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Abstract: In recent years, tremendous progress has been made in understanding the roles of extracel-
lular vesicles (EVs) in cancer. Thanks to advancements in molecular biology, it has been found that
the fraction of EVs called exosomes or small EVs (sEVs) modulates the sensitivity of cancer cells to
chemotherapeutic agents by delivering molecularly active non-coding RNAs (ncRNAs). An in-depth
analysis shows that two main molecular mechanisms are involved in exosomal modified chemoresis-
tance: (1) translational repression of anti-oncogenes by exosomal microRNAs (miRs) and (2) lack of
translational repression of oncogenes by sponging of miRs through long non-coding RNAs (lncRNAs)
and circular RNAs (circRNAs). At the cellular level, these processes increase the proliferation and
survival of cancer cells and improve their ability to metastasize and resist apoptosis. In addition,
studies in animal models have shown enhancing tumor size under the influence of exosomal ncRNAs.
Ultimately, exosomal ncRNAs are responsible for clinically significant chemotherapy failures in
patients with different types of cancer. Preliminary data have also revealed that exosomal ncRNAs
can overcome chemotherapeutic agent resistance, but the results are thoroughly fragmented. This
review presents how exosomes modulate the response of cancer cells to chemotherapeutic agents.
Understanding how exosomes interfere with chemoresistance may become a milestone in developing
new therapeutic options, but more data are still required.
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1. Prima Facie of Extracellular Vesicles (EVs) in Cancer

In recent decades, epoch-making advances in biomedical sciences have made it pos-
sible for us to understand the role of extracellular vesicles (EVs) in the development and
progression of cancer. This is mainly due to the fact that EVs are a universal envoy of biolog-
ical information, and they are able to modulate the cellular phenotype, often changing the
properties of cells diametrically [1,2]. As reflected in the stunning number of publications
on the topic, tremendous progress has been made in understanding the role of EVs in
neoplasia since their first description in 1946 [3,4].

The peculiarity of these structures in tumor formation and evolution may be con-
sidered on multiple levels. EVs are crucial spinning wheels in tumor disease machinery.
Still, to consider these roles more distinctly, they can be viewed in a biological and clinical
context, which is briefly outlined below. The first point of view is about how EVs, through
the transport of biological information from cell to cell, modulate tumor formation and
progression. The second point of view is the clinical use of EVs as non-invasive markers in
cancer diagnosis, prediction of patient outcomes, and treatment response.

EVs are at the forefront of controlling virtually every stage of carcinogenesis [5]. The
indicated phenomenon is possible due to the abundance of EVs and their diversity of
surface protein markers and cargo of non-coding ribonucleic acids (ncRNAs) [6]. Therefore,
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EVs are structures that are released by tumor cells and tumor-associated cells to create
an optimal environment for tumor growth, survival, and metastasis [7–9]. Out of all EV
populations, exosomes are especially known to be involved in modulating the resistance of
cancer cells to chemotherapy and radiotherapy [10,11].

From a clinical perspective, EVs can be used as appropriate biomarkers to evaluate
cancer patient evolution. Many studies have indicated that EVs with high sensitivity
and specificity can be used as liquid biopsies in the diagnosis and prognosis of patients’
outcomes and responses to treatment [12–15]. Additionally, meta-analyses, a powerful
statistical tool, have confirmed the clinical utility of EVs for cancer detection and prog-
noses [16–19]. Let us say, then, that EVs are cancer detection’s ‘ne plus ultra’. That is, a
great deal of scientific effort has been made to prove the clinical utility of EVs in cancer
diagnosis, prognosis, and treatment response assessment. However, we must find tools
to simplify and make inexpensive a process for the robust detection of EVs in body fluids
that can be used in everyday clinical practice. As the later part of our manuscript shows,
modulation of the action of EVs can also reduce or eliminate resistance to chemotherapeutic
agents, a problem seen as the bane of modern oncology.

2. Prima Facie of Extracellular Vesicles (EVs) in Chemoresistance

Despite significant progress in systemic cancer treatment, chemotherapy continues to
be one of the mainstays of therapy for many types of cancer [20]. However, the effectiveness
of chemotherapy is significantly limited by the partial or total insensitivity of neoplastic
cells to cytotoxic drugs. This common phenomenon is referred to as chemoresistance, and
it is estimated to be responsible for treatment failure and for the deaths of over 90% of
patients with cancer [21,22]. This alarming number urges researchers to understand the
mechanisms of drug resistance, as combating it is undeniably crucial to successful treatment.
Basically, two forms of resistance to chemotherapy have been described, namely intrinsic
resistance, where cancer cells have natural drug resistance, and acquired resistance, which
is developed by cancer cells through various molecular mechanisms. These sophisticated
machineries include, among others, active drug efflux, drug inactivation or changing of
the drug target point, forceful DNA repair, and proautophagic, as well as antiapoptotic
activities [23,24]. Currently, the literature emphasizes that EVs are the cardinal modulators
of chemoresistance, which has been confirmed in numerous experimental and clinical
studies [25–28]. Understanding the role of EVs in chemoresistance is therefore key to
explaining the mechanisms of the phenomenon. It is also of great practical importance in
oncological treatment—the use of appropriate EV inhibitors may improve the effectiveness
of anticancer therapy [29]. This review describes the importance of EVs for regulating
cancer cell responses to chemotherapy by focusing on the most up-to-date and clinically
quintessential relationships between EVs and chemoresistance. As our team, a little while
back, noted, most studies have identified the centrality of the role of exosomal ncRNAs in
chemoresistance [30]. Hence, we present here the mechanisms by which these types of EVs
modulate the response to cytotoxic drugs by microRNAs (miRNAs, miRs), long non-coding
RNAs (lncRNAs), and circular RNAs (circRNAs), all of which have a cardinal role in the
regulation of gene expression [31–33]. Studies, described in detail below, have shown that
the primary mechanism of exosome involvement in chemoresistance is the transport of
nucleic acid cargoes from drug-resistant to drug-sensitive cancer cells, thereby enabling
the latter to acquire resistance to treatment. Other non-cancerous cells or tumor microenvi-
ronment (TME) cells, including cancer-associated fibroblasts (CAFs) and tumor-associated
macrophages (TAMs), can induce chemoresistance to cancer via exosomes [25]. Reasoning
from this fact, the studies presented in this review have shown that exosomes may likewise
be involved in the sensitization of cancer cells to cytotoxic drugs. These opposite prop-
erties of exosomes, induction, or reduction of chemoresistance, are determined by their
cargo during intercellular communication [30]. Moreover, exosomes not only modulate the
response to cytotoxic therapy but can also induce radioresistance [34].
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3. Exosomes as Chemoresistance Mediators

The biological properties of exosomes as drivers of chemotherapy resistance have been
confirmed in numerous in vitro and in vivo studies. The most common form of this phe-
nomenon is multidrug resistance (MDR) [24], which can be described as “purchased” cancer
cells resistant to cytotoxic drugs with different chemical structures and modes of action [35].
Below, we present the role of exosomal ncRNAs in these processes, depending on the drug
used in cancer therapy. If such data are available, we mechanistically explain how exosomal
ncRNAs modulate the response of cancer cells to a specific chemotherapeutic agent.

3.1. Resistance to Platinum-Based Therapy

The literature review indicates that three forms of exosomal ncRNAs are involved in
developing cancer cells’ resistance to cisplatin (cis-diamminedichloridoplatinum, DDP):
miR [36,37], lncRNA [38–42], and circRNA [43–49]. Details of the involvement of specific
ncRNA forms in the development of cisplatin resistance are provided below.

