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Segmentation of biological volumes is a crucial step needed to fully analyse their scientific content. Not
having access to convenient tools with which to segment or annotate the data means many biological
volumes remain under-utilised. Automatic segmentation of biological volumes is still a very challenging
research field, and current methods usually require a large amount of manually-produced training data to
deliver a high-quality segmentation. However, the complex appearance of cellular features and the high
variance from one sample to another, along with the time-consuming work of manually labelling com-
plete volumes, makes the required training data very scarce or non-existent. Thus, fully automatic
approaches are often infeasible for many practical applications. With the aim of unifying the segmenta-
tion power of automatic approaches with the user expertise and ability to manually annotate biological
samples, we present a new workbench named SuRVoS (Super-Region Volume Segmentation). Within this
software, a volume to be segmented is first partitioned into hierarchical segmentation layers (named
Super-Regions) and is then interactively segmented with the user’s knowledge input in the form of train-
ing annotations. SuRVoS first learns from and then extends user inputs to the rest of the volume, while
using Super-Regions for quicker and easier segmentation than when using a voxel grid. These benefits are
especially noticeable on noisy, low-dose, biological datasets.
� 2017 Diamond Light Source. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Biological imaging techniques have moved from two-
dimensional to three-dimensional through tomography, or serial
section/imaging in order to provide spatial context, especially for
whole cells. For example, in tomography a sample is rotated rela-
tive to the beam while 2D projection images are collected at set
intervals and later reconstructed into a 3D volume (Lučić et al.,
2005). To give contextual information and answer biological
research questions, sub-sections of the volume need to be classi-
fied according to their biological purpose. In biological volume
analysis, data is often represented as a 3D grid of voxels with each
voxel in turn representing the absorption of some probe (X-rays or
electrons) at that point. Processing of these volumes can be diffi-
cult due to their low signal-to-noise ratio and low contrast, in
the case of cryo-immobilised samples, and large complex datasets
(focused-ion beam or Serial Block Face SEM; Frangakis and Förster,
2004; Lučić et al., 2005; Lučić et al., 2013). This generally requires
an expert user manually annotating a large number of voxels.

This time-consuming work can be assisted by classical interac-
tive segmentation methods such as Region Growing (Chang and Li,
1994), Watershed (Vincent and Soille, 1991), Graph Cut (Boykov
and Funka-Lea, 2006), Random Walks (Grady, 2006) or Active
Contours and Level Sets (Kass et al., 1988; Osher and Sethian,
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1988) methods. Recent cryoET and FIB-SEM studies have used var-
ious filtering and segmentation methods to ease analysis of their
datasets (Prill et al., 2013; Tsai et al., 2014; Vidavsky et al., 2016;
Vyas et al., 2016). However, in many cases manual segmentation
and basic thresholding methods are still routinely used. Each of
these methods has their strengths and weaknesses, and performs
differently depending on the properties of individual datasets,
but in general, most of them require extensive user intervention
to interactively segment a complex cellular volume completely.
Region Growing expands a segmentation from a seed point, but
will fail to segment organelles if their boundaries are missing or
noisy and requires user interaction to correct. Watershed segmen-
tation, which grows multiple regions along the volume simultane-
ously by flooding from multiple seed points, will face similar
problems, with the addition of having difficulties in placing the ini-
tial seeds. Graph Cut-based approaches model the segmentation as
a graph partitioning problem. They have robust global properties
and do not require seeds; however, they do require appearance
models for each of the object classes, which are not always obtain-
able. Finally, Active Contour-based approaches model the shape of
the boundaries themselves, and require a manual boundary initial-
isation around (or inside) each of the objects of interest.

Model or template based searches can be considered a type of
segmentation. Recent advances in cross-correlation based tem-
plate searches have been successfully used to identify protein com-
plexes (Asano et al., 2015; Förster et al., 2010; Liu and Sigworth,
2014), and to semi-automatically segment filaments such as actin
or microtubules, and membranes (Rigort et al., 2012). However, in
each of these cases, an accurate, correctly scaled, a priori model is
necessary, limiting their usefulness. In many cases, appropriate
structural models can be created using single particle electron
microscopy, sub-tomogram averaging, and macromolecular crys-
tallography. However, in the case of polymorphic protein com-
plexes, organelles, etc, models and templates are not appropriate.

