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Abstract

Due to its cost effectiveness, next-generation sequencing of pools of individuals (Pool-Seq) is becoming a popular strategy
for characterizing variation in population samples. Because Pool-Seq provides genome-wide SNP frequency data, it is
possible to use them for demographic inference and/or the identification of selective sweeps. Here, we introduce
a statistical method that is designed to detect selective sweeps from pooled data by accounting for statistical challenges
associated with Pool-Seq, namely sequencing errors and random sampling among chromosomes. This allows for an
efficient use of the information: all base calls are included in the analysis, but the higher credibility of regions with higher
coverage and base calls with better quality scores is accounted for. Computer simulations show that our method efficiently
detects sweeps even at very low coverage (0.5� per chromosome). Indeed, the power of detecting sweeps is similar to
what we could expect from sequences of individual chromosomes. Since the inference of selective sweeps is based on the
allele frequency spectrum (AFS), we also provide a method to accurately estimate the AFS provided that the quality scores
for the sequence reads are reliable. Applying our approach to Pool-Seq data from Drosophila melanogaster, we identify
several selective sweep signatures on chromosome X that include some previously well-characterized sweeps like the wapl
region.

Key words: selective sweeps, next-generation sequencing, pooled DNA, Drosophila, allele frequency spectrum, hidden
Markov model.

Introduction
The detection of genomic regions that have evolved under
natural selection is an important topic in population genet-
ics, which poses interesting theoretical challenges and
holds great potential for medical and economic benefits.
The case of hard sweeps, where a new mutant goes to fix-
ation in a population due to strong directional selection,
has received particular attention. Exploiting a typical pat-
tern of reduced genetic diversity in the vicinity of the se-
lected site, several methods were proposed to detect such
events by screening the allele frequencies along the genome
in a single population (Kim and Stephan 2002; Jensen et al.
2005; Nielsen et al. 2005; Boitard et al. 2009) and were ap-
plied to several species (Li and Stephan 2006; Williamson
et al. 2007).

Today, the advent of next-generation sequencing (NGS)
technologies provides a new dimension to such genome
scans for selection. Genomes can be covered with very high
density, and the ascertainment bias caused by SNP identi-
fication is becoming less important. Currently, the precise
identification of individual genotypes, which requires a high
sequencing coverage of each individual, remains very ex-
pensive for large samples. However, hard sweeps can also
be detected when using only information concerning the
genetic diversity of the sample along the genome. This

information can be obtained also from experiments where
the DNA from a pool of individuals is sequenced simulta-
neously (Pool-Seq). Although Pool-Seq is considerably
cheaper than the sequencing of individuals, there are
some methodological challenges associated with the anal-
ysis of the resulting data. For a discussion, see Futschik and
Schlötterer (2010).

The new sequencing technologies have resulted in
a dramatic cost reduction compared with classic Sanger
sequencing, but the error rate per sequence is considerably
higher. Even for diploid individuals, the distinction between
sequencing errors and true SNPs is challenging when the
coverage is not high enough. Similarly, for Pool-Seq, the
identification of rare SNPs is difficult. One common strat-
egy is thus to remove all singletons or doubletons from the
analysis, because they might also result from sequencing
errors. For the same reason, base calls with low-quality
scores tend to be removed as well. Although it is possible
to obtain unbiased estimates of genetic diversity using this
approach, it is apparent that information is lost. In partic-
ular, the detection of selective sweeps could be compro-
mised by this strategy because low-frequency alleles are
an important signal to detect recent selective sweeps.

Hidden Markov models provide a natural framework to
take both sequencing errors and unequal local coverage
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into account. Here, we develop a Hidden Markov Model for
detecting sweeps using pooled NGS data: This model ex-
tends the one investigated in Boitard et al. (2009) for clas-
sical sequencing data. As part of the model, we also
introduce a version of the Expectation Maximization
(EM) algorithm to estimate the allele frequency spectrum
(AFS) using the information from all available genomic
positions. Indeed, the estimated AFS is used to scan the
genome for regions where the AFS is biased toward ex-
treme allele frequencies. Our approach involves computing
the likelihoods of the observed read information condi-
tional on the number of derived alleles in the pool across
genome positions. It takes into account the uncertainty
concerning the true allele frequencies in the pool, which
might typically be higher for sites with low-coverage or
bad-quality scores.

