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ABSTRACT

The nucleotide sequence was determined for the
genome of Xanthomonas oryzae pathovar oryzae
(Xoo) KACC10331, a bacterium that causes bacterial
blight in rice (Oryza sativa L.). The genome is com-
prised of a single, 4 941 439 bp, circular chromosome
that is G 1 C rich (63.7%). The genome includes 4637
open reading frames (ORFs) of which 3340 (72.0%)
could be assigned putative function. Orthologs for
80% of the predicted Xoo genes were found in the
previously reported X.axonopodis pv. citri (Xac) and
X.campestris pv. campestris (Xcc) genomes, but 245
genes apparently specific to Xoo were identified. Xoo
genes likely to be associated with pathogenesis
include eight with similarity to Xanthomonas avir-
ulence (avr) genes, a set of hypersensitive reaction
and pathogenicity (hrp) genes, genes for exopolysac-
charide production, and genes encoding extracellular
plant cell wall-degrading enzymes. The presence of
these genes provides insights into the interactions
of this pathogen with its gramineous host.

INTRODUCTION

Xanthomonas oryzae pv. oryzae (Xoo) is affiliated with the
g-subdivision of the Proteobacteria and is the causal agent
of bacterial blight (BB) on rice (Oryza sativa L.). BB

disease is a major rice disease in tropical Asian countries
where high-yielding rice cultivars are often highly susceptible to
the disease. BB is a vascular disease resulting in tannish-gray
to white lesions along the leaf veins. In severely infested fields,
the disease can cause yield losses as high as 50% (1).

In the last decade, our understanding of the molecular basis
of interactions between the rice and X.oryzae pv. oryzae has
been advanced by elucidation of the functional roles of genes
associated with pathogenesis. The representative gene groups
include effector or avirulence genes (avr), hypersensitive
response and pathogenicity (hrp) genes, genes associated
with production of extracellular polysaccharides or cell wall
degradation. In phytopathogenic bacteria, the type III protein
secretion system (TTSS) encoded by hrp genes plays a central
role in eliciting defense responses, such as the rapid cell death
response called the hypersensitive reaction (HR), on non-host
or resistant host plants and pathogenesis on susceptible hosts
pathogenesis (2). Some Hrp proteins form a pilus that has been
proposed to function as conduit that directly translocates
effector proteins such as avirulence factors into plants (3).
In addition to the TTSS, the type II secretion system may
play a role in secretion of other Xoo virulence factors,
such as extracellular enzymes like xylanase (4,5), and like
other Xanthomonas species, the gum gene cluster involved
in exopolysaccharide synthesis functions as a virulence
determinant (6).

Control of BB traditionally involves the introduction of
host resistance genes that mediate strain-specific initiation of
defense responses due to ‘gene-for-gene’ interactions of the
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resistance gene product with the product of the pathogen avr or
effector genes (7,8). However, introduction of individual plant
resistance genes frequently results in a change in the patho-
genic diversity of X.oryzae pv. oryzae populations, and new
races of the pathogen emerge that are able to overcome the
deployed resistance (8). Although several avr genes from Xoo
have been characterized (9), the complete set of avr genes
encoded in the Xoo genome are unknown. Information on
these additional pathogen avr genes may be useful to predict
the stability of their corresponding disease resistance genes
(10). So far only two avirulence genes, avrXa10 and avrXa7,
have been cloned and sequenced from Xoo (9). Although
several resistance genes, including Xa1, Xa5 and Xa21,
have been cloned from rice (11–13), the genes corresponding
to the characterized Xoo avr genes (avrXa10 and avrXa7)
have not been cloned.

