small-study effects.

It is possible to allow for potential heteroscedastic-
ity by replacing 𝜎2 with a multiplicative overdispersion
parameter7,13 involving v̂ar(β̂k):

β̂k = a + bŜE(β̂k) + 𝜖k , 𝜖k ∼  (0, 𝜙 v̂ar(β̂k)) (E-FIV)

The corresponding model can be implemented by
weighting the study estimates by the inverse variance of
their estimated treatment effect (hence FIV, funnel inverse
variance). Another method of incorporating residual het-
erogeneity is to include an additive between-study vari-
ance component14 𝜏2. The model is then

β̂k = a + bŜE(β̂k) + 𝜖k , 𝜖k ∼  (0, v̂ar(β̂k) + 𝜏2) (TS)

where TS stands for Thompson-Sharp.
There are, however, several problems with using

ŜE(β̂k) as independent (predictor) variable.15,16 First of all,
the independent variable ŜE(β̂k) is estimated from the
observed data and therefore prone to measurement error.17

This error becomes particularly pronounced when stan-
dard errors are derived from small samples,18-20 thereby
causing bias in estimates for the regression slope b. Addi-
tional bias may appear when there is a correlation between
the measurement error and the true value of the indepen-
dent variable.8,16 This effect has previously been discussed
for funnel plot asymmetry tests involving log odds ratios,15

but may also appear when dealing with log hazard ratios.
In general, aforementioned issues imply that estimates
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for b cannot reliably be used for hypothesis testing when
ŜE(β̂k) is used as independent variable in the above men-
tioned regression models with β̂k as outcome. For this
reason, Macaskill et al proposed using study sample size
(nk) as an independent variable8

β̂k = a + b nk + 𝜖k , 𝜖k ∼  (0, 𝜙 v̂ar(β̂k)) (M-FIV)

Again, the intercept term a indicates the size and direc-
tion of the treatment effect, and the slope b provides a
measure of asymmetry. Note that v̂ar(β̂k) is still included
to allow for possible heteroscedasticity, as this strategy was
found to generate favorable type-I error rates.8 To avoid
bias in estimates for b resulting from v̂ar(β̂k), Macaskill
proposed an alternative test where v̂ar(β̂k) is replaced
with the variance of a pooled estimate of the outcome
proportion8:

β̂k = a + b nk + 𝜖k , 𝜖k ∼ 

(
0, 𝜙 1

dk(1 − dk∕nk)

)
(M-FPV)

where FPV stands for funnel pooled variance.
Finally, a modification of Macaskill's test was proposed

by Peters et al to obtain more balanced type-I error rates in
the tail probability areas.6,9

β̂k = a + b 1
nk

+ 𝜖k , 𝜖k ∼ 

(
0, 𝜙 1

dk(1 − dk∕nk)

)
(P-FPV)

Although aforementioned tests have been evaluated for
meta-analyzing odds ratios, their application may be less
appropriate for survival data where censoring influences
statistical significance (and thus selective reporting) of the
hazard ratio. In particular, study sample size has limited
influence on the precision of estimated hazard ratios and is
therefore likely to have limited power for detecting funnel
plot asymmetry of reported hazard ratios. Furthermore,
the study weights from the FPV methods (ie, M-FPV and
P-FPV) are applicable to proportions and may therefore
not be appropriate when some events remain unobserved
because of participant dropout.

For this reason, we propose the following regression tests
that are based on the total number of events:

β̂k = a + b 1
dk

+ 𝜖k , 𝜖k ∼  (0, 𝜙 v̂ar(β̂k)) (D-FIV)

Note that when the event rate is constant over time,
v̂ar (β̂k) can be approximated21 by d−1

k1 +d−1
k2 . In this expres-

sion, dk1 and dk2 represent the number of events in the 2
compared groups (eg, treated or exposed group versus con-
trol or unexposed group) of study k. Hence, when v̂ar (β̂k)
is unknown or derived from small samples, we may use

β̂k = a + b 1
dk

+ 𝜖k , 𝜖k ∼ 

(
0, 𝜙

(
1

dk1
+ 1

dk2

))
(D-FAV)

where FAV stands for funnel approximate variance.
For all methods, a 2-tailed t-test with test statistic

b̂∕ŜE(b̂) and (mpb−2) degrees of freedom can be performed
to formally assess whether asymmetry occurs.22 Hereby, it
is common to use a 10% level of significance because the
number of studies in a meta-analysis is usually low.