Each of the above methods performs very well in specific cir-
cumstances. However, biological volumes, particularly near-
native state cryo-immobilised datasets, prove challenging due to
the necessity of using low-dose imaging conditions and the result-
ing low signal-to-noise ratio and poor contrast (Frangakis and
Förster, 2004; Lučić et al., 2005, 2013). An additional factor in some
3D biological datasets is the presence of missing wedge artefacts
due to data collection over a limited tilt range, resulting in missing
information and elongation in the direction of the beam (Frangakis
and Förster, 2004; Lučić et al., 2005, 2013). Each of the above seg-
mentation methods have been extended to try to mitigate some
weaknesses (Caselles et al., 1997; Couprie et al., 2011; Li et al.,
2010; Veksler, 2008; Vicente et al., 2008; Zhang et al., 2010) how-
ever, there is no single framework yet able to solve all of the chal-
lenges that biological volumes represent and allow satisfactory
semi-automatic segmentation.

More recent methods, such as ilastik (Sommer et al., 2011) or
the work of Lucchi et al. (2012), use a machine learning-based
approach to model the complex properties of the cellular compo-
nents in biological data. Instead of using standard image process-
ing algorithms to segment the image, the aim is to learn a
discriminative model that is then used to segment the rest of the
volume. These machine learning approaches have two require-
ments: (1) available training data (ie. prior expert-segmented vol-
umes) and (2) strong discriminative features extracted from the
data. After user annotation, features are extracted and associated
with each voxel (such as appearance and textural features) and a
classifier is trained to discriminate between the multiple labels.
A textural feature is a volumetric filter that enhances an underlying
structural feature of the data (e.g. boundaries, edges, patterns). For
example, the software package ilastik extracts textural features and
then uses a Random Forest to classify all voxels in a volume when
given user annotations as input (Sommer et al., 2011). The work of
Lucchi et al., instead, makes use of supervoxels to reduce the com-
putational complexity and refines the classification of Support Vec-
tor Machines (SVM) (Cortes and Vapnik, 1995) with a Markov
Random Field for segmentation (Boykov and Kolmogorov, 2004) .
This is similar to the method applied with Graph Cuts, but due to
the use of SVM, it provides stronger appearance models. This
approach not only reduces time and computational complexity,
but is also able to extract more discriminative features from super-
voxels, which increases classification performance.

Here, we propose a new algorithmic approach, and incorporate
it into a workbench. SuRVoS (Super-Region Volume Segmentation)
is built based on the fundamental concepts present in the previous
two approaches, including the interactive segmentation frame-
work of ilastik and the use of supervoxels, unifying the best charac-
teristics from both methods in a single software. SuRVoS first
learns from and then extends user inputs to the rest of the volume,
while using supervoxels and megavoxels for quicker and easier
segmentation than is possible when using a voxel grid. These ben-
efits are especially noticeable on noisy, low-dose, biological data-
sets. To demonstrate its power we present results obtained using
the workbench with two cryogenic soft X-ray tomography (SXT)
datasets.
1.1. SuRVoS workbench

The SuRVoS Workbench combines the human expert’s knowl-
edge with data representation, machine learning and active learn-
ing techniques. This workbench is designed to semi-automatically
segment large biological volumes with the input of a user and to
guide the user through the process (Fig. 1). The basic framework
of SuRVoS follows these steps:

(1) Data Preparation: Data is first loaded into SuRVoS and a
Region of Interest (RoI) is selected.

(2) Data Preprocessing: Denoising filters are used to enhance
volume information and remove noise that would reduce
the segmentation accuracy. Textural filters are used to
enhance relevant features of the volume to better discrimi-
nate between different cellular components.

(3) Data Representation: The volume is partitioned into more
meaningful regions using hierarchical layers of Super-
Regions: voxels, supervoxels (Achanta et al., 2012) and
megavoxels (Luengo et al., 2016a).

(4) Model Training: The user defines an arbitrary number of
labels and segments a large amount of data with a few clicks
using the Super-Region hierarchy. With the user annotated
data as input, a classifier is trained and applied to the whole
volume in real time. The user can then explore the confi-
dence maps of the classifier, accept voxels with high cer-
tainty, and iterate through model training to further refine
the results.

At any point the user can go back to any of the previous steps to
improve the pre-processing or data representation steps in order to
better highlight new target areas. This allows the user to try vari-
ous parameter configurations and better segment challenging vol-
ume regions.
2. Materials and methods

2.1. SuRVoS requirements

SuRVoS makes extensive use of the HDF5 library (The HDF
Group, n.d.) and file format to store intermediate results and



Fig. 1. Overview of the SuRVoS framework. Each step has configurable parameters, yet sensible defaults that work well in many cases. The main user workflow (green box),
which requires user intervention, consists of the data preparation, preprocessing, representation and model training stages. Segmentation strategies (yellow box) include
fully manual, region-based and model-based segmentation. Postprocessing (blue box) consists of data classification and measurement and output of data. Postprocessing
steps can be applied to segmentations created by any of the strategies. It is important to note that the user can return to any of the earlier steps at any time to further tune
parameters for segmentation of different cellular aspects, or to switch to a different segmentation strategy.
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features in an efficient on-disk format while reading only the nec-
essary data on-the-fly, which makes SuRVoS well-suited to the
exploration of large volumes. Additionally, SuRVoS uses efficient
CUDA code to compute most of the features and Super-Regions
in parallel. As usual for this type of tool, memory requirements
are dependent on the size of the dataset to be analysed. Documen-
tation, a tutorial and the software, including installation instruc-
tions and available platforms can be found at
https://diamondlightsource.github.io/SuRVoS/ (Luengo et al.,
2017).
2.2. Sample preparation