The nucleotide sequence of a pathogen’s genome is an
important step to understanding the mechanisms of pathogen-
esis and the processes that limit the host range of the strain.
The nucleotide sequence of the genomes of several phyto-
pathogenic bacteria, such as Agrobacterium tumefaciens,
Pseudomonas syringae, Ralstonia solanacearum, Xylella
fastidiosa and two Xanthomonas species, have been recently
determined (14–18). Among bacteria classified in the genus
Xanthomonas, the whole-genome sequences of X.axonopodis
pv. citri (Xac; the causal bacterium of citrus canker) and
X.campestris pv. campestris (Xcc; the causal bacterium of
cabbage black rot) have been reported (16). Several candidate
genes related to pathogenicity, such as the set of translocated
effectors produced by a strain, as well as genes related to
general biological processes have been deduced from these
genome sequences. Because rice is taxonomically so distinct
from the hosts for the other Xanthomonas species with known
genomes (it is a monocotyledon rather than a dicotyledon),
it is likely that the Xoo genome will include distinct genes that
are critical to interactions with rice.

Here, we report the nucleotide sequence and genome struc-
ture of Xoo str. KACC10331 isolated from diseased rice in
Korea. This isolate was selected because it represents an
important race in Korea (race 1), and because it contains sev-
eral avr genes, including avrXa21 (19). Because of its import-
ance as a pathogen, our analysis of the genome sequence
focused on genes associated with pathogenicity genes.

MATERIALS AND METHODS

Bacterial strain, library construction, sequencing
and assembly

Xanthomonas oryzae pv. oryzae str. KACC10331 (KXO85), a
representative Korean race 1 strain that is virulent to rice
carrying the Xa21 resistance gene, was used in this study.
The genome sequence was determined through the whole-
genome shotgun approach (20). The nucleotide sequence of
the inserts carried by 49 087 clones with 1–2 kb inserts
(8.6-fold genome coverage) and 14 783 clones with 8–10 kb
inserts (2.4-fold genome coverage) in pUC18 SmaI/BAP
vector (Invitrogen, USA) were determined from both ends
using BigDyeTM terminator (Applied Biosystems, USA) and
an ABI3700 automated sequencer. In addition to the above
sequences, nucleotide sequences were obtained from both

ends of 3025 inserts carried by fosmid clones constructed
using 40 kb genome fragments in the pEpiFOSTM-5 vector
(Epicentre technologies, USA) and 2895 BAC clones with
112 kb genome fragments generated in the pIndigoBAC-5
vector (Epicentre technologies, USA). The inserts in these
libraries covered 98% of the genome and the sequences
from both ends of fosmid and BAC clones were used to con-
firm the orientation and integrity of the sequence contigs to
validate the final sequence assembly. The reported sequence
(GenBank accession no. AE013598) was assembled from
70 689 115 bp of accumulated nucleotide sequence using
Phred/Phrap/Consed software package (http://genome.
washington.edu). The scaffolds were created using mate
information between contig groups. Gap closures between
scaffolds or contigs were accomplished by primer-walking
on BAC, cosmid or plasmid templates spanning Xoo genome
and direct sequencing of PCR products. Assembly was con-
firmed by comparing PacI, PmeI and SwaI restriction maps
to computational predictions.

Gene annotation

ORFs were identified using Glimmer 2.0 (http://www.tigr.org/
software/glimmer/) (21) or GeneMark (http://opal.biology.
gatech.edu/GeneMark/) (22). In a few cases, open reading
frames (ORFs) were identified by similarities detected using
BLAST. Annotation was completed using BLAST and
tRNAscan-SE (23) in reflection of the functional categories
for clusters of orthologous groups (COGs). Annotation of
transporter proteins was assisted from the KEGG databases
(http://www.genome.jp/kegg/kegg2.html) (24).

Database submission

The sequence and annotation of the genome were submitted to
the GenBank database with the accession no. AE013598.