Using computer simulations, we study the accuracy of this
procedure for estimating the AFS, and its power for detecting
selective sweeps. We then apply our approach to scan the X
chromosome of Drosophila melanogaster, using two pooled
samples of 97 flies sequenced at 100� coverage.

Materials and Methods

Accounting for Sequencing Errors and
Chromosome Sampling at One Position
We consider here a sample of n chromosomes that have
been subjected to Pool-Seq. We assume an infinite sites
model and denote by Yi, the number of derived alleles
at genomic position i (0 � Yi � n). With NGS of pools,
Yi is unobserved. We observe a collection of ri reads, among
which the observed number of derived alleles will usually
differ from Yi due to 1) the random sampling of reads from
the n chromosomes and 2) the sequencing errors. Let Zi,j
(0 � j � ri) denote an indicator variable equal to 1, if
the observed allele at read j is derived, and let Zi5
ðZi;1; . . . ; Zi;riÞ. Let furthermore, ei,j be the probability for
a sequencing error at read j. The conditional probability
of the observed reads Zi given Yi is then equal to
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In this equation, Yi/n should be interpreted as the prob-
ability that read j is taken from the subset of derived alleles
in the pool. Because the sequencing is performed on one
single pool, this probability is the same for all reads j. It is
equal to Yi/n because we assume that reads are sampled
uniformly from each of the n chromosomes. Indeed, we
do not account here for the possible biases arising from
unequal concentration or quality among individuals, or al-
lele specific amplification. Note that the influence of un-
equal concentration or quality among individuals on
allele frequency estimation are expected to be low for large
sample sizes, as shown by the derivations of Futschik and

Schlötterer (2010). The sequencing error probabilities, ei,j,
can be deduced from the PHRED scores, Qi,j, provided with
the sequenced data, using the relation ei;j510�Qi;j=10. As Il-
lumina PHRED scores are known to be biased (Dohm et al.
2008), we include a discussion concerning the effects of in-
accurate quality scores, as well as possible strategies to cope
with the problem. (See the section on the real data appli-
cation.)

Estimation of the AFS
Let p 5 (p0,. . .,pn) be the AFS in a region of length L
covered by the reads, that is, pj is the probability of observ-
ing j copies of the derived allele among the n chromosomes
at a given genomic position. The likelihood of this
spectrum given the observed reads is
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As this likelihood involves a summation over the unob-
served variables Yi, we propose to maximize it using an EM
strategy. Our algorithm starts from an arbitrary initial value
of p and iteratively computes new values of p that increase
the current likelihood. If pc is the current value of the AFS,
the next value is given as

pcþ 1
j 5

1

L

XL
i5 1

PðZijYi 5 jÞpcjPn
k5 0 PðZijYi 5 kÞpck

: ð3Þ

The EM iterations are thus based on the conditional
probabilities computed using equation (1). This algorithm
is similar to the EM-AFS strategy independently proposed
in Li (2011). More details about the algorithm are provided
in the Supplementary Material online.

What we denote by p here is an estimate of the allele
frequency probabilities in a random sample of size n from
the population. Inference based on coalescent theory, as
the derivations of Nielsen et al. (2005) used in our sweep
detection model, generally involve this quantity. Note,
however, that the shape of this sample AFS can be expected
to resemble the shape of the AFS in a population of size
N. Indeed, it also permits to come up with an estimate
of the population allele frequency distribution in terms
of an approximate continuous model. A natural way to es-
timate the parameters of the continuous model would be
via maximum likelihood. In a Bayesian context, Gompert
and Buerkle (2011) use a continuous parametric model to
come up with a prior distribution for p in their hierarchical
model.

Detection of Selective Sweeps
Since the allele frequency pattern in the vicinity of a se-
lected allele differs from the one under neutrality, such lo-
cal variation in allele frequencies can be used to detect past
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selection events (Kim and Stephan 2002; Nielsen et al.
2005). To detect selective sweeps from Pool-Seq data,
we extend the Hidden Markov Model (HMM) approach
that we initially developed for completely sequenced data
(Boitard et al. 2009).