3 EXAMPLES

We illustrate the implementation of aforementioned tests
for detecting funnel plot asymmetry in 3 example datasets.

3.1 Meta-analysis of the association
between plasma fibrinogen concentration
and the risk of coronary heath disease
The first example dataset composes of 31 studies in which
the association between plasma fibrinogen concentration
and the risk of coronary heath disease was estimated as
a log hazard ratio separately for each study.23,24 Across the
31 studies, the number of coronary heath disease events
ranged from 17 to 1474 and the follow-up ranged from 4
to 33 years. Because of the low number of events, the pro-
portion of censored events was quite high, with a median
value of𝜋cens = 0.96 (interquartile range , 0.90 to 0.97). The
corresponding funnel plots are provided in Figure 1 and
suggest that reported hazard ratios are larger for (small)
studies with low precision. We subsequently applied the
regression models presented in this article to obtain the
test statistic for funnel plot asymmetry, ie, b̂∕SE(b̂). After-
wards, we applied a 2-tailed t-test with 29 degrees of free-
dom, yielding a P value of <0.01(E-UW), 0.05 (M-FPV),
0.06 (TS), 0.07 (E-FIV), 0.10 (D-FIV), 0.16 (M-FIV), and
0.18 (P-FPV). Hence, given a nominal level of 10%, the
presence of small-study effects was (borderline) statisti-
cally significant for all tests except M-FIV and P-FPV.

3.2 Meta-analysis of the effect
of erythropoiesis-stimulating agents
on overall survival
In 2009, Bohlius et al performed an individual par-
ticipant data meta-analysis to examine the effect of
erythropoiesis-stimulating agents on overall survival in
cancer patients.25 They summarized the hazard ratio of
49 randomized controlled trials that compared epoetin
or darbepoetin plus red blood cell transfusions (as nec-
essary) versus red blood cell transfusions (as necessary)
alone. Also in this example, the proportion of censored
events was quite high, with a median value of 𝜋cens = 0.92
(interquartile range, 0.85 to 0.96). There was little evidence
of between-study heterogeneity (I2 = 0%), and the fixed
effect summary of the hazard ratio was 1.17 with a 95%
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FIGURE 1 Funnel plots for a meta-analysis of the association between plasma fibrinogen concentration and the risk of coronary heath
disease (𝜋cens = 0.96). The vertical line indicates the fixed effect estimate

FIGURE 2 Funnel plots for a meta-analysis of the effect of erythropoiesis-stimulating agents on overall survival (𝜋cens = 0.92). The vertical
line indicates the fixed effect estimate

confidence interval from 1.06 to 1.30. Visual inspection of
the funnel plots in Figure 2 did not indicate any apparent
asymmetry. Aforementioned funnel plot asymmetry tests
yielded a P value of 0.01 (M-FIV and M-FPV), 0.06 (P-FPV),
0.14 (E-FIV), 0.18 (TS), 0.30 (E-UW), 0.50 (D-FAV), and
0.67 (D-FIV). In summary, with exception of the tests pro-
posed by Macaskill and Peters, no evidence was found for
the presence of small-study effects.

3.3 Meta-analysis of adjusted hazard
ratios of total stroke for depressed subjects
versus nondepressed subjects
In 2011, Pan et al conducted a systematic review and
meta-analysis of prospective studies assessing the associa-
tion between depression and risk of developing stroke in
adults.26 The search yielded 28 prospective cohort studies
that reported 8478 stroke cases (morbidity and mortality)
during a follow-up period ranging from 2 to 29 years. Most
of the results were adjusted for age (25 studies), smoking
status (20 studies), body mass index (14 studies), alcohol
intake (9 studies), physical activity (7 studies), and comor-
bidities (23 studies; such as diabetes, hypertension, and

coronary heart disease). The median proportion of cen-
sored events within studies was 𝜋cens = 0.94 (interquartile
range, 0.91 to 0.98). A moderate extent of heterogene-
ity was detected in the meta-analysis (I2 = 66%), and
the hazard ratio from the random-effects model was 1.45
(95% confidence interval, 1.29 -1.63). Visual inspection
of the funnel plot revealed some degree of asymmetry
(Figure 3), and this was confirmed by D-FIV (P = 0.01),
E-FIV (P = 0.04), and TS (P = 0.06). Conversely, the pres-
ence of small-study effects was not supported by P-FPV
(P = 0.11), M-FIV (P = 0.16), M-FPV (P = 0.26), and
E-UW (P = 0.54).