RESULTS AND DISCUSSION

General features

The basic features of the X.oryzae pv. oryzae str. KACC10331
genome are reported in Figure 1 and Table 1. The assembled
sequence was consistent with a single, 4 941 439 bp, circular
chromosome. No autonomous plasmids were apparent. The
average G + C content of Xoo genome was 63.7%, which
is slightly lower than that of the Xac (64.7%), Xcc (65.0%)
and R.solanacearum (67.0%) genomes, but is higher than that
of the genomes of other phytopathogenic bacteria, such as
X.fastidiosa (52.6%), A.tumefaciens (58–60%) and P.syringae
(58.4%). Most of the genome was coding sequence, and con-
tained 4637 ORFs predicted to encode polypeptides. Tentative
functional assignments could be made for 3340 (72.0%) of the
proposed genes based on their inclusion in known COGs (or
sequence similarity). The remaining 1297 genes (27.9%) were
predicted to express hypothetical proteins of unknown func-
tion. An origin of replication, consisting of dnaA boxes, was
identified between the deduced gene for the 50S ribosomal
protein L34 and the predicted gyrB locus expressing dnaA,
dnaN and recF6. Two separate sets of 23S–5S and 16S ribo-
somal RNA (rRNA) genes, each consisting of two operons,
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were also identified. Genes encoding tRNAs that recognize
54 codons were also found.

Comparative genomics

The alignment of the three organisms shown in Figure 2 sug-
gests that many rearrangement events (reverse match; red)
have been occurred between Xoo and Xac. Many of these
events are located around the putative origin of replication.
In alignments between Xoo and Xcc, only a few forward

matches (blue) were observed. This is also evident in closer
comparisons (DNA:DNA similarities); the entire length of the
Xoo genome is non-co-linear and matched diagonally with the
genomes of Xac and Xcc (Figure 3). The alignment between
Xac and Xcc were previously shown to contain only three
major rearrangement events; one of these was an inversion
around the putative terminus of replication and the other two
were inversions with translocations symmetrically located
with respect to the putative origin of replication (16).

To find genes specific to the Xoo genome, the entire genome
sequence was compared to the reported genome sequences
of X.axonopodis pv. citri (AE008923) and X.campestris pv.
campestris (AE008922). Xoo genome contains 245 species-
specific genes (known: 95, unknown: 45, hypothetical: 105)
that are not present in either the Xac or Xcc genomes. Although
95 genes appear to encode functional proteins, most (150)
were of unknown function. Putative functions of representat-
ive Xoo genome species-specific genes were in restriction–
modification (RM), a TonB-dependent siderophore receptor,
toxin production (MlrB, Rtx), a TTSS effector and phage-
related proteins. In addition, the rax genes of Xoo are species
specific, and are involved in type I secretion and sulfation
required to elicit the rice-resistant protein Xa21 (25).

Figure 1. Circular genome map of X.oryzae pv. oryzae str. KACC10331. Overall structure of the X.oryzae pv. oryzae genome. The putative origin of replication
is at 0 kb. The outer scale indicates the coordinates (in base pair). Red symbols (character R) are positions of rRNA and blue symbols (character T) are tRNAs.
The distribution of genes is shown on the first two rings within the scale. The next circle (green) shows G + C content and central circle (blue/red) shows GC-skew
value. The window size of G + C content and GC-skew are 1000 nt.

Table 1. General features of the Xanthomonas oryzae pv. oryzae genome

Length (bp) 4 941 439
G + C content (%) 63.7
Protein coding genes

With function assigned 3340
Conserved hypothetical 1151
Hypothetical 146
Total 4637

Transfer RNA 54
Ribosomal RNA operons 2
Plasmids 0
Insertion sequence element (IS) 207
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Figure 2. Nucleotide alignments of Xoo (x-axis) versus Xac ( y-axis), left; and Xoo (x-axis) versus Xcc ( y-axis), right. Each point in the plot corresponds to an
MUM of >25 bp.

Figure 3. Linear genomic comparisons of X.oryzae pv. oryzae with X.axonopodis pv. citri and X.campestris pv. campestris. Top, Xac; middle, Xoo; bottom, Xcc.
The colored ticks represent the reading frames from top to bottom; +1 frame, +2 frame, +3 frame, a whole forward frame, a whole reverse frame,�1 frame,�2 frame
and �3 frame. The red lines in between the genomes represent DNA:DNA similarities (BLASTN matches) between the two DNA sequences.
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Mobile elements