Two samples were used as test cases for segmentation with
SuRVoS. The first sample was a neuronal-like mammalian cell line
(PC-12; Apostol et al., 2003). Briefly, cells were seeded onto gold
finder Transmission Electron Microscopy (TEM) grids with holey
carbon support (Ted Pella), grown and differentiated, before
cryo-immobilization using an EM-GP (Leica) plunge freezer. The
second sample was Trypanosoma brucei procyclic cells (29–13
strain; (Wirtz et al., 1999). Briefly, cells were cultured and lightly
fixed in glutaraldehyde prior to the addition of 200 nm gold fidu-
cials, pipetting onto copper TEM grids with lacey carbon support,
and cryo-immobilization using a Mark IV (FEI) plunge freezer.
2.3. SXT data collection

Cryo light microscopy (Zeiss AxioImager.M2; Linkam CryoStage
CMS196) was used to screen grids for cell distribution, manual
handling damage and appropriate ice thickness prior to soft X-
ray tomography (SXT) imaging. SXT data were collected on an
UltraXRM-S220c microscope (Zeiss Xradia; Duke et al., 2014) using
the B24 beamline at 500 eV (2.4 nm wavelength) at Diamond Light
Source (B24, n.d.). Images were collected using a 40 nm zone plate,
at 812� magnification (16 nm/pixel), on a 1 K by 1 K back-thinned
direct detection CCD. Tilt series were collected from ±65� (PC-12
cells) or ±70� (T. brucei cells) with a 0.5� step size. Two PC-12
and one T. brucei reconstructions were completed using IMOD
(Mastronarde, 1997) with SIRT (PC-12 cells) or WBP (T. brucei cells)
algorithms selected.
3. SuRVoS framework

3.1. Data preparation

SuRVoS currently supports the MRC file format (.mrc) and HDF5
file format (.h5, .hdf5). Once data are loaded into the tool, the con-
trast is automatically selected and can be manually adjusted. The
user interface of the workbench includes three separate areas,
the Plugins, the Visualisation Pane and the Tool Column (Fig. 2).
Parameters can be chosen and applied using the Plugins and
assessed in the Visualisation Pane, while the Tool Column houses
shortcuts to frequently used tools. Multiple RoIs can be created
in the form of bounding cuboids ([zmin, zmax], [ymin, ymax]
and [xmin, xmax]). All further actions of the tool can be limited
to a designated RoI. This allows the user to select a RoI to test
the denoising and textural features in a smaller area before
expanding them to the whole volume, or, alternatively, it allows
the user to constrain automatic segmentation to a specific RoI.
3.2. Data Pre-processing

The data pre-processing step combines both denoising and tex-
tural feature extraction methods to enhance aspects of the data
and make future classification easier. Denoising includes standard
Gaussian and Total Variation (TV) filters (Chambolle, 2004;
Goldstein and Osher, 2009). While Gaussian filters usually produce
over-smoothed results, TV methods preserve strong volume edges

https://diamondlightsource.github.io/SuRVoS/


Fig. 2. User interface of SuRVoS. The left panel contains the workbench’s main tools, while the right panel contains the visualisation and segmentation workspace. Frequently
used tools are also included in an easily accessible column between the panels. Every step during the segmentation workflows (introduced in Section 3.5) outputs a
visualisation layer that can be explored to assess the effect of each and to further tune parameters until results are satisfactory.
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and tend to split the volume in piece-wise smooth regions (Fig. 3).
Therefore, a Gaussian-denoised volume is better suited for Super-
Region extraction, while TV denoising offers better performance
in extracting features for classification.