We assume that each site i is associated with a hidden
state Xi, which can take three different values: ‘‘Selection,’’
for the sites that are very close to a swept site; ‘‘Neutral,’’ for
the sites that are far away from any swept site; and ‘‘Inter-
mediate,’’ for the sites in between. These three values are
associated with different frequency spectra (the ‘‘Selection’’
spectrum is more skewed toward low and high allele
frequencies than the ‘‘Intermediate’’ spectrum, and even
more than the ‘‘Neutral’’ one). The hidden states Xi form
a Markov chain along the genome with a per site proba-
bility q of switching state, so that close sites tend to be in
the same hidden state. The observed variables are Zi,
containing the site frequencies taken from the pooled
sequence reads. After computing suitable emission proba-
bilities, the Viterbi algorithm is used to predict the most
likely hidden states Xi from the observed states, and thus
detect the swept regions. Combining equation (1) with the
AFS in hidden state Xi leads to the emission probabilities

PðZijXiÞ5
Xn
Yi 5 0

PðZijYiÞpXiYi : ð4Þ

We prefer, however, to only consider those sites for
which two different alleles are observed among the reads
(i.e., where

Pri
j51 Zi;j.0), and run the HMM using the emis-

sion probabilities
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These emission probabilities account also for the fact
that an observed polymorphism could be due to a sequencing
error.

Notice that the approach in Boitard et al. (2009) would
not be applicable here, as it assumes equal coverage at each
position and also that the true numbers of derived alleles Yi
are known.

A natural method for obtaining allele frequency spectra is
to first estimate the AFS under the state ‘‘Neutral’’ by apply-
ing the EM algorithm presented above to the whole genome
data. An approximate AFS for the other hidden states can
then be obtained by adequately modifying the neutral AFS
using the method described in Nielsen et al. (2005).

Simulations
We used MSMS (Ewing and Hermisson 2010) to simulate
genomic samples under a coalescent model with mutation,
recombination, and constant population size. Our consid-
ered models involved both neutrality and a selective sweep
at a single locus. From the genomic samples obtained from
MSMS, pooled NGS data were simulated using our own
MATLAB code: For each site, a number of reads ri was
simulated (independently of the other sites) from a Poisson

distribution with expected value k, the coverage of the
sequencing experiment. For each read j (1 � j � ri), we
then simulated the allele type Zi,j from a Bernoulli distribu-
tion with parameter Yi/n. (Recall that Yi is the derived allele
frequency at site i in the pool.) Next, a sequencing error
probability ei,j was generated by drawing from the empirical
distribution of PHRED scores, observed in our NGS data set
(supplementary fig. S3, Supplementary Material online). Fi-
nally, sequencing errors were introduced by drawing from
a Bernoulli distribution with parameter ei,j. This leads to a sim-
ulated NGS sample, which can then be used for the AFS es-
timation and the detection of selective sweeps.

For detecting selective sweeps, we adapted the approach
taken in Boitard et al. (2009) to pooled NGS samples in-
stead of complete sequence data. When analyzing our sam-
ple, we identify a selective event as soon as the state
‘‘Selection’’ has been predicted for at least one site. For eval-
uating the detection power under a given selective sce-
nario, we simulate several samples under this scenario
(500 in this study, because of the high computational cost
of the analysis) and look at the percentage of scenarios for
which a sweep window is detected that also includes the
true position of the selected site. The output of the analysis
depends on the switching probability q used in the tran-
sition matrix of the HMM. In order to calibrate this prob-
ability, we preliminarily simulated 500 neutral samples
under the same demographic scenario and analyze them
with different values of q. We select a value of q such that
selection is detected in 5% of these neutral samples, which
means that we have a false positive rate of 5%. For the re-
sults shown in table 1, the selected value of q was around
2.10�4, with little variation for different sample sizes.

For the comparison between pooled NGS data and
complete sequence data, we applied the HMMs described
in Boitard et al. (2009).

Analysis of Drosophila Chromosome X
We looked for selective sweeps on the X chromosome of
Drosophila melanogaster using two samples of 97 female
flies, both taken from the F1 generation derived from
5,000 flies, which were collected in November 2009 at
the Kahlenberg, Austria. These flies were adapted to lab
conditions during 2 days before they reproduced to form
the F1 generation. Two samples of 97 females were
subjected to Pool-Seq.