Shi et al. showed that exosomal miR-193 promotes cisplatin chemoresistance in
esophageal cancer cells [36]. The authors used two types of esophageal cancer cell lines
in their experiment, namely the TE-1 line, which is sensitive to cisplatin, and the TE-
1/DDP line, which is resistant to this drug. They determined that miR-193 in exosomes
released from TE-1/DDP can be transferred to TE-1, rendering the latter line resistant to
cisplatin. This phenomenon was associated with the silencing of the transcription factor
AP-2 gamma (TFAP2C) by miR-193, resulting in a lack of cisplatin-induced cell cycle arrest
and apoptosis [36]. Not only do cancer cells have the ability to release miR-rich exosomes;
more recently, Zhang et al. demonstrated that CAF-derived exosomes confer cisplatin
resistance in non-small cell lung cancer (NSCLC) cells via the transport of miR-130a [37].
NSCLC cells take up miR-130a-rich exosomes produced by cisplatin-resistant CAFs, which
promotes the NSCLC cell’s survival rate [37]. Interestingly, the authors found that a specific
RNA-binding protein, pumilio homolog 2 (PUM2), is responsible for packaging miR-130a
into exosomes [37]. Cisplatin induces the PUM2-dependent incorporation of miR-130a
into the exosome membrane [37]. This observation is of great practical importance, as
PUM2 may become a new target for anticancer therapy. Although the role of PUM2 in
carcinogenesis is widely known, its function in the formation of exosomes modulating
cancer cells’ response to cisplatin needs to be thoroughly understood [50,51].

Exosomal lncRNAs are also actively involved in various cancer cells acquiring resis-
tance to cisplatin [38–42]. It should be emphasized that lncRNAs are competitive endoge-
nous RNAs (ceRNAs), meaning that they can bind to miRs through partial complementarity,
reducing their level and activity [52]. This regulates the expression of messenger RNAs
(mRNAs) [52,53]. For this reason, lncRNAs are often called the molecular “sponge” or “de-
coy” of miRs [53]. Therefore, later in this manuscript, the functions of exosomal lncRNAs
are, if pertinent, referred to as lncRNA/miR/mRNA networks. All the lncRNAs described
below act as oncogenes in various types of cancer [54–58]. Therefore, it is justified to study
their relationship with resistance to chemotherapy, particularly if they can be transported
through exosomes to cytotoxic-sensitive cancer cells.

Li et al. demonstrated that lncRNA urothelial carcinoma-associated 1 (UCA1) is es-
sential for the resistance of ovarian cancer cells to cisplatin, both in vitro and in vivo [38].
Increased expression of lncRNA UCA1 was detected in the serum exosomes of cisplatin-
resistant ovarian cancer patients [38]. In the context of resistance to chemotherapeutic
agents, this lncRNA shows three critical actions both in vitro and in vivo: (1) it promotes
the proliferation of cancer cells; (2) it inhibits their apoptosis; and (3) it reduces cisplatin-
induced cytotoxicity [38]. At the core of the molecular mechanism of these changes is that
lncRNA UCA1 negatively affects the expression of miR-143, which in turn is a modula-
tor of FOS-like 2, AP-1 transcription factor subunit (FOSL2) expression in ovarian cancer
cells [38]. A growing body of evidence suggests a cardinal role for FOSL2 in cancer, espe-
cially metastasis [59,60]. High expression of FOSL2 has been confirmed in several types of
cancer, including colon cancer [61], breast cancer [62], ovarian cancer [63], liver cancer [64],
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and osteosarcoma [65]. Therefore, the observation suggests that therapy interfering with
the lncRNA UCA1/miR-143/FOSL2 axis could offer a new line of treatment for cisplatin-
resistant cancers [38]. Exosomal lncRNA HNF1A antisense RNA 1 (HNF1A-AS1) is another
example of this group of nucleic acids that, by decreasing miR-34b expression, promotes
tuftelin 1 (TUFT1) expression, thus contributing to the acquisition of cervical cancer cell
resistance to cisplatin by enhancing cancer cell proliferation and inhibiting apoptosis [39].
One universal concept that has emerged from previous studies is that TUFT1 promotes
cancer development and progression through different signaling pathways [66–70]. High
expression of this protein is associated with poor prognosis in several types of cancer,
including thyroid cancer [70], liver cancer [69,71], pancreatic cancer [66], gastric cancer [67],
lung cancer [67], and breast cancer [67,72]. From this perspective, taking into account the
enormous commitment of TUFT1 to carcinogenesis and its related processes, the lncRNA
HNF1A-AS1/miR-34b/TUFT1 axis is a tempting exemplification of continuing research
into targeted therapy aimed at inhibiting the release and transport of exosomes with high
lncRNA HNF1A-AS1 expression [39]. Gastric cancer (GC) is another type of neoplasm in
which cells acquire resistance to cisplatin through their ability to “pick up” exosomes con-
taining the lncRNA HOXA transcript at the distal tip (HOTTIP) [40]. The exosomal fraction
of lncRNA HOTTIP serves as a ceRNA for miR-218, regulating high-mobility group A1
(HMGA1) expression [40]. Exosome-induced overexpression of HMGA1 causes a number
of changes in cancer cells, including the intensification of proliferation, migration, and in-
vasion, and changes in the activity of tissue architecture maintenance proteins [40]. Simply
put, the suppression of E-cadherin expression and the increased expression of N-cadherin
and vimentin suggest that tumor cells can uptake HMGA1 regulatory exosomes and un-
dergo an immensely active epithelial–mesenchymal transition (EMT) [40]. This observation
supports the well-known data, which show that HMGA1, an oncofetal protein, is responsi-
ble for the aggressive properties of many cancer cells, leading to poor prognoses for patients
in the course of the disease [73–75]. Therefore, the regulation of this axis may potentially
be used in the therapy of cancer patients. Additionally, TAM-derived exosomes further
contribute to developing resistance to cisplatin in GC [42]. GC cells can retrieve exosomes
from M2-polarized macrophages expressing lncRNA colorectal neoplasia differentially
expressed (CRNDE) [42]. This leads to neural precursor cells expressing developmentally
downregulated protein 4-1 (NEDD4-1)-mediated phosphatase and tensin homolog deleted
on chromosome 10 (PTEN) ubiquitination, and, consequently, a reduction in PTEN lev-
els and the acquisition of resistance to cisplatin [42]. As in previous studies, exosomes
increased the survival of cancer cells and their proliferation while inhibiting apoptosis [42].
The authors further confirmed these results in a mouse model, which demonstrated gastric
tumor growth upon exosomes expressing lncRNA CRNDE [42]. The described mecha-
nism is enthralling because it not only reveals how cells of the tumor microenvironment
modulate cisplatin resistance but also demonstrates faultlessly how exosomes via lncRNA
CRNDE suppress PTEN expression, known as a tumor suppressor [76–79].

The mechanism of cisplatin resistance, with exosomal lncRNA participation, has also
been observed in tongue squamous cell carcinoma [41]. Wang et al. demonstrated that
exosomal lncRNA HEIH, by acting as a ceRNA for miR-3619-5p, increases the expression
of hepatoma-derived growth factor (HDGF), which leads to the acquisition of cisplatin
resistance by cancer cells [41]. Exosomal lncRNA HEIH stimulates the proliferation of
cancer cells and inhibits their apoptosis [41]. HDGF is also an oncogene whose high
expression in liver cancer [80], lung cancer [81], and gastric cancer [82] is associated with
unfavorable patient outcomes [80–82]. HDGF regulates the proliferation, angiogenesis, and
apoptosis of cancer cells [83,84]; thus, one therapeutic option may be to use antagonists of
exosomal lncRNA HEIH.

As can be seen in the findings mentioned earlier, the action of exosomal lncRNA
predominantly unbalances the miR–mRNA axis by acting as a sponge for the miR. The up-
regulation of mRNA expression of several oncogenes, including FOSL2, TUFT1, HMGA1,
and HDGF [38–41], most often leads to the acquisition of cisplatin resistance, while increas-
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ing the proliferation of cancer cells and reducing their apoptosis. The results of experiments
on cell cultures have been confirmed in studies on animal models and in studies conducted
on cancer patients. Exosomes with high expression of lncRNA UCA1, lncRNA HNF1A-AS1,
lncRNA HOTTIP, lncRNA HEIH, and lncRNA CRNDE increase the size of tumors in vivo
and modulate patients’ lack of response to the applied chemotherapeutic agents [38–41].