In addition to these basic filters, Gaussian derivative filters, dif-
ference of Gaussians and Laplacian of Gaussians, rotation and scale
invariant filters and the eigenvalues of the Hessian matrix and
Structure tensor are also available as they are more robust feature
extraction methods that help identify hidden characteristics of the
data. Every filter and feature extracted in this way is represented as
a channel of the image, and the user can explore and visualize any
channel of the 3D volume through the SuRVoS interface. This helps
the user to understand what aspect of the data each of the features
enhances, which parameters to choose for each aspect and
whether a filter is useful for a particular dataset or not. For exam-
ple, a TV filter (Fig. 3c) may be more appropriate for defining large
regions such as the nucleus from the cytoplasm, while the Gradient
Magnitude (Fig. 3d) or Laplacian of Gaussian (Fig. 3f) filters would
be more appropriate for segmenting smaller, more nuanced
regions such as organelles.
3.3. Data representation

Next, the volumetric data is represented as super regions within
a 3-layer hierarchical structure. This structure is composed of vox-
els, supervoxels and megavoxels. Each of these layers is formed by
grouping similar, nearby elements of the previous layer. That is,
while voxels represent standard volume voxels, supervoxels are
groups of adjacent voxels grouped together into a meaningful
region that preserve strong volume boundaries (ie. boundaries
between different biological features in the image). Similarly,
megavoxels are groups of nearby supervoxels that have similar
appearance. With this hierarchical partitioning, large areas of the
volume belonging to the same object are represented by: a set of
thousands of voxels, tens of supervoxels or a few megavoxels
(Fig. 4). This hierarchical structure has several advantages com-
pared to the standard voxel grid:

(1) Each of the layers of the hierarchy represents the same vol-
ume with many fewer elements than the previous layer,
thus, reducing the complexity of annotating or segmenting
the volume by several orders of magnitude.

(2) Supervoxels and megavoxels are designed to have a strong
boundary adherence and are therefore able to represent
the same biological feature without significant loss of
information.

(3) The shape and size parameters of the supervoxels are user-
definable in order to properly model volumes or areas with
different physical characteristics.

SuRVoS implements a custom GPU version of SLIC supervoxels
(Achanta et al., 2012) which by default extracts supervoxels of size
10 � 10 � 10 voxels from the volume. This means that the same
volume is represented by small groups of around 1000 voxels
without significant loss of information (Achanta et al., 2012), as
homogeneous regions are represented by single supervoxels. Fur-
ther larger regions can be extracted as megavoxels (Luengo et al.,
2016a,b). These megavoxels are also extracted in 3D and merge
large, similar areas while preserving strong edges and small cellu-
lar structures as unique entities. Generally speaking, supervoxels
are appropriate for segmenting smaller, more varied features,
while megavoxels may be more useful for larger, more similar
regions.
3.4. Model training

In order to learn from user annotations, voxels or supervoxels
need to be described using feature vectors. Features extracted with



Fig. 3. Output of different denoising and textural features on a cryo-SXT dataset. a. A central slice of a SIRT reconstructed tomogram from a PC-12 cell showing a large region
of nucleus (marked by N) and a crowded cytoplasm (marked by C), with many, various organelles present. b–c: The same central slice was used to illustrate two different
denoising effects. Both Gaussian filter and Total Variation denoising reduce noise, however, the former can over-smooth the image while the latter gives piece-wise constant
regions and preserves strong volume boundaries. d–f: Finally, the same central slice was used to illustrate different textural filters, which enhance various elements of the
volume. Note: All filtering and denoising methods are applied in 3D. Scale bars are 2.5 lm.
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SuRVoS (Section 3.2) are built into discriminative descriptors that
are suitable for training. These features form voxel descriptors dp

for pixel p and can be combined into supervoxel descriptors si by
any of the following methods:

(a) Mean of all the feature channels for all the voxels inside each
supervoxel.

(b) Histogram of quantised features (using k-means) from vox-
els inside the supervoxel.

(c) Textonized features (using Principal Component Analysis +k-
means) (Shotton et al., 2007).

(d) Using a SigmaSet (Hong et al., 2009; Luengo et al., 2016a,b,c)
descriptor, which combines first and second order statistics.

Descriptors can be normalised or standardised as is common in
machine learning to boost the performance of the subsequent clas-
sifiers. To enhance and add context to supervoxel descriptors, the
descriptor of each supervoxel, si can be extended with the descrip-
tors of the neighbouring supervoxels, denoted as Ni, to form a more
robust descriptor ui (e.g. a new descriptor is appended to the cur-
rent supervoxel’s descriptor containing the histogram or mean of
the features from all the supervoxels that share a boundary with
the current one):

ui ¼ si;
1
jNij

X
j2Ni

sj

" #

Once features are extracted, SuRVoS uses machine learning
algorithms available through the scikit-learn library (Pedregosa
et al., 2011) to classify each Super-Region into experimentally rel-
evant groups. The available classifiers include: Random Forest (RF)
(Breiman, 2001), Extremely Random Forest (ERF) (Geurts et al.,
2006), Gradient Boosting (Friedman, 2002), Support Vector
Machine (SVM) (Cortes and Vapnik, 1995) with different kernels
(linear, RBF, etc.) and linear classifiers optimised with Stochastic
Gradient Descent (such as linear SVM or Logistic Regression). An
experienced user can try different combinations of descriptors
and select the most appropriate classifier for each of them. By
default, SuRVoS uses an ERF classifier as it requires no parameter
tuning and deals well with many kinds of features and
normalization.