Five insertion sequences (IS; IS1112 =TNX8, IS1113 =TNX1,
IS1114, TNX6 and TNX7) had been previously identified in
another strain of X.oryzae pv. oryzae (26–30) and 109 and 108
transposable elements were identified in the genomes of Xac
and Xcc, respectively (16). Interestingly, the Xoo genome
contained more than twice the number of transposable ele-
ments as either the Xac or Xcc genomes. A total of 271 out
of 478 protein coding sequences (CDS) in the identified IS
elements of the Xoo genome showed significant similarity to
transposases, indicating that these have played an important
evolutionary role in horizontal gene transfer and also in
internal rearrangement of the genome. In the Xoo genome,
a total of 207 genes were associated with mobile genetic ele-
ments. Included in this total were the genes for transposases
located within IS and transposons as well as 37 apparent
prophage-related genes. The Xoo IS elements could be clas-
sified into six known IS families: IS3, IS4, IS5, IS30, ISNCY
and IS630 (31,32). The IS5 family was the most abundant in
the Xoo genome with 117 copies detected out of a total of 207
identified IS elements. In Xcc, the IS5 family is highly rep-
resented, with 16 copies of IS1478 (33), whereas in Xac the
IS3 family is more abundant, with 21 copies of a member not
previously described in Xanthomonas (ISXac3) (16). Many of
these IS elements were located near strain-specific genes
where altered codon usage and distinct G + C content suggests
that these adjacent genes may have been acquired through
horizontal transfer. Genes encoding for virulence/avirulence
determinants in another plant pathogenic bacteria, P.syringae,
have been previously reported to be associated with mobile
genetic elements (34).

Bacteriophage can also mediate evolution and horizontal
gene transfer of virulence factors and other new traits (35).
A large population of bacteriophage has been found to be
specifically present in Xoo strains (36). A prophage-related
gene cluster (27 kb) encoding tail proteins, integrase, capsid,
lytic enzyme and replication proteins suggestive of an intact
prophage, was detected at about 1.7 Mb in the Xoo genome.
Surprisingly, the cluster was very similar to the XccP1 phage
in the Xcc genome; however, Xoo lacks orf8, which is pre-
dicted to encode a phage-related tail fiber protein and five
hypothetical proteins between the int and orf37 genes,
which were included in Xcc genome. Thus, the total length
of the prophage gene cluster in the Xoo genome is less than
that found in the Xcc genome. A strong amino acid identity
(74–97%) of the clustered prophage genes was observed
between Xoo and Xcc. Xac lacked most of the tail genes,
but a strong amino acid identity (77–96%) of prophage rem-
nants was also observed between Xac and Xoo.

Metabolic characteristics and RM systems

The three Xanthomonas pathogens with known genomes have
numerous and diversified pathways for intermediary, small
molecule and DNA metabolism. In Xcc, but not Xac, genes
that function in the assimilation and conversion of nitrate and
nitrite into ammonium (nasTACDEF and cysG) were identi-
fied. The Xoo genome contained only nasT (3 copies) and nasF
(2 copies), suggesting that Xoo, like Xac, does not have this
activity. An ABC-type oligopeptide transport system (oppA,
oppB and oppC) was identified in the Xoo genome that could

facilitate the entry of small oligopeptide products. These
observations suggest that Xoo has different nitrate assimilation
and oligopeptide transport capabilities than either Xac or Xcc.

Many bacteria can sense their population density using
any of several cell-to-cell communication systems to alter
expression of specific genes when the population reaches a
threshold density. This phenomenon is known as quorum
sensing (37). Phytopathogenic bacteria, such as A.tumefaciens,
Erwinia carotovora and R.solanacearum, have quorum sens-
ing mechanisms similar to that of the LuxR/LuxI system from
Vibrio fischeri, and utilize acyl-homoserine lactones (AHLs)
to regulate several virulence genes. Although the basic mech-
anism of AHL-mediated quorum sensing is generally well
understood in vitro, the dynamics of signal sensing and
regulation in nature are more difficult to define, and new levels
of complexity are now surfacing. For example, different
bacteria produce different AHLs, and a given species may
produce more than one AHL. The acyl side chains of known
AHL molecules vary in length (4–18 carbons), can contain
double bonds, or are frequently substituted with a carbonyl or
hydroxyl group at the C3 position (38,39). In addition, quorum
sensing regulation may be quite strain specific, with different
strains making substantially different sets of AHLs, or no
detectable AHLs at all (40,41). In the Xoo genome, genes for
acetylation, O-acetyltransfer, and dehydrogenation of homo-
serine were identified, but genes exhibiting sequence similar-
ity to LuxR/LuxI were not obvious.