Genomic DNA was extracted from 97 individuals, which
were homogenized with a Ultraturrax T10 (IKA-Werke,
Staufen, Germany) and purified with the Qiagen DNeasy
Blood and Tissue Kit (Qiagen, Hilden, Germany). Genomic

Table 1. Selective Sweep Detection Power.

Sample Size n 5 25 n 5 50 n 5 100 n 5 200

Pooled NGS data 0.91 0.90 0.91 0.90
Sequence data—all sites 0.89 0.88 0.87 0.87
Sequence data—segregating sites 0.57 0.60 0.64 0.62

Detection power for pools of n 5 25 to n 5 200 chromosomes of length L 5 100
kb simulated under a constant population size coalescent model with h 5 0.003,
q 5 0.003, and a 5 500. NGS data sets were simulated with an expected
coverage, k 5 100.
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DNA was sheared with a S2 device (Covaris, Inc., Woburn,
MA) and used to prepare paired-end genomic libraries with
the Paired-End DNA Sample Preparation Kit (Illumina,
San Diego, CA) following the manufacturer’s instructions.
Sequencing was performed with an Illumina GAIIx sequencer.

Reads were trimmed to remove low-quality bases and
mapped with bwa (version 0.5.7) (Li and Durbin 2009)
against the D. melanogaster reference genome (version
5.18) and Wolbachia (NC_002978.6). We used the follow-
ing mapping parameters: -n 0.01 (error rate), -o 2 (gap
opening), -d 12 and -e 12 (gap length) disabling the
seed option. The alignment files were converted to the
Sequence Alignment/Map (SAM) format using the bwa
module sampe enabling a local alignment procedure
(Smith–Waterman), whenever one of the reads of the pair
could not be mapped with global alignment. The SAM files
were filtered for reads mapped in proper pairs with a min-
imum mapping quality of 20 using SAMtools (Li et al. 2009).
The filtered SAM files were converted into the pileup for-
mat. We used RepeatMasker 3.2.9 (www.repeatmasker.org)
to create a gff file to mask simple sequence repeats and
transposable elements of the D. melanogaster genome ver-
sion 5.34. Finally, indels together with five flanking nucleo-
tides (on both sides) were masked in the alignments of
each population if the indel was present in at least one pop-
ulation and supported by at least two reads.

The expected coverage was 100� for sample 1 and 87�
for sample 2.

We also explored recalibration of the read qualities using
GATK (DePristo et al. 2011) before creating the pileup file.
This software estimates the sequencing error probabilities
based on reads from sites that are assumed to be nonpo-
lymorphic. Consequently, a list of true polymorphic sites is
needed. We included in this list: 1) the transposable ele-
ment positions reported by RepeatMasker (see above),
2) the positions flanking indels (5 bp upstream and down-
stream), and 3) the positions with more than two copies of
the minor allele.

The statistical analysis (both for AFS estimation and for
genome scans for selection) was based on folded sequence
data, so we did not require for SNPs the ancestral alleles to
be known. The allele labels 0 and 1 have thus been chosen
arbitrarily. We used the folded likelihood

Pf ðZijYiÞ5
1

2
PðZijYiÞ þ 1

2
Pð1 � ZijYiÞ: ð6Þ

Polymorphic sites with three different alleles were also
used in the analysis. They were converted into SNPs by
removing the least frequent allele, which we considered
to be most likely due to a sequencing error.

For computational reasons, the AFS estimation was
based on only 10% of the sites from the pileup file. This
subset was selected at random and included about 2 million
sites, which was largely sufficient to estimate the AFS in
a pool of 200 chromosomes (see simulation results).

An important tuning parameter of the selection scans
based on our HMM is the transition probability q between

neutral and selected states. The larger the q, the less evi-
dence is required for a transition to selection and the more
sweep candidates will be detected. In our real data appli-
cation, the transition probabilities were based on the
genetic locations, which were deduced from physical
locations using Marey maps (Fiston-Lavier et al. 2010).
The probability of switching state between two consecutive
SNPs is then given by qd, where d was the genetic distance
between the two SNPs.