A selected classifier can be trained on either voxels or supervox-
els, the latter being orders of magnitude faster while preserving
similar accuracy. The output of the classifier is the label prediction
for each of the voxels (or supervoxels) independently. These
predictions, however, contain a lot of noise and spurious labels
as there is no spatial coherence. To address this, SuRVoS refines
the predictions using a Markov Random Field (MRF) formulation,
which takes into account neighbouring labels to make the predic-
tions more spatially consistent. Given an undirected graph
G ¼ ðV ; EÞ, where V are the nodes and E is the edge set, and a finite
set of labels (or classes) C, the task is to assign the optimal label
cp 2 C to each p 2 V . The general form of a 2nd order MRF enforces
unary wp and pairwise wpq constraints to the set of nodes and
edges,

EðcÞ ¼
X
p2V

wpðcpÞ þ k
X
p;q2E

wpq:wpqðcp; cqÞ



Fig. 4. Super-Region hierarchy example using a RoI of a cryo-SXT dataset (PC-12 mammalian cells). A single slice through a full-volume cryoSXT reconstruction with a smaller
RoI marked (d, red box). This RoI was chosen to give a clearer view of the Super-Regions while still containing representative areas of both the nucleus and the cytoplasm. The
RoI is shown again in (a) and with or without supervoxels (b, e) and megavoxels (c, f) overlaid. Supervoxels are formed by adjacent, similar voxels, while megavoxels group
nearby similar supervoxels together. Supervoxels preserve strong image boundaries, in this case delineating the boundary between the nucleus and cytoplasm and many of
the boundaries of the organelles within the cytoplasm (b, e). Similarly, megavoxels still preserve boundaries and better represent larger regions (c, f). Note: Both supervoxels
and megavoxels are in 3D. Scale bars are 2.5 lm.
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where cp is the label assigned to node p, and wpq is a similarity
weight between nodes p and q. Minimising EðcÞ yields the optimal
labelling c� for the graph G. For the refinement of the segmentation
of large volumes, a graph G is extracted where the nodes are voxels
(or supervoxels) and edges connect nearby nodes (in a 6/18/26
neighbourhood for voxels in 3D or supervoxels that are touching,
i.e. share boundary voxels). The unary potential is set to the nega-
tive log likelihood of the probabilistic output of any of the above
classifiers wpðcpÞ ¼ �log pðyjxÞ and the pairwise potentials set as
a weighted potts model wpq ¼ wpq � ½cp ¼ cq� where ½. . .� evaluates
to 1 if the inside is true and 0 otherwise. The similarity weight
between voxels or supervoxels is calculated as a difference between
the descriptors of nodes p and q weighted by the amount of bound-
ary voxels they share. This encourages nearby similar nodes to have
the same label, smoothing the classifier’s result while still preserv-
ing the volume’s strong boundaries. This is exploiting the property
that volume features are usually consistent within a biological
structure. Inference of the MRF refinement models is performed
by means of the FastPD (Komodakis and Tziritas, 2007;
Komodakis et al., 2008) libraries.

In practice, this approach allows the segmentation of biological
volumes with a reduced level of user interaction. Using the default
parameters of the refined classifiers, allowed, in one of the exam-
ples presented here, for the segmentation of areas corresponding
to the nucleus and cytoplasm with just two brief user annotations
(Fig. 5). While this figure is a two-dimensional visualisation, model
training using these two user annotations is sufficient to segment
the central 100 slices of a 946 � 946 � 350 cryo-SXT volume. By
using supervoxels, the classification and refinement steps take just
1–5 s to give predictions for 100 slices of the volume.

The classifier’s confidence can be inspected in order to assess
the quality of the classification. Confidence levels can be used as
a guidance for further annotations, as annotating uncertain areas
(darker areas in Fig. 5b) would help the classifier to better under-
stand the data and obtain better performance. Additionally, SuR-
VoS contains a Confidence Acceptance Tool, which allows the
user to save predictions based on the classifier’s confidence level.
3.5. User workflows

Applying the user’s knowledge to quickly generate training data
(in the form of annotations) is a key feature of SuRVoS. The user
can annotate volume slices at any of the Super-Region levels: vox-
els, supervoxels or megavoxels. Thus, with a single manual annota-
tion, all the voxels, supervoxels or megavoxels that the pen tool
passes through are assigned to the selected label. This means the
user can annotate vast regions of voxels with a minimal amount
of effort. Labels can be created as required to correspond to image
content and assigned a custom colour and name.