The latest achievements in molecular biology allow us to assess the role of exosomal
circRNAs in cancer resistance to cisplatin treatment. This form of nucleic acid is primarily
responsible for controlling parental gene expression through various mechanisms, includ-
ing miR sponges [85], which is particularly important in understanding the role of exosomal
circRNAs in cancer cells acquiring cisplatin resistance. As with lncRNA, circRNA disrupts
the miR-mRNA axis by decreasing miR and consequently increasing the mRNA expression
of several oncogenes, leading to the acquisition of resistance to cisplatin. Research on
exosomal circRNAs as modulators of cisplatin resistance has been overwhelmingly focused
on NSCLC [44–46]. Three different forms of exosomal circRNA are responsible for the
resistance of NSCLC cells to this drug, namely hsa_circ_0014235 [44], circ_0008928 [45],
and circ_0076305 [46]. They share a common mechanism of action (mentioned above)
and constitute the sponge of miRs. Cyclin-dependent kinase 4 (CDK4) is an oncogene
that is particularly important for controlling the cell cycle and has been demonstrated in
many types of cancer [86,87]. CDK4 and CDK6 inhibitors are used in treating patients
with hormone receptor–positive breast cancers [88,89]. Therefore, it is clinically warranted
to influence the higher level of expression controlling these proteins, i.e., the use of the
hsa_circ_0014235 inhibitor. A study by Xu et al. proved it to be a modulator of CDK4 ex-
pression in vitro and in vivo [44]. The authors showed that exosomal hsa_circ_0014235, by
inhibiting miR-520a-5p, promotes CDK4 expression, thus contributing to several changes,
including not only NSCLC-cell resistance to cisplatin but also cell proliferation, migration,
and invasion, which is reflected in increased tumor growth in a mouse model [44]. A
similar model of action was described for the case of circ_0008928 [45]. The expression
of exosomal circ_0008928 was significantly higher in the blood of NSCLC patients with
cisplatin resistance compared with the group of patients sensitive to this chemotherapeutic
agent [45]. A detailed analysis showed that exosomal circ_0008928 is a sponge of miR-488
and thus increases the expression of hexokinase 2 (HK2) [45]. Interestingly, from a practical
point of view, the inhibition of circ_0008928 increases the sensitivity of cancer cells to cis-
platin [45]. HK2, associated initially with glucose metabolism, regulates tumor cell growth,
proliferation, metastasis, and apoptosis [90–94]. Silencing its expression may sensitize
cancer cells to chemotherapy and radiotherapy [95,96]; hence, the potential inhibition of
the interaction of exosomal circ_0008928 with miR-488 may also be helpful in treating
cisplatin-resistant cancers. More recently, Wang et al. clearly illustrated how exosomal
circ_0076305 enhances adenosine triphosphate (ATP)-binding cassette subfamily C member
1 (ABCC1; also called multidrug resistance-associated protein 1, MRP-1) expression by
inhibiting miR-186-5p, leading to increased resistance of NSCLC cells to cisplatin [46]. High
expression of exosomal circ_007630 was observed in serum samples obtained from lung
cancer patients, and this nucleic acid promoted resistance to cisplatin in the culture of
NSCLC cells and in a mouse model [46]. ABCC1/MRP1 determines the ineffectiveness
of therapy with several anticancer drugs [97,98]. Its involvement in this process has been
known for many years [99–102]. It is, therefore, not surprising that its expression is modu-
lated by exosomes, given that these types of EVs intensify the chemoresistance of cancer
cells with such ferocity.

CircRNAs are also involved in cisplatin resistance in non-NSCLC tumor types, such
as epithelial ovarian cancer (EOC) [47], esophageal cancer [48], and gastric adenocarci-
noma (GAC) [49]. Naturally, the regulation of resistance to this chemotherapeutic agent
in these tumors occurs through sponging miRs. Increased expression of the exosomal
circular forkhead box protein P1 (circFoxp1) in patients with EOC has been observed [47].
EOC patients with high serum expression of exosomal circFoxp1 developed resistance to
cisplatin, which was also associated with shorter overall survival (OS) and disease-free
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survival (DFS) than patients with low circFoxp1 expression. Most notably, meticulous
analysis proved that circFoxp1 on exosomes can inhibit miR-22 and miR-150-3p, leading
to increased expression of two genes, CCAAT enhancer binding protein gamma (CEBPG)
and formin-like 3 (FMNL3), which may affect the resistance of cancer cells to cisplatin [47].
Still, the exact mechanism of these genes’ involvement in chemoresistance remains un-
known. Nonetheless, it is acknowledged that both genes can induce tumor formation
and progression in various types of cancer. CEBPG is involved in the pathogenesis of
conditions such as acute myeloid leukemia, esophageal cancer, and lung cancer [103–105].
Similar properties are attributed to FMNL3 [106,107], a high expression of which is asso-
ciated with poor prognosis in patients with colorectal carcinoma, melanoma, or tongue
cancer [108–111]. Moreover, exosomal circ_0000337 enhances the cisplatin resistance of
esophageal cancer cells by increasing Janus kinase 2 (JAK2) expression due to miR-377-3p
inhibition [48]. Cisplatin-sensitive cells have the ability to acquire resistance by taking up
these exosomes, which results in cancer cell growth and metastasis in vitro and in vivo [48].
Finally, exosomes in GAC are characterized by increased expression of circ_0000260, which
suppresses the expression of miR-129-5p [49]. This process leads to an increase in the
expression of matrix metalloproteinase 11 (MMP11), which functions as an oncogene [49].
The authors indicated that circ_0000260 enhances the proliferation, migration, invasion,
and adhesion of cancer cells, as well as tumor growth, in a mouse model [49]. Tumor
tissues and exosomes isolated from the serum samples of cisplatin-resistant GAC patients
showed high circ_0000260 expression [49]. However, we surmise that these results should
be interpreted with a certain degree of caution, as MMP11 is, on the one hand, an onco-
gene [112–114]; on the other hand, it can inhibit proliferation and metastasis in advanced
forms of cancers [115]. These studies clearly demonstrate the need for continued efforts to
develop a precise therapy that can modulate the expression of circRNAs in exosomes.

Another representative of platinum-containing chemotherapeutic agents to which
exosomal ncRNAs modulate the resistance of cancer cells is oxaliplatin (OXA). In this
context, researchers have primarily focused on circRNAs [116,117] and miRs [118,119],
although single studies have also identified the role of lncRNAs [120] in acquired resistance
to oxaliplatin.