To avoid a high rate of false positives, it is important to
choose a small enough value for q. A natural strategy is to
simulate sequences under a neutral scenario with realistic
demography and estimates for mutation and recombina-
tion. Based on such simulations, q 5 qsim can be chosen
such that the probability of falsely detecting selection
on any segment of a given length is controlled and kept
below a certain threshold a, as already explained in the
‘‘Simulations’’ section. However, a simulated scenario will
always involve some simplifications or biases compared
with the real demography, and the real background sce-
nario will usually be unknown. To account for this uncer-
tainty, a conservative approach is to choose a value of q
lower than qsim. In the extreme case, if the simulated model
were completely unrealistic, it would actually make sense
to choose q5 0 so that no false positives will be obtained.

Even with a good estimation of the population demog-
raphy, reliable neutral simulations are difficult to design
and extremely time intensive, because they must account
for the variation of recombination rate along the whole
analyzed region (from 1 to 4 cM per Mb in our case, plus
a large region with no recombination). Besides, in the spe-
cific case of Pool-Seq, the scaled recombination rate cannot
be estimated from the data because haplotype information
is not available. Consequently, we decided to choose qsim
using a very simple model and to select a value of q
considerably lower than qsim.

More specifically, we simulated neutral samples with
length 100 kb under a model with constant population size.
We chose h 5 0.003, which is consistent with the AFS es-
timated from our data, and q 5 h as suggested by the re-
sults of Haddrill et al. (2005) for non-African populations of
D. melanogaster. The analysis of these samples using the
folded AFS likelihood described in equation (6) led to qsim
5 4.10�5. With this value, we only detected a sweep signal
in 1% of the simulated samples with length 100 kb, which
suggests only one false positive signal every 10 Mb. In
order to take into account the discussed uncertainties
about the true model, we decided to work with the value
q 5 10�10 which is considerably below that obtained via
simulations.

For a more detailed discussion concerning the choice of
transition probabilities, see Boitard et al. (2009).

Results

Accuracy of the AFS Estimation
In order to investigate the accuracy of our AFS estimation
procedure, we simulated reads from 100 pools of sequences
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under neutrality. We considered four different pool sizes
(n 5 25, 50, 100, and 200), took k 5 100 as the expected
coverage, and L 5 100 kb as sequence length. For further
details, see the section on Materials and Methods. Under
this setup, we compared the AFS estimated from pooled
NGS data with our EM algorithm to the AFS computed
under the assumption that the complete genetic informa-
tion of the pool were available. As shown in figure 1 for n5
25 or 50, we found that our estimation procedure was es-
sentially unbiased and had a small average absolute devi-
ation. The main difference between the results obtained for
n 5 25 and n 5 50 was a slight underestimation of the
singleton frequency estimated when n 5 50. This is likely
due to the lower per chromosome coverage in this case,
which implies that it is more difficult to decide whether
observed singletons are true or result from sequencing
errors. Results obtained for n 5 100 and 200 have been
very similar to those obtained with n 5 50. Overall, our
simulations show that accurate estimates of the AFS can
be obtained from NGS data from pools with low per
chromosome coverage (0.5�), despite of the sequencing
errors. We also point out that the accuracy of the estimates
will increase with sequence length, suggesting a very high
accuracy when estimating the AFS at a whole genome scale.
Notice, however, that the simulations were performed
under the assumption that the probabilities of sequencing
errors are known. As discussed below, inaccurate or biased
error probabilities result in biased AFS estimates.

Selective Sweep Detection Power
Next, we simulated reads under a selective sweep scenario.
The simulation parameters were the same as above, except
that one selected locus with selection intensity a5 2 N s5
500 was placed in the middle of the 100 kb segment. This
value of a corresponds to rather weak selection, compared
with the distribution of selection intensities for sweeps

identified in D. melanogaster (Li and Stephan 2006). For each
simulated sample, we detected selection using either com-
plete sequence data and the method in Boitard et al. (2009)
or Pool-Seq data and the method presented here. As our new
method extends that in Boitard et al. (2009), it should be of
interest to compare the power of the two methods that
make use of different amounts of information. For the anal-
ysis of the complete sequence data, we used either all sites or
only segregating sites. Recall that the lower density of segre-
gating sites (i.e., the larger probability of allele count 0) in
swept regions is used as an additional sweep signal when
using all sites.