To make the annotation task more intuitive, SuRVoS uses a Seg-
mentation Label Hierarchy. Segmentation labels can be created as
needed and newer labels can be placed within parent labels to
intelligently restrict model training and the segmentation space.
For example, it may be useful to first segment large regions from
each other (in one of our examples, nucleus from cytoplasm)
before segmenting the nucleoli within the nucleus and the



Fig. 5. Classification of a representative cryo-SXT volume of a PC-12 mammalian cell into nucleus and cytoplasmic regions. Each image is a central slice of the SIRT-
reconstructed volume with supervoxels overlaid. User annotations are shown as elongated lines with no opacity (a, c); purple to denote nucleus and blue for the cytoplasm.
(a) A Random Forest (RF) classifier is trained on the user annotations to learn to discriminate between the two regions. (b) The confidence of the RF classifier (yellow for
higher and dark blue for lower) can be used to assess the model training. (c) The RF result is refined using a MRF formulation. It is important to note that both classification
and refinement are propagated in 3D, and the user annotations shown here are sufficient to accurately segment the central 100 slices of this volume. Scale bars are 2.5 lm.
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organelles within the cytoplasm. By exploiting this contextual
information, which is known to improve the performance of classi-
fiers (Li et al., 2009; Tu and Bai, 2010), individual areas and orga-
nelles can be segmented separately in a more efficient manner.
In most cases, a two-level label hierarchy is sufficient, separating
large volume areas in the first level and assigning smaller objects
of interest to the second layer. In SuRVoS, each segmentation label
creates a separate annotation mask. This annotation mask can
either be directly output, or can be used within SuRVoS to output
only the data within the mask for downstream data visualisation
purposes.

SuRVoS provides the user with three main workflows with
which to segment data: manual segmentation, region-based
segmentation, and model-based segmentation. As with other
available tools, such as Amira/Avizo (‘‘Avizo,” n.d.), IMOD
(Kremer et al., 1996), Fiji (Schindelin et al., 2012) or Chimera
(Pettersen et al., 2004), the user can manually annotate the voxels
of the volume directly. This approach, at the expense of extensive
manual labour, can enhance segmentation in difficult areas where
alternative schemes do not achieve the desired level of segmenta-
tion accuracy. In the second segmentation approach, using
Super-Regions (both supervoxels and megavoxels), different areas
of the volume can be rapidly annotated without having to manu-
ally delineate a region’s boundaries. As Super-Regions provide
good boundary adherence, annotating cell areas is simplified
and more time-efficient. Additionally, region annotations can
make use of the Segmentation Label Hierarchy to limit a label
to a previously defined area of the volume, preventing segmenta-
tions from exploding out of an area of interest. The third
approach, using descriptors and annotations from previous steps
(both manual and region-based annotations), machine learning
algorithms can be used to extend annotations to the rest of the
volume. This semi-automatic segmentation is aided by a confi-
dence map and can be used to iteratively add to segmentations
to train the descriptor. As before, training and prediction of
segmentations can be limited to a certain area of the volume by
using the Segmentation Label Hierarchy.

3.6. Data classification and measurements

Once the user has segmented the desired structures from the
volume, SuRVoS provides two main tools for measurement and
analysis (Fig. 6). The Label Splitter tool allows the user to classify
groups or individual objects within the segmentation. Using
various measures extracted from each object (such as shape, size
and average intensity within a selected feature channel) rules
can be created to describe a type of object and segregate this type
of object into a new class. Once the distinctions are made, results
can be saved as new labels. Next, the Label Statistics tool can be
used to visualize relationships and output metrics for each object
in a label. Plots for each of the metrics extracted for each label
allow the user to visually examine the differences between them.
Numerical metrics and plots can be exported as .CSV files or images
for further analysis or figure preparation.

4. Results

4.1. PC-12 cell

The 3D data were imported into SuRVoS, where the contrast
was adjusted and the volume was clipped to the relevant area. In
the pre-processing tab, the data was scaled and appropriate super-
voxels and megavoxels were identified (Fig. 7). First, parameters
for large, region-defining supervoxels and megavoxels were used
in conjunction with model training to segment the nucleus, cyto-
plasm and extracellular area. Brief manual annotation of a single
central slice using supervoxels followed by use of the Confidence
Slider and the Area Acceptance tool allowed for the inclusion of
voxels that made up the nucleus and cytoplasm through the cen-
tral slab of the dataset. This process took less than five minutes
of user time. It proved more difficult to train SuRVoS to identify
the boundaries between the top of the cell and the surrounding
ice, and the bottom of the cell as it grew through the supporting
holey carbon film. However, when iterating through the same
strategy of quick manual annotation, model training, and accep-
tance of small areas of voxels with high certainty, these boundaries
were still identified with minimal manual annotation. The entire
region segmentation took approximately 1 h for a 946 pixel by
946 pixel by 311 slices tomogram, representing an approximately
15 lm by 15 lm by 5 lm cellular volume. Next, the supervoxel
parameters were tuned to best segment the nucleoli from within
the nucleus. Additionally, the Segmentation Label Hierarchy fea-
ture was used to ensure only voxels within the nucleus were avail-
able for annotation as nucleoli. An iterative model training
approach with supervoxels to label the nucleoli and ‘‘not nucleoli”
was used.