Research on the role of exosomal miRs in oxaliplatin resistance has focused substan-
tially on the programmed cell death (PDCD) family. Previously, an extensive range of
interactions between miRs and these proteins was demonstrated, responsible for the sup-
pression of the expression of PDCDs in various clinical conditions and, interestingly, in
non-cancerous conditions [121]. PDCD4 and PDCD10, described below, play a key role in
inhibiting the proliferation and differentiation of cancer cells and enhancing their apop-
tosis [122–126]. Exosomal miR-46146 is an active participant in colorectal cancer (CRC)
cells that develop oxaliplatin resistance [118]. Drug-sensitive CRC cells become resistant
through miR-46146-dependent suppression of PDCD10 expression by the uptake of exo-
somes derived from resistant cells [118]. An intriguing observation was made by Ning
et al., showing that exosomal miR-208b released by CRC cells inhibits the expression of
PDCD4 in CD4+ T cells and promotes Treg expansion [119]. According to the authors,
high levels of miR-208b in the serum are associated with poor clinical outcomes of CRC
in patients undergoing FOLFOX (oxaliplatin with l-leucovorin and 5-fluorouracil [5-FU])
therapy [119]. Additionally, the exosomal form of miR-208b enhances tumor growth in the
murine model [119]. These results also indicate that resistance to chemotherapeutic agents
can be modulated by the influence of neoplastic exosomes on other non-cancerous cells,
initially not playing a role in this phenomenon. On the other side of the coin, non-cancerous
cells, such as CAFs, can also modulate neoplastic resistance to oxaliplatin via exosomes.
Such a process was described for CRC cells, in which CAFs-exosomes with high lncRNA
colorectal cancer-associated (CCAL) expression activated the Wnt/β-catenin signaling
pathway through direct interaction with mRNA stabilizing human antigen R (HuR; also
known as embryonic lethal vision-like protein 1, ELAVL1), thus contributing to the devel-
opment of the chemoresistance of CRC cells to oxaliplatin [120]. The authors of this study
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confirmed that cancer cells could take up exosomes from their microenvironment, which
modulate their phenotype through the high expression of ncRNA [120]. In this case, CRC
cells collected exosomal lncRNA CCAL derived from CAFs [120]. This led to an increase
in β-catenin mRNA and protein levels through HuR, manifested in the development of
resistance not only to oxaliplatin but also to 5-fluorouracil in both cell cultures and animal
models [120].

Sponging miRs by exosomal circRNAs promotes resistance to oxaliplatin [116,117].
This phenomenon has been described in CRC cells [116] and GC cells, among others [117].
In CRC cells, the contribution of exosomal hsa_circ_0005963 (ciRS-122) to oxaliplatin re-
sistance has been proven [116]. By inhibiting the expression of miR-122, this exosomal
circRNA leads to the upregulation of the M2 isoform of pyruvate kinase (PKM2) and the
resistance of CRC cells to oxaliplatin [116]. Exosomes released from oxaliplatin-resistant
cells were readily ingurgitated by sensitive cells, prompting escalation of glucose uptake
and synthesis of lactate and ATP [116]. PKM2 exerts several oncogenic effects on cancer
cells [127–129]. It has been confirmed that PKM2 induces tumor growth and metasta-
sis by controlling cell metabolism and is an active nuclear transcription factor in many
pro-cancerogenic signaling pathways [127–129]. Exosomal hsa_circ_0005963 also increases
glycolysis and drug resistance in vivo; hence, the potential use of its inhibitor may eliminate
the growing problem of oxaliplatin’s ineffectiveness in patients diagnosed with CRC [116].
Finally, by sponging miR-515-5p, exosomal circ_0032821 regulates SRY-box transcription
factor 9 (SOX9) expression, which is manifested in the resistance of GC cells to oxali-
platin [117]. In the study described, exosomes acted in a way similar to the mechanisms
previously indicated by other authors: sensitive cancer cells became resistant to oxaliplatin
by accumulating exosomes with high circ_0032821 expression and by actively regulating
the miR-515-5p/SOX9 axis [117]. SOX9 has strong oncogenic properties associated with
the growth and metastasis of several types of cancer [130–135]. Hence, modulation of
its activity at the exosomal level may also positively affect counteracting resistance to
platinum-containing chemotherapeutic agents.

Table 1 illustrates how exosomal ncRNAs modulate platinum-based chemotherapy
resistance in divergent types of cancer. Despite multifarious mechanisms of action by
exosomal ncRNAs at the molecular level, phenotypically, they lead preponderantly to
increased proliferation of neoplastic cells, which enhances their survival rate. The extended
metastatic properties of cancer cells and decreased apoptosis are also a result of the influence
of exosomal ncRNAs. These phenomena lead to increased resistance to chemotherapeutic
agents. Animal models have shown that exosomal ncRNAs exacerbate tumor growth and
lead to clinically noticeable resistance to platinum-based antineoplastic drugs in humans.
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Table 1. Detailed analysis of exosomal non-coding RNAs (ncRNAs) mediated resistance to platinum-based anticancer therapy.

Type of Cancer Anticancer
Agent

EXO Cellular
Source EXO Cargo Targeted Regulatory

Network
Main In Vitro

ncRNAs/EXO Effect
Main In Vivo ncRNAs/EXO

Effect Ref.

Esophageal cancer Cisplatin TE-1/DDP miR-193 TFAP2C
(1) Inhibition of cisplatin-induced
cancer cell cycle arrest
(2) Inhibition of cancer cell apoptosis

(1) Increasing the tumor size
in a mouse model [36]

Non-small cell
lung cancer Cisplatin CAFs miR-130a ND (1) Increasing the cancer cell

survival rate
(1) Increasing the tumor size
in a mouse mode [37]

Ovarian cancer Cisplatin ND* lncRNA UCA1 miR-143/FOSL2

(1) Increasing the cancer
cell proliferation
(2) Inhibition of cancer cell apoptosis
(3) Decreasing cisplatin-induced
cytotoxicity

(1) Increasing the tumor size
in a mouse mode [38]

Cervical cancer Cisplatin HeLa/DDP lncRNA
HNF1A-AS1 miR-34b/TUFT1

(1) Increasing the cancer
cell proliferation
(2) Inhibition of the cancer
cell apoptosis

(1) Increasing the tumor size
in a mouse mode [39]

Gastric cancer Cisplatin MGC-803/DDP
MKN-45/DDP lncRNA HOTTIP miR-218/HMGA1 (1) Increasing the cancer cell

proliferation, migration, and invasion

(1) Chemotherapy failure of
GC patients was associated
with high lncRNA HOTTIP
expression

[40]

Tongue squamous
cell carcinoma Cisplatin SCC4/DDP lncRNA HEIH miR-3619-5p/HDGF

(1) Increasing the cancer cell
proliferation
(2) Inhibition of cancer cell apoptosis

ND [41]

Gastric cancer Cisplatin TAMs lncRNA CRNDE NEDD4-1/PTEN
(1) Increasing the cancer cell survival
rate and proliferation
(2) Inhibition of cancer cell apoptosis

(1) Increasing the tumor size
in a mouse mode [42]

Non-small cell
lung cancer Cisplatin ND * hsa_circ_0014235 miR-520a-5p/CDK4 (1) Increasing the cancer cell

proliferation, migration, and invasion
(1) Increasing the tumor size
in a mouse mode [44]

Non-small cell
lung cancer Cisplatin ND * circ_0008928 miR-488/HK2 (1) Increasing the cancer cell

proliferation, migration, and invasion

(1) Chemotherapy failure of
NSCLC patients was
associated with high
circ_0008928 expression

[45]
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Table 1. Cont.

Type of Cancer Anticancer
Agent

EXO Cellular
Source EXO Cargo Targeted Regulatory

Network
Main In Vitro

ncRNAs/EXO Effect
Main In Vivo ncRNAs/EXO

Effect Ref.

Non-small cell
lung cancer Cisplatin ND * circ_0076305 miR-186-5p/ABCC1 (1) Increasing the cancer cell

survival rate
(1) Increasing the tumor size
in a mouse model [46]

Epithelial ovarian
cancer Cisplatin ND * circFoxp1 miR-22/miR-150-

3p/CEBPG/FMNL3
(1) Increasing the cancer cell survival
rate and proliferation

(1) Increasing the tumor size
in a mouse mode
(2) Chemotherapy failure of
EOC patients was associated
with high circFoxp1
expression

[47]

Esophageal cancer Cisplatin EC9706/DDP
KYSE30/DDP circ_0000337 miR-377-3p/JAK2

(1) Increasing the cancer cell
proliferation, migration, and invasion
(2) Inhibition of cancer cell apoptosis

(1) Increasing the tumor size
in a mouse model [48]

Gastric
adenocarcinoma Cisplatin ND * circ_0000260 miR-129-5p/MMP11

(1) Increasing the cancer cell
proliferation, migration, and invasion
(2) Inhibition of cancer cell apoptosis

(1) Increasing the tumor size
in a mouse mode
(2) Chemotherapy failure of
GAC patients was associated
with high circ_0000260
expression

[49]

Colorectal cancer Oxaliplatin SW480/OXA hsa_circ_0005963
(ciRS-122) miR-122/PKM2

(1) Increasing the cancer cell
survival rate
(2) Inhibition of cancer cell apoptosis

(1) Increasing the tumor size
in a mouse model [116]

Gastric cancer Oxaliplatin HGC27/OXA
AGS/OXA circ_0032821 miR-515-5p/SOX9 (1) Increasing the cancer cell

proliferation, migration, and invasion
(1) Increasing the tumor size
in a mouse model [117]

Colorectal cancer Oxaliplatin HCT116/OXA
HT29/OXA miR-46146 PDCD10

(1) Increasing the cancer cell
proliferation
(2) Inhibition of cancer cell apoptosis

ND [118]
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Table 1. Cont.