4 SIMULATION STUDY

We conducted an extensive simulation study to assess the
type-I error rates and power of all aforementioned statis-
tical tests.27 Hereto, we generated several scenarios where
we varied the number of generated trials (m), the number
of published trials (mpb = 10, 20, 50, or 100), the size of
the true effect (exp(β) = 1, 0.75, or 0.5), the proportion of
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FIGURE 3 Funnel plots for a meta-analysis of adjusted hazard ratios of total stroke for depressed subjects versus nondepressed subjects
(𝜋cens = 0.94). The vertical line indicates the fixed effect estimate

censored events (𝜋cens = 0%, 30%, or 90%), and the mech-
anism of censoring (noninformative versus informative).
All scenarios were repeated 10000 times.

4.1 Data generation
For each trial, the sample size was generated from a
log-normal distribution with mean 6 and variance 0.6.
This reflects the greater number of small trials com-
pared to large trials as commonly observed in real
meta-analyses and results in a mean size of exp(6 +
0.6∕2) = 545 subjects per trial and a standard deviation
of

√
exp(2 × 6 + 0.62) × (exp

(
0.62

)
− 1) = 318. We subse-

quently generated a survival time for each subject in each
trial according to a Weibull distribution28:

Tij =

(
−

log(u)
𝜆 exp

(
βXij

)
) 1

𝜐

(1)

with u ∼ U(0, 1), shape parameter 𝜐 > 0, and a scale
parameter 𝜆 > 0. We assumed a fixed treatment effect
across trials. We set the probability of receiving a treatment
in each trial to 50%, ie, X ∼ Bernoulli(0.50), and defined 𝛽

as a protective treatment effect such that exp(β) ≤ 1. Fur-
thermore, we chose 𝜆 = 0.03 and v = 0.65 in accordance
with trial data from Hodgkin's disease.29

4.2 Dropout of participants
For each trial, we introduced noninformative censoring to
mimic random dropout of participants. Hereto, we gener-
ated censoring time points Lij from a uniform distribution
U(0,Q), where Q was determined by iteration to yield
the prespecified censoring proportion 𝜋cens.30 The specific
value for Q is then dependent on the choice for 𝜆, 𝜐, 𝛽, and
𝜋cens (Supporting Information).

As an alternative scenario, we also considered informa-
tive right censoring to mimic nonrandom dropout of trial
participants. Hereto, we set the observed survival time Zij
equal to

Zij =
{

Tij ∶ cij = 0
Lij ∼ U

(
0,Tij

)
∶ cij = 1 (2)

with cij ∼ Bernoulli(𝜋cens).

4.3 Analysis of individual trials
After the introduction of participant dropout, each trial
was analyzed using Cox regression to estimate the log
hazard ratio 𝛽 and its corresponding standard error.

4.4 Introduction of small-study effects
For all scenarios, we varied the number of published trials
by considering the following mechanisms of small-study
effects:

1. Absence of small-study effects. All generated trials are
included in the meta-analysis, such that mpb = m.

2. Presence of small-study effects. A predefined fraction
of the generated trials remain unpublished, accord-
ing to mpb = m∕1.20. To determine which trials
remain unpublished, we calculated the one-sided P
value (given a null hypothesis of 𝛽 ≥ 0) for each trial
and subsequently sorted all trials by their P value in
ascending order. The rank for trial j is then given by
rj, which can be used as follows to define the prob-
ability wrj of excluding trial j from the meta-analysis
(Supporting Information):

wrj = arj−1 1 − a
1 − am (3)

Because
∑

wrj = 1 by definition, we can use the
cumulative distribution to iteratively exclude a trial
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(after which we recalculate wrj for the remaining tri-
als) until mpb trials remain for meta-analysis. We here
choose a = 1.2 to ensure that the exclusion probabil-
ity for trial rj is 1.20 times higher than the exclusion
probability for trial rj−1, which implies that the prob-
ability of exclusion modestly increases for trials with
larger P values. Figure S1 indicates that for m = 11
generated trials, the study with the smallest P value has
an exclusion probability of 3% whereas the study with
the largest P value has an exclusion probability of
19%. When the number of generated trials increases to
m = 101, exclusion probabilities range from 2e-7% (for
rj = 1) to 17% (for rj = 101).

4.5 Evaluation of funnel plot asymmetry
For all scenarios, we evaluated the presence of funnel
plot asymmetry using aforementioned regression models.
When applying M-FPV, P-FPV, D-FIV, or D-FPV, we added
0.5 to dk1 and dk2 and 2 to nk for trials with zero cell counts.
We subsequently used a 2-tailed t-test with mpb−2 degrees
of freedom and a nominal level of 10%.