Lastly, appropriate supervoxel parameters for organelle annota-
tion were applied. A higher magnification was used to zoom in on a



Fig. 6. Label Splitter (top) and Label Statistics (bottom) tools allow for classification and analysis of data. After segmentation is complete, the Label Splitter tool (top) can be
used to compute appearance, size and shape statistics from each object. Using these statistics, rules can be created to distinguish between object groups (e.g.: green and
purple classes). Each object can be selected in the data and found in the plot and vice versa (red object and red line). New object classes can then be made into segmentation
labels, and used for comparative analysis in the Label Statistics tool (bottom), where different classes can be visually compared. Results for both tools can be exported as
figures or. CSV files for further analysis.

50 I. Luengo et al. / Journal of Structural Biology 198 (2017) 43–53
smaller area of the tomogram and all organelles within that area
were annotated approximately every five slices through the 3D
volume. Multiple organelle classes were used to ensure separation
between near or touching organelles. This rough organelle annota-
tion was repeated across the entire volume, followed by computa-
tionally filling holes in each label and smoothing of the
segmentation edges using ‘‘opening” and ‘‘closing” operations.

Next, all organelle classes were used as inputs to the Label Split-
ter tool. Rules were created based on the average intensity, average
variation, average standard deviation and organelle size and loca-
tion in X/Y/Z. These rules were used to split the organelles into bio-
logically relevant classes such as lipid droplets, empty vesicles and
mitochondria (Supplementary Movie 1). Quantitative information,
such as number of organelles, voxel number size, and bounding
box size, was output for each organelle class.

4.1.1. Trypanosoma brucei cell
The 3D data were imported into SuRVoS, the contrast adjusted

and the data clipped to the area of interest. Supervoxels were cho-
sen to allow annotation of multiple types of organelles, while
megavoxels were chosen to allow for annotation of the lacey car-
bon support and cell body of the parasite (Fig. 8).

As before, regions were first defined using megavoxels, how-
ever, in this case model training was not used. The lacey carbon
support and cell body were segmented using megavoxels; while
the parasite’s flagella, nucleus and other organelles were



Fig. 7. Qualitative results for the PC-12 cell segmentation. Top row shows central slice of the raw data (left) with the corresponding supervoxel (center) and megavoxel (right)
extraction. Bottom row shows organelle (left) and full (right) segmentation of the volume respectively. In both segmentations, different classes of organelles, such as
mitochondria, lipid droplets and empty vesicles, are represented in various colours. In addition, in the full segmentation, the nucleus is light blue, and nucleoli are red. Scale
bars are 2.5 lm.

Fig. 8. Qualitative results for the Trypanosoma brucei cell. Top row shows central slice of the raw data with the corresponding supervoxel and megavoxel extraction. Bottom
row shows organelle and full segmentation of the volume respectively with the flagellum in green, the cell body in blue and organelles in various other colours. Scale bars are
2.5 lm.
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segmented using supervoxels. Computational hole filling and
opening and/or closing operations were performed on each seg-
mentation label. In order to segment this dataset, four sets of
supervoxel and megavoxel parameters were used and the total
segmentation time was approximately eight hours. Classification
of organelles was performed by eye, based on the general
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characteristics of the data (Supplementary Movie 2). Quantitative
information about each organelle group was output and used to
begin to identify each organelle class.

5. Discussion

We present SuRVoS, a new workbench comprising machine
learning algorithms and computer vision volume features that uses
the inherent features of the data to hierarchically build up regions
that respect data boundaries. These regions are then used in con-
junction with user interaction to segment 3D data. As features
extracted from the data itself are used, SuRVoS is suitable for seg-
mentation of any 3D data. Here, we show examples using soft X-
ray cryotomography data, however SuRVoS has been used at a
recent training workshop to segment data collected by cryo elec-
tron tomography, soft X-ray cryo tomography, focused ion beam
Scanning Electron Microscopy (FIB-SEM), and hard X-ray microto-
mography. Based on these experiences, we believe SuRVoS will be
generally applicable to segment volumetric datasets regardless of
technique used to collect the data. Additionally, when regions are
used to segment the data, the segmentation boundaries are not
manually drawn by the user, meaning the resultant segmentation
should be less subjective at the voxel level. Additionally, the use
of rules based on characteristics of the data paves the way for less
subjective identification of organelles within each dataset and
between normalised datasets. Further studies would be necessary
to fully assess subjectivity in segmentations using SuRVoS
Workbench.