As shown in table 1, the detection power with pooled
data using only segregating sites was similar to that ob-
tained with sequence data and all sites. At first sight, it
might be surprising that the power was even slightly better
with pooled samples. A closer look reveals, however, that
the estimated sweep windows were usually slightly larger
with pooled data than with classical sequencing data,
and consequently had a higher probability of including
the true selected site. The slight gain in detection power
is thus associated with a slight loss in accuracy of localizing
the sweep. Nevertheless, it is surprising that the results for
pooled samples were considerably better than those for
error-free classical separate sequencing when in both cases
only segregating sites are used. A possible explanation is
that with NGS sequencing data many singletons are
sequencing errors at nonpolymorphic sites. Since a high
proportion of singletons serves as a signal of selection such
sequencing errors seem to increase the sensitivity of our
test without causing an excess of false positives.

Application to Real Data in Drosophila
Using our new approach for Pool-Seq data, we estimated
the AFS and searched for selective sweeps on the X chro-
mosome of an Austrian Drosophila melanogaster

FIG. 1. AFS estimation. Pools of n 5 25 (a) and n 5 50 (b) chromosomes of length L 5 100 kb were simulated under a constant population
size coalescent model with h5 0.003 and q5 0.003. Solid lines show the AFS extracted from the complete sequence information and averaged
over 100 simulated samples (it closely fits the AFS expected from coalescent theory). Diamonds and error bars represent the average estimated
AFS and the average absolute deviation respectively using the same 100 samples. The estimates were obtained from pooled NGS data with
100� expected coverage using the EM algorithm.
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population. We analyzed a pool of 97 female flies from this
population that has been sequenced at 100� coverage (for
more details, see Materials and Methods). The sweep
regions found with our scan are listed in table 2. Most
of these regions were between 10- and 40-kb long, suggest-
ing that hitchhiking mapping from Pool-Seq data identifies
narrow intervals containing only a few genes that may have
undergone recent selective sweeps. A few longer regions
(up to 400 kb) were detected close to the centromere
(supplementary fig. S1, Supplementary Material online).
This is due to the fact that the recombination rate is very
low close to the centromere, which increases the hitch-
hiking effect of positive selection.

Some of the detected regions were already identified by
previous studies as sweep candidates in Europe. For in-
stance, region 10 corresponds to the wapl region identified
in Beisswanger et al. (2006). This region had a very high
confidence index, within the top 10 of table 2. Interestingly,
the size of the sweep window inferred by our method is
similar to the one previously reported (Beisswanger et al.
2006) (74 vs. 60.5 kb). Region 16, which is located around
the gene unc-119, was detected in Glinka et al. (2006).

Apart from these well-characterized regions, we also de-
tected some narrow sweep windows with a high confi-
dence score. The high confidence region 14 contains
only a single gene, Ca-alpha1T, which is predicted to en-
code a Calcium channel (http://flybase.org). Four regions
encompass only two annotated genes in D. melanogaster.
One of them, region 28, contains the gene Shaker (Sh),
which encodes a voltage-dependent potassium channel
and has been shown to affect sleeping behavior and life-
span (Cirelli et al. 2005).

The AFS estimated from our sample had an unusual pat-
tern, showing a reduced proportion of extreme allele
counts (fig. 2a). To investigate potential causes, we first
considered the nonnegligible proportion of tri-allelic SNPs
(about 1% of all sites). In our analysis, the least frequent
allele of tri-allelic SNPs has been removed systematically
(see Materials and Methods). We therefore reestimated
the AFS after having removed all tri-allelic SNPs, but this
resulted essentially in the same AFS pattern (data not
shown). Hence tri-allelic SNPs cannot explain the observed
deficit in low-frequency alleles. We also studied the influ-
ence of the coverage per site, by estimating the AFS using
only positions with a specific coverage, and obtained again
similar patterns. Varying the initial AFS that is used as start-
ing point for the EM algorithm also had little influence on
the finally estimated AFS, even when we started the algo-
rithm from the AFS of an expanding population, which is
characterized by an excess of small minor allele counts. We
observed different estimated AFS patterns, however, when
we restricted the analysis to base calls characterized by
a specific range of PHRED scores. In particular, the restric-
tion to base calls with PHRED score greater than 35 resulted
in an estimated AFS with no deficit in extreme allele counts
(fig. 2b), which is a reasonable neutral background AFS.
Computer simulations show that the estimation bias ob-
served when using all base calls is not caused by the

low quality of many base calls in itself, but rather arises
from a discrepancy between the PHRED scores provided
by Illumina and the exact sequencing error probabilities.
This observation is consistent with previous results (Dohm
et al. 2008), showing that Illumina scores tend to be too
pessimistic. The resulting overestimated probabilities for
sequencing errors affected in particular those sites with
low minor allele frequencies.