We estimated the type-I error rate of each test by cal-
culating the total number of positive test results in
the meta-analyses with absence (ie, no missing stud-
ies) of small-study effects. Conversely, for meta-analyses
with presence of small-study effects, the total number of
positive test results was used to estimate the power of
each test.

All methods were implemented in R. The corre-
sponding source code is available from the Supporting
Information.

5 RESULTS

For the sake of simplicity, we here focus on funnel plot
asymmetry tests that use the inverse variance of the esti-
mated treatment effect as weight in the regression anal-
ysis (ie, E-FIV, M-FIV, and D-FIV). We also discuss the
performance of TS, as this is the only method adopting
an additive heterogeneity component. The correspond-
ing results are presented in Figure 4 (type-I error rates)
and Figure 5 (power) for scenarios with noninformative

FIGURE 4 Type-I error (false positive) rates in the absence of small-study effects. Results are presented for 3 variations of the true hazard
ratio (0.5, 0.75, and 1) and for 3 variations of noninformative participant dropout within trials (values for 𝜋cens by row). Results for each
scenario are based on 10 000 simulations
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FIGURE 5 Power (true positive) rates in the presence of small-study effects. Results are presented for 3 variations of the true hazard ratio
(0.5, 0.75, and 1) and for 3 variations of noninformative participant dropout within trials (values for 𝜋cens by row). Results for each scenario
are based on 10 000 simulations

dropout of participants. Results for the other tests (E-UW,
P-FPV, M-FPV, and D-FAV) and for scenarios involving
informative dropout of participants are presented in the
Supporting Information.

5.1 Absence of small-study effects
Results in Figure 4 demonstrate that all FIV tests
(E-FIV, M-FIV, and D-FIV) yielded appropriate type-I
error rates (ie, around 10%) when there was no under-
lying effect of treatment. In scenarios where treatment
efficacy was present, tests that use (estimates of) the
standard error as independent predictor variable (E-UW,
E-FIV, and TS) tended to yield excessive type-I error
rates when meta-analyses included many studies or when
studies were affected by informative dropout (Figure
S5). For instance, when the true hazard ratio was 0.50
(given m = 100, 𝜋cens = 0.90), the type-I error rate of
E-FIV was 12% (noninformative dropout) and, respec-
tively, 24% (informative dropout). Results in Figure S3
further indicate that problematic type-I error rates also
occurred for E-UW (with estimates as high as 76%) and,
in cases of excessive dropout, for P-FPV and D-FAV.

Conversely, we found that type-I errors were below the
nominal level for TS in meta-analyses with few studies and
for D-FIV in meta-analyses with substantial participant
dropout.

5.2 Presence of small-study effects
The power for detecting small-study effects was relatively
low for all tests, particularly when few trials were avail-
able for meta-analysis (Figure 5). For instance, the power
of D-FIV was only 10% when exp(β) = 1.00, 𝜋cens = 0, and
mpb = 10. As anticipated, we found that the power of all
tests substantially improved as more trials were included
in the meta-analysis. The highest power was achieved by
E-UW and E-FIV (which also yielded the highest type-I
error rates). Results in Figures S4, S6, and S8 further
indicate that M-FIV and M-FPV yielded low power across
all situations and that TS yielded low power when there
was no underlying treatment effect (exp(β) = 1.00). Con-
versely, P-FPV and D-FAV performed relatively well in
cases of excessive dropout. Finally, the power of all tests
was not much affected by the presence of informative
dropout (Supporting Information).
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6 DISCUSSION

Small-study effects are a major concern in systematic
reviews as they may signal publication bias, such that
small studies with less favorable results are potentially
missing from the meta-analysis. For this reason, it is gen-
erally recommended to evaluate and formally test fun-
nel plot asymmetry, provided that sufficient studies are
available.4,10 Because most tests for evaluating small-study
effects were designed for meta-analysis of odds ratios, we
performed a simulation study to verify whether their use
is also justified in survival data where hazard ratios are to
be synthesized.21 In particular, because survival data are
often affected by censoring, common predictors of funnel
plot asymmetry (such as total sample size) may no longer
be reliable.