Type of Cancer Anticancer
Agent

EXO Cellular
Source EXO Cargo Targeted Regulatory

Network
Main In Vitro

ncRNAs/EXO Effect
Main In Vivo ncRNAs/EXO

Effect Ref.

Colorectal cancer Oxaliplatin SW480/OXA miR-208b PDCD4 (1) Tregs expansion (1) Increasing the tumor size
in a mouse model [119]

Colorectal cancer Oxaliplatin CAFs lncRNA CCAL HuR/ Wnt/β-catenin
(1) Increasing the cancer cell
survival rate
(2) Inhibition of cancer cell apoptosis

(1) Increasing the tumor size
in a mouse model [120]

* Exosomes were extracted from patients’ serum samples. Abbreviations:ABCC1 = adenosine triphosphate (ATP)-binding cassette subfamily C member 1, AGS/DDP = cisplatin-
resistant gastric adenocarcinoma cell line, AGS/OXA = oxaliplatin-resistant gastric adenocarcinoma cell line, CAFs = cancer-associated fibroblasts, CDK4 = cyclin-dependent kinase 4,
CEBPG = CCAAT enhancer binding protein gamma, circFoxp1 = circular forkhead box protein P1, DDP = cisplatin (cis-diamminedichloroplatinum), EC9706/DDP = cisplatin-resistant
esophageal squamous cell line, EOC = epithelial ovarian cancer, EXO = exosomes, FMNL3 = formin-like 3, FOSL2 = FOS like 2, AP-1 transcription factor subunit, GAC = gastric
adenocarcinoma, GC = gastric cancer, HCT116/OXA = oxaliplatin-resistant colon carcinoma cell line, HDGF = hepatoma-derived growth factor, HeLa/DDP = cisplatin-resistant HeLa
cell line, HGC27/DDP = cisplatin-resistant gastric carcinoma cell line, HGC27/OXA = cisplatin-resistant gastric carcinoma cell line, HK2 = hexokinase 2, HMGA1 = high-mobility group
A1 gene, HT29/OXA = oxaliplatin-resistant colon adenocarcinoma cell line, HuR = human antigen R, JAK2 = Janus kinase 2, KYSE30/DDP = cisplatin-resistant esophageal squamous
cell line, lncRNA = long non-coding RNA, lncRNA CCAL = lncRNA colorectal cancer-associated, lncRNA CRNDE = lncRNA colorectal neoplasia differentially expressed, lncRNA
HEIH = lncRNA high expression in hepatocellular carcinoma, lncRNA HNF1A-AS1 = lncRNA HNF1A antisense RNA 1, lncRNA HOTTIP = lncRNA HOXA transcript at the distal tip,
lncRNA UCA1 = lncRNA urothelial carcinoma-associated 1, MGC-803/DDP = cisplatin-resistant gastric mucinous adenocarcinoma cell line, MKN-45/DDP = cisplatin-resistant gastric
adenocarcinoma cell line, MMP11 = matrix metalloproteinase 11, ncRNAs = non-coding RNAs, ND = not determined, NEDD4-1 = neural precursor cells expressing developmentally
downregulated protein 4-1, NSCLC = non-small cell lung cancer, OXA = oxaliplatin, PDCD10 = programmed cell death 10, PDCD4 = programmed cell death 4, PKM2 = M2 isoform of
pyruvate kinase, PTEN = phosphatase and tensin homolog deleted on chromosome 10, SCC4/DDP = cisplatin-resistant tongue squamous cell carcinoma cell line, SOX9 = SRY-box
transcription factor 9, SW480/OXA = oxaliplatin-resistant colon adenocarcinoma cell line, TAMs = tumor-associated macrophages, TE-1/DDP = cisplatin-resistant esophageal cancer
cells, TFAP2C = transcription factor AP-2 gamma, Tregs = regulatory T cells, TUFT1 = tuftelin 1.
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3.2. Resistance to Alkylating Agents

Among this group of chemotherapeutic agents, cancer cells’ resistance to temozolo-
mide (TMZ), which develops involving exosomal ncRNAs, is the most systematic re-
search subject [136–140]. Since temozolomide is the main line of therapy for high-risk
gliomas [141], these studies have investigated the resistance of this type of tumor to temo-
zolomide [136–140]. The process involves exosomal miRs [136], lnRNAs [137,138], and
circRNAs [139,140]. As with the previously described chemotherapeutic agents, the most
common mechanism is miR blocking by lncRNA or circRNA, although exosomes that
overexpress specific miRs are also involved in the acquisition of temozolomide resistance.
An example is miR-25-3p, the expression of which is upregulated in exosomes present in
cultures of the temozolomide-resistant glioblastoma cell line (A172R) and in the blood of
patients treated with this drug [136]. Exosomal miR-25-3p knocks down the F-box and
WD repeat domain-containing-7 (FBXW7), a tumor suppressor, leading to glioblastoma
cells’ resistance to temozolomide by enhancing the expression of c-Myc and cyclin E, which
are known for their oncogenic properties [136]. Thus, the conclusion is that miR-25-3p
transported by exosomes disturbs the proteasome-mediated degradation of oncoproteins
c-Myc and cyclin E, which are the natural substrates of FBXW7 [142,143]. It does not come
as a surprise that the authors reported increased tumor size in mice treated with miR-25-3p.
High serum miR-25-3p levels were also a determining factor in the failure of temozolomide
treatment [136].

In gliomas, neoplastic cells can also become resistant to temozolomide due to exosomal
lncRNAs, such as lncRNA SBF2 antisense RNA 1 (lncRNA SBF2-AS1) [137] and lncRNA
temozolomide-associated lncRNA in glioblastoma recurrence (lncRNA TALC) [138]. In the
first case, lncRNA SBF2-AS1, a known oncogene, is transported by exosomes and acts as
ceRNA for miR-151a-3p, which overexpresses X-ray repair cross-complementing 4 (XRCC4).
The consequence of this process is the enhancement of DNA double-strand break (DSB)
repair, which plays an essential role in developing resistance to temozolomide [137]. Very
recently, Li et al. presented impressive results showing that drug-resistant glioblastoma
cells release exosomes with lncRNA TALC expression, which alters the properties of the
microglia and causes M2 polarization [138]. LncRNA TALC in these cells activates the
enolase 1/p38 mitogen-activated protein kinase/myocyte enhancer factor 2C (ENO1/p38
MAPK/MEF2C) pathway, resulting in complement component 5 (C5) over-synthesis [138].
Next, C5 promotes resistance to temozolomide by enhancing DNA damage repair (DDR)
in cells previously sensitive to this chemotherapeutic agent [138]. This study could prove
to be a milestone in the treatment of refractory gliomas by inhibiting these signaling
pathways. A recent Chinese group described how heparanase, by enhancing the release
of hsa_circ_0042003-rich exosomes, promotes the resistance of glioma cells to temozolo-
mide [139]. However, the authors did not describe the precise mechanism through which
hsa_circ_0042003 modulates resistance to this chemotherapeutic agent [139]. Although the
role of hsa_circ_0042003 is not fully understood, heparanase has been incessantly associ-
ated with the process of tumor formation and growth and with poor prognoses in cancer
patients [144–147]. Temozolomide resistance is also modulated by the effect of exosomal
circRNA homeodomain-interacting protein kinase 3 (circ-HIPK3) on the miR-421/zinc
finger protein of the cerebellum 5 (ZIC5) axis [140]. Circ-HIPK3 sponges miR-421, thus
causing ZIC5 overexpression, which can drive tumor progression and drug resistance [140].
These in vitro results were validated in a mouse model with a smaller tumor size and
weight, documented after silencing circ-HIPK3 [140]. ZIC5 is assiduously involved in
promoting carcinogenesis [148–151]. Hence, the discovery and characterization of the axis,
as mentioned earlier, could be a new way to treat recurrent high-grade glioblastoma.