As an alternative to filtering with respect to quality
scores, we recalibrated the quality scores using GATK
(DePristo et al. 2011) before estimating the AFS. However,
this correction had little effect on the AFS pattern. A reason
for this might be that GATK uses monomorphic positions
for the recalibration. Since we provided a list of SNPs with
at least two copies of the minor allele in our sample, the
remainder of the sequence contained singletons, which
were a mixture of sequencing errors and true singletons.
Our failure to distinguish true polymorphism from
sequencing errors may have negatively affected our efforts
to recalibrate the quality scores.

Since base calls with PHRED score greater than 35 pro-
vide a more reliable estimate of the AFS, we also performed
a scan for selection using only these base calls, and com-
pared the results with those obtained using all base calls.
The signals obtained with the two strategies were generally
consistent (fig. 3). Among the 32 sweeps detected with all
base calls, 24 were confirmed using only high-quality base
calls. The proportion of sweeps detected with both strat-
egies increased with the confidence index. Among the 15
sweeps detected using all base calls with a confidence index
greater than 20, 13 were confirmed using only high-quality
base calls.

In order to see whether the sweep windows that were
not confirmed when only using high-quality base calls are
false positives or rather false negatives, we sequenced (at
87� coverage) a further independent sample of 97 flies
from the same population. Due to the random sampling
of different flies in the two pools and to the random differ-
ences of coverage and base quality scores along the ge-
nome inherent to NGS technology, we do not expect
to find the same false positives in the two samples.
The new sample provided a very similar estimated AFS
(not shown), which suggests that no major experimental
problem affected either of the samples. Furthermore,
most sweep windows detected using all base calls were
detected again using the second sample (29 over 32,
see also supplementary fig. S2, Supplementary Material
online). In particular, 7 of the 8 sweep windows that were
not confirmed using only high-quality base calls were de-
tected using the second sample, and can thus be seen as
false negatives in the analysis focusing on high-quality
base calls. This suggests that sweep detection based on
all sites is more reliable than expected given the pro-
nounced bias in global AFS estimation. A possible expla-
nation for this consistency is that the bias in AFS
estimation is homogeneous along the genome and does
not affect the detection of true local variation in the AFS
along the genome.
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Discussion
Our aim has been to provide a new statistical method for
estimating the AFS and detecting selective sweeps that can
be used with experimental setups where a sample of indi-
viduals is sequenced in a single pool. As argued in Futschik
and Schlötterer (2010), this experimental design is a cost-
effective alternative to sequencing of individuals for pop-
ulation genetic analysis based on allele frequencies. Often
fairly large samples are sequenced at low individual cover-
age using this approach. The analysis of NGS data from
pools leads to new challenges, and existing methods for
classical sequencing cannot directly be applied. Obviously,
the per site coverage should be taken into account, and
sites with high coverage should be more influential than
sites with low coverage. Also, sampling of reads from

the pool leads to an additional level of randomness that
needs to be considered.

A major methodological challenge for the analysis of
NGS data at low coverage arises from sequencing errors,
because such designs do not provide enough redundancy
to distinguish sequencing errors reliably from true low-
frequency variants. So far, most theoretical studies on
the subject, for both individual sequencing and Pool-
Seq, have considered a simple approach where sites with
minor allele count/frequency below a given threshold
are omitted (Achaz 2009; Jiang et al. 2009; Futschik and
Schlötterer 2010; Lee et al. 2011). This strategy is also cur-
rently popular for population genetic studies based on
Pool-Seq data, see for instance Rubin et al. (2010). In con-
trast, our method uses all sites, but accounts for the

Table 2. Selective Sweeps Detected on Chromosome X in Drosophila melanogaster.