In line with previous findings,7-9,31 our results demon-
strate that the performance of funnel plot asymmetry
tests is rather poor. Most tests yield inadequate type-I
error rates or suffer from low power, also when applied
to meta-analysis of survival data. Although Egger's tests
(E-UW and E-FIV) achieve the highest power, their type-I
error rates are too high, particularly when many studies
are available for meta-analysis or when they are affected by
informative dropout. Conversely, other existing tests with
appropriate type-I error rates tend to have poor power. This
clearly casts doubt about the clinical utility of funnel plot
asymmetry tests for assessing the presence of small-study
effects in meta-analyses of survival data. We therefore
developed a novel test that yields higher power than exist-
ing tests with appropriate type-I error rates. Our novel test
D-FIV is loosely based on the test proposed by Peters et al22

but adopts different study weights and uses the inverse
of the number of events, rather than the inverse of the
total sample size. Although D-FIV and Peters' test per-
formed very similar in the absence of participant dropout,
D-FIV yields more favorable type-I error rates in the pres-
ence of censoring. For this reason, its use appears more
appropriate when dealing with time-to-event data.

Although D-FIV and D-FAV are not designed for
meta-analyses with binary outcomes, they may offer an
appealing choice when observed event rates are close to
1. In particular, results from the simulation study demon-
strate that P-FPV and M-FPV become problematic when
all participants experience an event (as study weights are
no longer identifiable) and that other tests suffer from low
power (M-FPV and M-FIV) or inappropriate type-I error
rates (E-UW and E-FIV). In most situations, however,
D-FIV, D-FAV, and P-FPV are likely to perform similarly
when participant dropout is not an issue as the total num-
ber of events is then strongly related to the total sample
size (provided that baseline risk and treatment effects do
not vary much across studies).

Because it has been argued that the statistical ratio-
nale for a multiplicative variance inflation factor is rather
weak,14 further improvements of D-FIV and D-FAV are
possible by considering an additive between-study het-
erogeneity component (as implemented by TS). Recent
simulation studies suggest that TS-related models per-
form relatively well in the presence of between-study
heterogeneity,31,32 but have limited power when the extent
of between-study heterogeneity is low. Our results indicate
that in the absence of heterogeneity, TS essentially trades
power to reduce type-I error rates. This effect is rather
problematic, as the power of most funnel plot asymmetry
tests is already very low. Furthermore, the implementation
of TS-related models requires careful thought with respect
to distributional assumptions and estimation methods.15

Previously, Sterne et al recommended 10 or more stud-
ies for testing for funnel plot asymmetry.4 However, results
from our simulation study indicate that even when many
(≥ 50) studies are available for meta-analysis, the power
for detecting the presence of small-study effects usually
remains below 50%. The performance of the presented fun-
nel plot asymmetry tests may further deteriorate when
studies are relatively small or have limited follow-up (and
continuity corrections are needed)33 or when larger stud-
ies are conducted more often in settings with small event
probabilities. For this reason, it will often be necessary to
explore alternative strategies to address whether report-
ing biases are of any concern. Suggestions for this have
recently been proposed.4,10,12

The methods discussed in this paper merely test for the
presence of funnel plot asymmetry. Several authors have
discussed the implementation of alternative methods that
attempt to correct meta-analyzed estimates of treatment
effect for the presence of small-study effects.34-37 These
methods make different assumptions about the mecha-
nisms of selective reporting and can be applied even
when there is no evidence of funnel plot asymmetry. How-
ever, it has also been shown that in the strong presence
of small-study effects, regression-based approaches may
still be preferred.38 In any case, the methods presented in
this paper should not be used for assessing the quality
of a meta-analysis, but rather to explore the presence of
small-study effects and to facilitate the conduct of sensitiv-
ity analyses to the potential impact of publication bias. Fur-
ther, it is important to recognize that small-study effects
may rather be caused by heterogeneity than by publica-
tion bias.39 Although we did not generate heterogeneous
hazard ratios in our simulation study, recent studies have
demonstrated that the performance of most funnel plot
asymmetry tests deteriorates when reported effect sizes are
substantially heterogeneous.15,32

In conclusion, when examining the presence of
small-study effects in meta-analyses of hazard (rate) ratios,
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we recommend the use of our novel test D-FIV. Our test is
loosely related to Peters' regression test but achieves better
type-I error rates when studies are affected by partici-
pant dropout. However, because funnel plot asymmetry
does not necessarily arise because of small-study effects,
and because proper testing of funnel plot asymmetry
requires access to many studies, their implementation is
no panacea against selective reporting.4 Further, with few
studies available for meta-analysis, all tests have very low
power for asymmetry detection of hazard ratios and thus
are best avoided.
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