Table 2 illustrates how exosomal ncRNAs modulate temozolomide-based chemother-
apy resistance in glioblastoma. Different groups of researchers [136–140] came to sim-
ilar conclusions that enhancing tumor cell proliferation and decreasing their apoptosis
caused by exosomal ncRNAs determined in vivo intensive tumor growth and resistance
to temozolomide in patients diagnosed with glioblastoma. Clinically, patients with high
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serum and/or exosomal expression of miR-25-3p, lncRNA SBF2-AS1, lncRNA TALC,
hsa_circ_0042003, and circ-HIPK3 may have a poor prognosis and more significant mor-
tality [136–140]. The first conclusion from these studies is that the future of individual
anti-glioblastoma therapy may lie in drugs interfering with specific molecular axes con-
trolled by exosomal ncRNAs. The second is the potential practical application of exosomal
ncRNAs in the search for a patient refractory to temozolomide treatment.

3.3. Resistance to Antimetabolite Agents

Representatives of antimetabolites, the anti-tumor activity of 5-fluorouracil (5-FU) and
that of gemcitabine (GEM), are modulated by exosomal ncRNAs [152–154]. Mao et al. con-
ducted an experiment using two cell lines of lung cancer: (1) a 5-fluorouracil-resistant cell
line and (2) a cell line susceptible to this chemotherapeutic agent [152]. They demonstrated
that the first cell line, through exosomes with high expression of the lncRNA forkhead box
D3 antisense RNA 1 (lncRNA FOXD3-AS1), led the second cell line to acquire resistance
to 5-fluorouracil, primarily by inhibiting apoptosis [152]. This oncogenic mechanism is
based on the overexpression of ELAVL1 (HuR) and activation of the phosphatidylinositol
3-kinase (PI3K)/protein kinase B (AKT) pathway by exosomal lncRNA FOXD3-AS1 [152].
This is another well-documented example of how the use of lncRNA inhibitors may be
crucial in successful cancer chemotherapy. Moreover, it has been reported that exosomal
lncRNA CCAL, with the involvement of ELAVL1, modulates resistance to oxaliplatin and
5-fluorouracil [120]. Both studies proved the importance of ELAVL1 in modulating the
chemoresistance of cancer cells [120,152].

CRC cells sensitive to 5-fluorouracil become resistant to it by downregulating miR-217
and miR-485-3p through the action of exosomal circRNA_0000338 [153]. The fundamental
role of circRNA_0000338 in the burgeoning 5-fluorouracil resistance of CRC cells was con-
firmed in three stages of the experiment: in CRC cell culture, in a mouse model, and in CRC
patients [153]. In this study, however, the authors did not identify the direct target of both
miRs, which is key to the precise determination of the mechanism of CRC cell resistance to
5-fluorouracil and the possible practical application of the obtained results [153]. Despite
this, previous studies have shown that high expression levels of exosomal circRNA_0000338
may be a marker for predicting CRC resistance to chemotherapeutic agents [155].

Furthermore, gemcitabine resistance in pancreatic cancer (PC) cells is modulated by
exosomal circZNF91 [154]. Gemcitabine-resistant cells under hypoxic conditions release
exosomes with high circZNF91 expression, and they are transported to normoxic PC cells
sensitive to this drug, contributing to deacetylase sirtuin1 (SIRT1) overexpression through
the inhibition of miR-23b-3p [154]. In turn, the overexpression of SIRT1 stabilizes the
hypoxia-inducible factor 1-alpha (HIF-1α) protein, leading to glycolysis reinforcement in
cancer cells [154]. PC cells previously sensitive to gemcitabine, by taking up exosomes de-
rived from hypoxic PC cells, increase proliferation in vitro and tumor growth in vivo [154].
Thus, exosomal ncRNA controls cancer cell metabolism by increasing glycolysis, a process
that supplies cancer cells with enormous amounts of energy for proliferation and metastasis.

Table 3 illustrates how exosomal ncRNAs modulate antimetabolite-based chemother-
apy resistance in divergent types of cancer. As with the previously discussed groups of
anticancer drugs, in the case of antimetabolites, exosomal ncRNAs increase the prolif-
eration of cancer cells and inhibit their apoptosis, effectively reducing their sensitivity
to chemotherapeutic agents. In addition, tumor growth in murine models and the fail-
ure of chemotherapy in cancer patients may be associated with the high expression of
exosomal ncRNAs.
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Table 2. Detailed analysis of exosomal non-coding RNAs (ncRNAs) mediated resistance to alkylating therapy.

Type of Cancer Anticancer
Agent

EXO Cellular
Source EXO Cargo Targeted Regulatory

Network
Main In Vitro

ncRNAs/EXO Effect
Main In Vivo ncRNAs/EXO

Effect Ref.

Glioblastoma Temozolomide A172/TMZ miR-25-3p FBXW7

(1) Increasing the cancer
cell proliferation
(2) Inhibition of cancer
cell apoptosis

(1) Increasing the tumor size in a
mouse model
(2) Chemotherapy failure of
GBM patients was associated
with high miR-25-3p expression

[136]

Glioblastoma Temozolomide Rec GBM
N3T3rd lncRNA SBF2-AS1 miR-151a-

3p/XRCC4

(1) Increasing the cancer
cell proliferation
(2) Inhibition of cancer
cell apoptosis
(3) Increasing the DNA
damage repair

(1) Increasing the tumor size in a
mouse model
(2) Chemotherapy failure of
GBM patients was associated
with high lncRNA SBF2-AS1
expression

[137]

Glioblastoma Temozolomide LN229/TMZ lncRNA TALC ENO1/p38
MAPK/MEF2C/C5

(1) Inhibition of cancer
cell apoptosis
(2) Increasing the DNA
damage repair

(1) Increasing the tumor size in a
mouse model
(2) High expression of C5
induced by lncRNA TALC was
associated with a poor prognosis
in mice and GBM patients

[138]

Glioblastoma Temozolomide U251/TMZ hsa_circ_0042003 Heparanase

(1) Increasing the cancer
cell proliferation
(2) Inhibition of cancer
cell apoptosis

(1) Increasing the tumor size in a
mouse model
(2) Chemotherapy failure of
GBM patients was associated
with high hsa_circ_0042003
expression

[139]

Glioblastoma Temozolomide A172/TMZ
U251/TMZ circ-HIPK3 miR-421/ZIC5

(1) Increasing the cancer cell
proliferation and invasion
(2) Inhibition of cancer
cell apoptosis

(1) Increasing the tumor size in a
mouse model
(2) Chemotherapy failure of
GBM patients was associated
with high circ-HIPK3 expression

[140]

Abbreviations: A172/TMZ = temozolomide-resistant glioblastoma cell line, C5 = complement component 5, circ-HIPK3 = circRNA homeodomain-interacting protein kinase 3,
ENO1 = enolase 1, EXO = exosomes, FBXW7 = F-box and WD repeat domain-containing-7, GBM = glioblastoma, LN229/TMZ = temozolomide-resistant glioblastoma cell line,
lncRNA = long non-coding RNA, lncRNA SBF2-AS1 = lncRNA SBF2 antisense RNA 1, lncRNA TALC = lncRNA temozolomide-associated lncRNA in glioblastoma recurrence,
MEF2C = myocyte enhancer factor 2C, N3T3rd = temozolomide-resistant glioblastoma cell line, ncRNAs = non-coding RNAs, ND = not determined, p38 MAPK = p38 mitogen-activated
protein kinase, Rec GBM = temozolomide-resistant glioblastoma cell line, TMZ = temozolomide, U251/TMZ = temozolomide-resistant astrocytoma cell line, XRCC4 = X-ray repair cross
complementing 4, ZIC5 = zinc finger protein of the cerebellum 5.
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Table 3. Detailed analysis of exosomal non-coding RNAs (ncRNAs) mediated resistance to antimetabolite therapy.