Two DNA RM systems have been reported previously in
Xoo (42–44) that affected the efficiency of transposon
mutagenesis and transformation. Two type II RM systems
were identified in the Xoo genome, which corresponded to
XorI and XorII. In addition, three type I DNA RM systems
were present.

Extracellular polysaccharides, lipopolysaccharide
and surface-borne features

A characteristic of Xoo that is similar to other Xanthomonas
species is the ability to form mucoid colonies when cultured
on media supplemented with glucose. This phenotype results
from the production of copious amounts of the extracellular
polysaccharide (EPS), known as xanthan gum, which is
formed by the activity of the gum operon products (45).
The EPS is a repeating pentamer composed of two subunits
of glucose, two subunits of mannose and one of glucuronic
acid, and contains certain modifications like acetylation (46).
EPS can play a critical role in facilitating adhesion of bacteria
to the host surface during initial stages of plant–pathogen
interactions and disease development (47). A transposon inser-
tion in the gumG homolog of Xoo causes loss of EPS produc-
tion as well as virulence in rice. Reversal of the gumG
mutation of Xoo restored the EPS production and virulence
(6). A gum operon (16 kb) was identified in the Xoo genome
that consisted of 13 genes, gumBCDEFGHIJKLMN, which
was similar to the gum operon of Xcc except for the existence
of gumN in the Xoo genome.

Three distinct genes, wxoD (O-antigen acetylase), oma
(outer membrane antigen) and rbfC (which functions in
O-antigen biosynthesis) were found in three separate regions
in the Xoo genomes. However, genes for O-antigen synthesis
in Xcc genome are organized as a single cluster containing
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many more genes (48). The first region contains genes coding
for transferases, epimerases, translocases and deduced sugar
transport proteins whereas the second region contains the
xanAB and rmlDABC genes involved in nucleotide-sugar
and dTDP-L-rhamnose biosynthesis (49). O-antigens of Xoo
lack significant sequence similarity to counterparts in Xcc
and Xac genomes. These observations are consistent with the
lipopolysaccharide (LPS) O-antigen being pathovar specific.
Much of the traditional interest in LPS molecules originates in
their complex interaction with host defenses and their con-
tribution to virulence in pathogenic bacteria. O-antigens
form hydrophilic surface layers that may function in host-
range and pathogenicity by acting as a barrier against plant
toxins (50,51).

The Xoo genome also contains genes for type IV fimbriae
and for several glycine-rich outer membrane proteins that are
associated with host colonization and adhesion in many patho-
genic bacteria (52). For example, xadA encodes an outer mem-
brane protein implicated in virulence that is coordinately
regulated with other pathogenicity determinants by hrpG
(53). Two alleles of xadA were identified in the Xoo genome,
similar to the Xac genome. Only one allele is present in the Xcc
genome. The fibrillin genes of Xoo are different from those of
the Xac and Xcc genomes.

Potential pathogenicity and virulence determinants

RTX toxins are important virulence factors for a variety of
human and animal pathogens (54), and have been found in
several plant pathogenic bacteria, including X.fastidiosa,
Rhizobium leguminosarum and E.carotovora (14,55,56). The
genes for two apparent RTX toxins, rtxA and rtxC, were
identified in the Xoo genome but were not detected in the
Xcc or Xac genomes. Xoo has been reported to produce several
toxins, including phenylacetic acid (PAA), trans-3-methyl-
thio-acrylic acid (MTAA) and 3-methylthio-propionic acid,
that can cause wilting and chlorosis (57). Thus, the RTX
toxin genes found in the Xoo genome may also be
virulence factors.