There are three ways to use SuRVoS: 1. fully manual voxel seg-
mentation, 2. region-based segmentation (using super- or
megavoxels), 3. model-based predictive segmentation. Each of
these approaches can be useful depending on the dataset to be seg-
mented and the intended use of the data. In the first approach, seg-
mentation is completed manually without utilising many of the
features of SuRVoS, but provides a hand-crafted, expertly derived
segmentation. This is essentially equivalent to other available seg-
mentation software. While results will be highly subjective and the
process time-consuming (Hecksel et al., 2016) the segmenter may
be able to better identify smaller, finer features of interest. The sec-
ond approach, using supervoxels based on features within the data
to segment every few slices, is appropriate for smaller, less uniform
features that are unsuitable for model training. The amount of
manual segmentation for these features is still high, but because
3D supervoxels are used, meaning user segmentation is only nec-
essary every few slices and without needing to delineate bound-
aries, the amount of manual segmentation required is still much
less than for a fully manual segmentation. The third approach uses
the entire suite of features within SuRVoS to quickly train the pro-
gram and define the boundaries of regions. It can also be used to
segment cellular aspects displaying similar characteristics such
as similar organelles. This strategy iterates through quick, minimal,
manual annotation, followed by model training and acceptance of
small areas of voxels with high confidence. The number of voxels
that are manually segmented is much smaller in this approach
and, compared to a manual segmentation, the time required to seg-
ment a volume into various regions is greatly reduced (by a factor
of approximately 5). In order to use model training to segment
organelles, multiple classes of organelle have to be used such that
no organelle is touching another organelle in the same class. This
prevents the joining together of two nearby organelles into one
object, which would skew classification and statistical output dur-
ing the label splitting process.

The differences between these three ways of using SuRVoS stem
from the supervoxel or megavoxel parameters chosen and the fea-
tures they are based on. The denoising and textural filters can be
stacked and built up, creating filter sets that accentuate specific
data characteristics. These filter sets can then be used to create tar-
geted supervoxels or megavoxels for segmentation. Therefore, it is
helpful to assess multiple filter, supervoxel and megavoxel options,
as these can be changed at any point in the segmentation process.
Within the same segmentation, specific parameters can be chosen
to segment regions, or to ease segmentation of each specific feature
or type of feature within the data. Parameter choice is a critical
step in the segmentation process using SuRVoS. Choosing appro-
priate parameters throughout is necessary for ease and quality of
segmentation. Each sample type will be different, and some, like
the Trypanosoma brucei sample presented here, will benefit greatly
from tailored feature, supervoxel or megavoxel parameters.

SuRVoS has been built with a Segmentation Label Hierarchy
that allows the assignment of parent and child relationships for
labels. Using this feature, segmentation and model training can
be restricted to the region of the parent label. Since this hierarchi-
cal arrangement constrains the segmentation area, this can speed
up computation and further segmentation steps. Template match-
ing tools are not included in SuRVoS, however aspects of the Work-
bench can ease the use of these tools. For example, SuRVoS can be
used to segment large regions to mask away areas where template
matching is unnecessary.

The two example segmentations presented here were com-
pleted by a biological and segmentation expert (PC-12 cell), and
a biological and segmentation novice (T. brucei cell). In the case
of the PC-12 cell, the segmentation volume was approximately
15 lm by 15 lm by 5 lm (946 pixels by 946 pixels by 311 slices)
and took approximately 35 h to segment, classify and visualize
fully. For the T. brucei cell, the segmentation volume was
11.6 lm by 14.8 lm by 2.2 lm (728 pixels by 927 pixels by 135
slices) and took approximately eight hours to segment fully. The
speed-up in segmentation time, in conjunction with the decreased
subjectivity of the segmentation method means larger datasets can
be more easily analysed in a more quantitative fashion.

6. Conclusions

The SuRVoS workbench brings together machine learning mod-
els, computer vision techniques and human knowledge within a
user interface to interactively segment large 3D volumes. The
introduction of Super-Regions (supervoxels and megavoxels)
reduces manual segmentation and removes manual delineation
of boundaries, potentially decreasing subjectivity. Additionally,
SuRVoS provides a wide variety of denoising and textural filters
that can be tuned to each sample and used to train a machine
learning model to extend the user’s manual segmentations to the
rest of the volume. The resulting segmentations can be measured
and classified within the tool and exported for further visualisa-
tion. In addition to the above benefits, using the features intro-
duced in SuRVoS, user segmentation time is reduced by �5�
times compared to manual segmentation. Together, these features
pave the way for better, more quantitative use of 3D volume data-
sets in biological sciences.
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