Type of Cancer Anticancer Agent EXO Cellular
Source EXO Cargo Targeted Regulatory

Network
Main In Vitro

ncRNAs/EXO Effect
Main In Vivo

ncRNAs/EXO Effect Ref.

Lung cancer 5-fluorouracil A549
SPC-A1 lncRNA FOXD3-AS1 ELAVL1/PI3K/Akt

(1) Increasing the cancer
cell proliferation
and invasion
(2) Inhibition of cancer cell
apoptosis

ND * [152]

Colorectal cancer 5-fluorouracil SW480/5-FU
HCT116/5-FU circ_0000338 miR-217/miR-485-3p

(1) Increasing the cancer
cell proliferation
(2) Inhibition of cancer cell
apoptosis

(1) Increasing the tumor
size in a mouse mode
(2) Chemotherapy failure
of CRC patients was
associated with high
circ_0000338 expression

[153]

Pancreatic cancer Gemcitabine SW1990
BxPC-3 circZNF91 miR-23b-3p/SIRT1

(1) Increasing the cancer
cell proliferation
(1) Increasing
HIF-1α-dependent
glycolysis in cancer cell

(1) Increasing the tumor
size in a mouse mode
(2) High expression of
circZNF91was associated
with a poor prognosis in
PC patients

[154]

* Although the authors did not define the role of exosomal lncRNA FOXD3-AS1 in vivo, they showed its high expression in tissues collected from lung cancer patients. Abbreviations: 5-
FU = 5-fluorouracil, A549 = adenocarcinomic human alveolar basal epithelial cell line, BxPC-3 = pancreatic ductal adenocarcinoma cell line, CRC = colorectal cancer, ELAVL1 = embryonic
lethal vision-like protein 1, EXO = exosomes, GEM = gemcitabine, HCT116/5-FU = 5-fluorouracil-resistant colon carcinoma cell line, HIF-1α = hypoxia-inducible factor 1-alpha,
lncRNA = long non-coding RNA, lncRNA FOXD3-AS1 = lncRNA forkhead box D3 antisense RNA 1, ncRNAs = non-coding RNAs, ND = not determined, PC = pancreatic cancer,
PI3K/Akt = phosphatidylinositol 3-kinase/protein kinase B, SIRT1 = sirtuin 1, SPC-A1 = human lung adenocarcinoma cell line, SW1990 = pancreatic adenocarcinoma cell line,
SW480/5-FU = 5-fluorouracil-resistant colon adenocarcinoma cell line.
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4. Exosomes as Chemosensitivity Mediators

Although most relevant studies have investigated the role of exosomes in resistance to
chemotherapeutic agents, single studies have also shown a significant role for these EVs
and their associated ncRNAs in the promotion of cancer cells susceptible to chemotherapy
agents. They also revealed that exosomes themselves could potentially be used as a stan-
dalone treatment or as treatments integrated into a chemotherapeutic regimen [156–161].
The literature review shows that exosomal miRs [158,160,161] and circRNAs [157,159]
have these properties and that drug resistance may be reduced when cisplatin [157,158],
oxaliplatin [159], temozolomide [160], and docetaxel [161] are used.

First, extremely interesting results have been presented by an international team show-
ing a link between miR-126 transported by endothelial (human umbilical vein endothelial
cells, HUVECs) exosomes and the development of malignant mesothelioma (MM) [156].
In vitro, exosomal miR-126, depending on the research model, time, and dose, may have
different effects on different components of the stroma tumor [156]. Briefly, reduced angio-
genesis and tumor growth were induced by decreased expression of miR-126 in fibroblasts
and increased miR-126 expression in endothelial cells in an miR-126-sensitive environment,
which is associated with modulation of vascular endothelial growth factor (VEGF), EGF-
like domain multiple 7 (EGFL7), and insulin receptor substrate 1 (IRS1) expression [156].
This is another study demonstrating that exosomal ncRNAs can induce changes in tumor
microenvironment cells with the potential practical use of endothelial exosomes with high
miR-126 expression in the treatment of MM [156]. One study also showed that exosomal
miR-199a-3p enhances the chemosensitivity of hepatocellular carcinoma (HCC) cells to
cisplatin. However, in the course of working on the current manuscript, the study was
retracted by the editors. We do not, therefore, discuss those results in detail [162].

In addition, the exosomal circRNA sponge for miR-7 (ciRS-7, Cdr1as) can potentially
inhibit the cisplatin resistance of ovarian cancer cells by inhibiting miR-1270 and con-
sequently enhancing suppressor of cancer cell invasion (SCAI) expression [157]. In the
cell culture and in the mouse model, cicrRNA Cdr1as inhibited proliferation, stimulated
apoptosis of tumor cells, and then decreased the weight and volume of the tumor. Analysis
of serum samples obtained from patients with cisplatin resistance additionally showed a
decrease in exosomal cicrRNA Cdr1as expression [157]. Therefore, exosomes expressing
cicrRNA Cdr1as may be a potential marker of clinically noticeable resistant cisplatin [157].
Indeed, other authors have also suggested such a role for cicrRNA Cdr1as [163,164]; how-
ever, the question of what the function is for exosomes in transport and the active use of
circRNA in other types of cancer remains open.

Cisplatin-resistant GC cells become sensitive to this chemotherapeutic agent via the
exosomal transport of miR-107 [158]. MiR-107 downregulates the expression of high
mobility group A2 (HMGA2) and inhibits the HMGA2/mammalian target of the rapamycin
(mTOR)/P-glycoprotein 1 (P-gp) pathway in resistant GC cells, effectively reducing their
ability to proliferate [158]. Interestingly, the authors confirmed that chemotherapeutic agent-
resistant cells could take up exosomes from cells sensitive to these drugs, dramatically
changing their response to therapy [158]. This observation has practical implications for
using exosomes as carriers, either for chemotherapeutic agents or independent drugs, as
previous studies have shown the opposite. That is, most of the studies we have cited have
demonstrated that the chemotherapeutic agent-sensitive cells take up exosomes derived
from the chemotherapeutic agent-resistant tumor cells. Nevertheless, these results [158]
should be revised in vivo and ideally in clinical studies. Recently, Xu et al. suggested that
the exosomal circRNA FBXW7, by acting as a molecular sponge on miR-18b-5p, leads to an
increase in CRC cell apoptosis, inhibition of EMT, and suppression of oxaliplatin efflux,
thus contributing to a significant increase in the sensitivity of CRC cells to this drug [159].
CRC cells captured exosomes derived from the human fetal colon epithelial cell line with
the expression of circRNA FBXW7 [159]. This inhibited their proliferation in vitro and
in vivo [159]. This study clearly proves that exosomes released by physiological cells can
reduce the neoplastic capacity and, thus, the invasiveness of tumor cells.
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Another type of microRNA, miR-151a, increases glioblastoma cells’ sensitivity to
temozolomide through exosomal transport [160]. This is due to the reduction of XRCC4
expression in recipient cells and the inhibition of DSB in them [160]. Those glioblastoma
patients with low exosomal expression of miR-151a in the cerebrospinal fluid, but not serum
samples, had significantly lower OS compared to patients with high expression of miR-151a
on the exosome surface [160]. In turn, the results published in 2020 show that miR-200c is
released by normal tongue epithelial cells (NTECs) and transferred to tongue squamous
cell carcinoma (TSCC) cells by exosomes [161]. The mechanism of action for exosomal miR-
200c is tubulin beta 3 Class III (TUBB3) and protein phosphatase 2 scaffold subunit Abeta
(PPP2R1B) suppression, which decreases the migration, invasion, and motility of cancer
cells [161]. At the same time, exosomal miR-200c increases the apoptosis of cancer cells,
which is additionally confirmed by the smaller tumor sizes observed in vivo in a mouse
model [161]. We want to point out that, according to the information on the journal website
(access: 23 August 2022), this article is currently undergoing investigation. Therefore,
the results should be interpreted with caution. It must be acknowledged that another
manuscript on the roles fulfilled by exosomal ncRNAs in oxaliplatin chemosensitivity was
retracted by the editor in chief of Molecular Cancer [165]. This demonstrates the need for
careful interpretation of data by other authors analyzing papers on the role of exosomes in
modulating the chemotherapeutic agent response.