Motility in several different plant pathogenic species is
important for virulence (58). The genomic sequence of Xoo,
like Xac and Xcc, includes genes required for flagellar bio-
synthesis and chemotaxis. Unlike those from Xac or Xcc, the
Xoo genes for chemotaxis receptors and flagella biogenesis
are organized into two clusters spread over 62 kb, and only
two copies of the methyl-accepting chemotaxis protein gene
(mcp) are present.

Many plant pathogenic bacteria secrete a variety of plant
cell wall degrading enzymes, such as cellulases, xylanases,
pectinases and proteases. The general secretory pathway
(GSP), referred to as type II secretion system, secretes the
extracellular enzymes and is required for virulence of many
phytopathogens to their host plants (59). Cellualse, protease
and pectate lyase from Xanthomonas species have been sug-
gested to play crucial roles in virulence and in bacterial nutri-
tion (5,60–62). The Xoo genome contains genes for various
extracellular enzymes, including the genes for seven types of
cellulases, six different proteases, a polygalacturonase, pectin
degrading enzymes (one pectin esterase, two pectate lyase),
four xylanases, six xylosidases and one 1,4-b-cellobiosidase.
Xoo has more genes involved in degradation of pectin,

cellulose and xylanase than either Xcc or Xac. Xylanase and
protease have been shown to play a role in Xoo pathogenesis
(4,5). This is logical since bacterial blight is a vascular disease
and because Xoo multiplies and spreads in the xylem vessel
where xylan is abundant (63). Thus, xylanase may function to
degrade the xylan and produce energy Xoo cells to multiply in
the xylem vessel. Xylanase genes have not yet been identified
in Xcc and Xac genomes, suggesting xylanase production can
be regarded as characteristic factor in Xoo pathogenesis.

Secretion of the aforementioned extracellular enzymes usu-
ally involves the GSP encoded by the xps gene cluster (64,65).
Homologs of the Xps system (xpsEFGHIJKLMN and xpsD)
were identified in the Xoo genome and showed >79% amino
acid identity to their counterparts of other Xanthomonas
strains. Null mutations in these genes block secretion of
degradative enzymes from bacterial cells, causing a substantial
loss of virulence (5). Similarly, a Xoo GSP mutant that was
not able to secrete xylanase showed reduced pathogenicity on
rice plant (5).

The synthesis of extracellular cell wall degrading enzymes
and exopolysaccharides are transcriptionally regulated by the
products of rpf (regulation of pathogenicity factor) genes (66).
This is a complex regulatory system, and also involves a small
diffusible molecule called DSF (diffusible signal factor) (67).
The expression levels of proteases and endoglucanases were
reduced, e.g. when the rpfE gene was inactivated in Xcc (66).
In the case of Xoo, the rpfC gene effects EPS production and
virulence on rice (68). An rpf cluster was identified in the Xoo
genome that had a unique organization (rpfABFCGDIE) rel-
ative to its counterparts in the Xac and Xcc genomes. The Xoo
genome lacked an rpfH, which is homologous to the trans-
membrane sensor domain of rpfC and may stabilize rpfC in the
cell membrane of X.campestris (69). In the Xoo genome, four
copies of rpfI genes that are involved in the regulation of
extracellular enzyme and EPS synthesis were identified. In
the case of Xcc, a transposon insertion in rpfI (orf4) did not
effect polygalacturonate lyase production, but led to reduced
levels of protease and endoglucanase. These alterations in the
levels of extracellular enzymes did not affect the pathogenicity
of Xcc (66).

Hypersensitive reaction and pathogenicity (hrp)
and avirulence (avr) genes

Virulence and regulatory genes required for bacterial patho-
genicity are commonly found in pathogenicity islands (PAIs)
that encode for a type III protein secretion system assembled
from hrp gene products (70–72). A hrp gene cluster was iden-
tified in the Xoo genome that included 26 genes inclusive of
hpa2 and hrpF (Figure 4). The Xoo hrp PAI (31.3 kb) was
larger than its counterparts of Xac (25.6 kb) and Xcc (23.1 kb)
due to the presence of four transposase genes (about 6 kb)
located between hpaB and hrpF genes. Otherwise, the clusters
were very similar. Strong amino acid identity was observed
between several orthologous hrp genes of Xoo and Xac: hpaF
(74%), hpaP (76%), hrpD5 (79%), hpaA (82%). In contrast,
hrpF (68%), hpa1 (65%), hrpB5 (66%) and hrpB7 (65%) in
these bacteria exhibited relatively low similarity. It is inter-
esting to note that the products of hrpF and hpa1 are predicted
to be exposed or secreted components of the type III secretion
system, and this feature could contribute to their diversity due
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to distinct selective pressures in the different hosts. A homolog
to hrpW, a proposed pectate lyase, was not readily apparent in
the Xoo genome but, as mentioned earlier, several candidate
pectate lyase genes were identified that could function simil-
arly to hrpW. One of these pectate lyase genes was tentatively
designated hrpW based on sequence similarity. The hrpW of
many other pathogens indeed has HR-eliciting activity, but it
does not have measurable pectate lyase activity (72). Erwinia
amylovora also produces hrpW (72). Furthermore, overexpres-
sion of hrpW in E.amylovora can complement the hrpN muta-
tion, which drastically reduces the ability of E.amylovora to
cause HR or disease and suggests that hrpN and hrpW are
functionally redundant (72).

The expression of hrp and several effector genes in other
Xanthomonas strains is regulated by the transcriptional
activator, hrpX (73). Expression of hrpX, in turn, is regulated
by hrpG, a response regulator of the OmpR subclass of two-
component signal transduction systems (74). Homologs to
hrpX and hrpG were present at similar locations in the Xoo,
Xac and Xcc genomes. Genes regulated by hrpX in other
Xanthomonas strains usually include a plant-inducible-pro-
moter (PIP) box (TTCGN15TTCG) in their promoters (75).
Fourteen copies of a similar sequence, TTCGN16TTCGn,
were identified in the Xoo genome (Table 2). Four of these
apparent PIP boxes were located in predicted promoter regions
of the hrp gene cluster. Another was associated with the pro-
moter of an avr gene and one was near a PopC-like leucine-
rich protein. The remaining eight were dispersed elsewhere in
the genome, and were associated with a peptidase, an iron
receptor protein, ribonucleotide-diphosphate reductase and
three hypothetical proteins.

Pathogenicity trials using characterized isogenic lines of
rice (IRBB1, 3, 4, 5, 7, 8, 10, 13, 14, 21) suggested that
Xoo str. KACC10331 harbors at least nine avr genes corres-
ponding to Xa1, 3, 4, 5, 7, 8, 10, 13, 14 (Unpublished data).
Eight homologs of known avr genes were identified and scat-
tered in the Xoo chromosome. Four homologs of the avrBs3/
pthA family of avirulence genes were identified as well as
individual homologs of avrBs3 and avrBs2. Two homologs
of popC, an avr-like effector gene originally characterized

from R.solanacearum, were also identified (Table 3). These
genes all exhibited higher sequence similarity to their coun-
terparts of Xac than to those of Xcc. Although we did identify
the avrXa7 gene, surprisingly, no genes identical to avrXa10
(9,76) were found in the genome. This is consistent with the
observations of this strain’s virulence to rice lines IRBB5 and
IRBB10 that serve as indicator varieties for bacteria express-
ing avrXa5 and avrXa10, and avirulence to rice line IRBB7,
which is the indicator for bacteria expressing avrXa7 (unpub-
lished data).

The avrBs2 from X.campestris pv. vesicatoria is highly
conserved in strains of X.campestris and was previously repor-
ted in the Xoo genome (77). AvrBs2 is a TTSS translocated
effector that acts as a virulence factor in susceptible hosts but
elicits defense responses in resistant hosts (78,79).