Table 4 illustrates how exosomal ncRNAs modulate sensitivity to different types of
chemotherapeutic agents in divergent types of cancers. Although much of the research on
the role of exosomal ncRNAs has focused on them as activators of chemoresistance, it has
been elegantly explained that these structures can reduce resistance to chemotherapeutic
agents. By inhibiting the expression of oncogenes, such as HMGA2 or XRCC4, through
miRs [158,160] and inhibiting miRs with oncogenic properties, such as miR-1270 or miR-
18b-5p, through specific circRNAs [157,159], exosomes change the phenotype of neoplastic
cells from cytostatically resistant to sensitive. This is manifested by a reduction in their
proliferation and an increase in apoptosis, as well as a decrease in the metastatic potential
or inhibition of the release of drugs from inside the cells.
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Table 4. Detailed analysis of exosomal non-coding RNAs (ncRNAs) mediated sensitivity to different types of chemotherapeutic agents in divergent types of cancers.

Type of Cancer Anticancer Agent EXO Cellular
Source EXO Cargo Targeted Regulatory

Network
Main In Vitro

ncRNAs/EXO Effect
Main In Vivo ncRNAs/EXO

Effect Ref.

Ovarian cancer Cisplatin ND * circRNA Cdr1as miR-1270/SCAI

(1) Inhibiting the cancer cell
proliferation and migration
(2) Increasing the cancer
cell apoptosis

(1) Decreasing the tumor size
in a mouse model
(2) Chemotherapy failure of
OC patients was associated
with low circRNA Cdr1as
expression

[157]

Gastric cancer Cisplatin SGC-7901
MGC-803 miR-107 HMGA2/mTOR/P-

gp
(1) Inhibiting the cancer cell
proliferation ND [158]

Colorectal cancer Oxaliplatin FHC circRNA FBXW7 miR-18b-5p

(1) Inhibiting the cancer cell
proliferation migration,
and invasion
(2) Inhibiting OXA efflux
(3) Increasing the cancer
cell apoptosis

(1) Decreasing the tumor size
in a mouse model
(2) Chemotherapy failure of
OC patients was associated
with low circRNA FBXW7
expression

[159]

Glioblastoma Temozolomide GBM cell lines miR-151a XRCC4

(1) Inhibiting the cancer cell
proliferation
(2) Inhibiting the DNA
damage repair
(3) Increasing the cancer cell
apoptosis

1) Decreasing the tumor size in
a mouse model
(2) Low expression of
miR-151a was associated with
a poor prognosis in GBM
patients

[160]

Tongue squamous
cell carcinoma Docetaxel NTECs miR-200c TUBB3/PPP2R1B

(1) Inhibiting the cancer cell
viability, migration, invasion,
and motility
(2) Inhibiting the DNA
damage repair
(3) Increasing the cancer
cell apoptosis

(1) Decreasing the tumor size
in a mouse model [161]

* Exosomes were extracted from patients’ serum samples. Abbreviations: circRNA = circular RNA, circRNA Cdr1as = circular RNA sponge for miR-7, circRNA FBXW7 = circular
RNA F-box and WD repeat domain-containing-7, EXO = exosomes, FHC = human colon epithelial cell line of fetal, GBM = glioblastoma, HMGA2 = high mobility group A2, lncRNA
= long non-coding RNA, MGC-803 = gastric mucinous adenocarcinoma cell line, mTOR = mammalian target of rapamycin, ncRNAs = non-coding RNAs, ND = not determined,
NTECs = normal tongue epithelial cells, OC = ovarian cancer, OXA = oxaliplatin, P-gp = P-glycoprotein 1, PPP2R1B = protein phosphatase 2 scaffold subunit Abeta, SCAI = suppressor
of cancer cell invasion, SGC-7901 = human gastric cancer cell line, TUBB3 = tubulin beta 3 class III, XRCC4 = X-ray repair cross complementing 4.
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5. Conclusions and Perspectives

To make a long story short, our narrative review clearly and in a very detailed way
described the exosomes and, in fact, ncRNAs associated with them increase the resistance
of cancer cells to chemotherapeutic agents. The primary mechanism by which chemoresis-
tance is modulated is miR sponging by lncRNAs and circRNAs, disrupting the miR-mRNA
axis, which leads to the overexpression of oncogenes. These processes systematically lead
to the acquisition of chemoresistance, manifested by an increased proliferation of tumor
cells, a lack of apoptosis, and the inhibition of the active efflux of drugs from the cancer cells.
Most of the studies analyzed in our review also showed that exosomes significantly increase
the size of tumors in vivo. From the clinical point of view of the studies we reviewed, a
fundamental conclusion is that high expression of exosomal ncRNAs is associated with
developing resistance to chemotherapeutic agents in cancer patients; hence, the potential
practical application of measuring this expression in predicting patient response to treat-
ment. To facilitate the understanding of these complex molecular mechanisms, we present
them in a simplified manner in Figure 1. Understanding these mechanisms and precisely
following the axis of ncRNA-miR-mRNA is crucial for the future use of exosome inhibitors
in cancer therapy. Based on the analyzed research and our observations [14,30,166,167],
it must be noted that both small and large EVs are the future of personalized medicine,
including not only in the diagnosis and prognosis of cancer patients but also as a treatment
strategy. Such an application of our knowledge of exosomes can rely on two potential
activities: (1) inhibiting the release of exosomes [168] and (2) using exosomes as a platform
for chemotherapeutic agent transport [169,170] and as a ‘freighter’ for therapeutic RNAs
and peptides [171]. Here, advanced techniques of biomedical engineering come to our
aid [172–175]. EVs modified by these methods may successfully become part of oncological
therapy [172–175]. However, to win this war against cancer, which has been conducted for
many years, research into its clinical application must be carried out. This is an opportunity
that modern evidence-based medicine cannot miss.
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exosomes with high expression of ncRNAs, which can be taken up by chemotherapeutic-sensitive
cancer cells, changing the properties of the cells and making them chemotherapeutic resistant (A). The
primary mechanism responsible for this phenomenon is sponging microRNAs (miRs) by exosomal
long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) and, consequently, increasing
the expression of oncogenes responsible for the acquisition of chemoresistance (B). The two main
consequences of these changes at the cellular level are increased proliferation and the inhibition of
cancer cell apoptosis. Therefore, tumor growth in vivo and the ineffectiveness of chemotherapeutic
agent therapy in oncological patients are associated with increased survival and invasiveness of tumor
cells (C). Targeted cancer therapy may eventually be based on interactions in the lncRNA/circRNA-
miR-mRNA axis.
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