Figure 4. Comparisons of the hrp gene cluster of the three Xanthomonas species.

Table 2. The proposed hrpX regulon in Xanthomonas oryzae pv. oryzae

PIP position Distance (bp) Gene ID Gene product

hrp gene cluster
77095 144 XOO0082 hrcQ
80817 1995 XOO0085 hrcU
80734 83 XOO0086 hrpB1
89672 137 XOO0095 hpa1
89740 125 XOO0096 hpa2

Extended Hrp conserved regulon
4666123 62 XOO4391 Xanthomonas conserved

hypothetical
3186454 542 XOO2979 Conserved hypothetical
3070661 205 XOO2861 b-ketoadipate enol-lactone

hydrolase
2856630 1972 XOO2699 Polygalacturonase
3352034 245 XOO3122 Conserved hypothetical
4231305 2058 XOO3959 Endopolygalacturonase
4611239 927 XOO4332 2-K-3-DdG permease
115257 10 270 XOO0111 Conserved hypothetical

with GGDEF domain
2098427 275 XOO1992 Iron receptor
1533310 4182 XOO1487 Cysteine protease
494176 148 XOO0475 Ribonucleotide-diphosphate

reductase
460543 6414 XOO0459 3-oxoacyl-[ACP] reductase

Nucleic Acids Research, 2005, Vol. 33, No. 2 583



The Xoo AvrBs2 homolog like the X.campestris gene,
exhibited regions with similarity to enzymes that synthesize
or hydrolyze phosphodiester bonds (78,79). X.campestris
strains harboring avrBs2 genes with mutations in these regions
overcame resistance to the corresponding resistance gene Bs2,
suggesting the enzyme activity might be critical to avirulence
function (79).

All three of the Xoo, Xac and Xcc genomes contained genes
coding for PopC-like leucine-rich-repeat (LRR) proteins. LRR
motifs are commonly involved in protein–protein interactions
and are found in the three major classes of plant-resistance
genes (80) and in the PopC protein of R.solanacearum (81).
Xoo PopC consisted of a 677-amino acid protein that carries
10 tandem LRRs. Many other bacteria-pathogenic plants and
animal encode for a YopJ homolog, a cysteine protease neces-
sary for virulence (82). Similar to Xac, Xoo lacks a recogniz-
able YopJ homolog.

CONCLUSION

Many researchers have tried to elucidate the mechanisms of
Xoo virulence and host resistance at a molecular level and, as a
result, a large number of Xoo genes associated with pathogen-
esis have been isolated and characterized. Nevertheless, many
aspects of virulence and avirulence mechanisms of Xoo are
still not understood. In this study, we presented the whole-
genome sequence of Xoo and used that sequence to identify
genes that might be involved in virulence and that may be
specific to the pathovar oryzae.

Xoo, the bacterial blight pathogen on rice, is the third
Xanthomonas species whose whole-genomic sequence has
been completely defined. Comparative genomics between
Xoo and the other two Xanthomonas genomes (Xcc and
Xac) showed high homology of more than 80% in genes asso-
ciated with virulence determinants, suggesting analogous
functions in pathogenesis. The Xoo genome contained approx-
imately twice as many transposable elements as the genomes
of Xcc and Xac. Transposable elements are potential agents of

large-scale genome reorganization by virtue of their ability to
induce chromosomal rearrangements such as deletions,
duplications, inversions and reciprocal translocations. We
also identified 245 genes in the Xoo genome that were not
found in the genomes of Xcc or Xac. Some of these genes may
be responsible for the certain types of pathogenicity and host
specificity profiles of Xoo. Host specificity, for example, may
result from combining different subsets of genes found in each
genome, such as genes encoding avr effector proteins, com-
ponents of secretion systems (hrp elements of the type III
secretion system), regulatory elements (rpf, regulation of
pathogenecity factor), type IV fimbriae and surface compon-
ents (LPS O-antigen operons). These findings in the sequence
information of Xoo genome provide a basis for experimental
approaches to better understand mechanisms by which the
pathogen invades and induces disease or resistance in its
host plant.
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