Region Starta Enda Lengtha CIb Genes within the Window

1 19 460 441 Inf CG17636, RhoGAP1A, CG17707, SP71, CG3038, CG2995, cin, CG13377
CG13376, ewg, CG3777, CG13375, CG12470, Or1a, CG32816, y, ac, sc
l(1)sc, pcl, ase, Cyp4g1, Exp6, CG13373, CG18275, CG32817, CG18166
CG3176, CG18273, CG3156, CG17896, CG17778, svr, arg, elav, CG4293, Appl

2 530 669 139 Inf su(s), CG13367, Roc1a, Suv4-20, skpA, sdk, CG13362, CG13361, CG5254
CG5273, RpL22, fz3

3 1,046 1,144 98 Inf eIF4E-7, CG34320, CG11378, CG11384, CG11379, CG14627, CG14626
CG11380, CG14625, CG11381, CG14624, CG11382, CG11398, CG3638
CG11403, A3-3

4 1,179 1,312 133 Inf CG32812, DAAM, CG18091, fs(1)N, CG11409, CG11412, CG11418, Tsp2A
CG12773, CG11417, png, CG14770, CG3056, SNF1A, CG3719, CG32813
CG11448, futsch

5 1,338 1,369 31 6.8 futsch, Gr2a, CG14785, CG14786, CG14787, l(1)G0431, O-fut2, CG14777
CG32808, CG14778, pck, CG14780, Rab27

6 1,373 1,408 35 33.7 CG14782, sta, Nmdar2, CG14795, CG32810
7 1,456 1,484 28 5.7 no gene
8 1,658 1,693 35 28.1 Adar, CG32806
9 1,728 1,809 81 33.8 CG14801, CG14812, deltaCOP, CG14814, MED18, CG14815, CG14803

CG14816, CG14804, CG14817, CG14805, CG14818, CG14806, trr
mRpL16, arm, CG32803, CG32801, Edem1, mip130, CG17766

10 1,995 2,069 74 33.1 csw, ph-d, ph-p, CG3835, Pgd, bcn92, wapl, Cyp4d1, CG3630, CG3621
Cyp4d14

11 2,092 2,118 26 19.8 Mct1, CG18031, msta, Vinc, CG14052
12 3,662 3,681 19 12.7 Tlk
13 5,766 5,784 18 7.9 CG3033, mof, CG3016, CG16721
14 6,023 6,061 38 30.6 Ca-alpha1T
15 7,028 7,054 26 27.7 no gene
16 7,152 7,191 39 14.4 CG1958, CG1677, CG2059, unc-119
17 7,336 7,419 83 32.4 CG11368, CG32719
18 7,821 7,848 27 31.1 CG10777, CG10778, RpS14a, RpS14b, CG1530, l(1)G0193, CG1531, CG15332
19 10,358 10,383 25 16.3 CG17255, CG2889, CG2887, PPP4R2r, CG32687
20 11,371 11,407 36 31.3 Cyp4g15, CG1749, Spase25, CG33235, CG32666
21 11,441 11,499 58 32.4 CG32666, CG1572, PGRP-SA, RpII215, CG11699, l(1)G0237, CG11697

CG11696, e(y)2, CG11695, nod, CG1561, rho-4, CG2533
22 11,868 11,893 26 15 cac, gd, tsg, CG18130, fw
23 13,098 13,123 25 15 sno, REG, mew
24 14,937 14,953 16 6.6 hiw, CG5541
25 15,696 15,716 20 14.7 PGRP-LE, sd, CG8509
26 15,824 15,846 22 16.5 Ranbp16, Stim, CG8924, CG8928, CG15603, CG15604
27 17,743 17,764 21 17.1 CG15814, CG6506, CG32554, CG32557, CG6762, Arp8, CG6769, mnb
28 17,924 17,956 32 32.2 Sh, CG15373
29 18,539 18,559 20 13.2 l(1)G0003, CG6540, CG6617, Ing3, CG6659, fu, CG6696
30 19,455 19,479 24 17.5 Grip84, car, Tao-1, CG14218, CG14204
31 20,978 21,009 31 19.6 CG11566, stg1, unc, CG15445, CG34120
32 21,234 21,266 32 15.5 waw, bbx, slgA, Hlc, mst

a In kilobases, along the X chromosome.
b Confidence Index: Maximum of �log(1�qi) over the window, where qi is the posterior probability of hidden state ‘‘Selection.’’
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probability that a base call arises from a sequencing error. In
principle, sequencing error probabilities could be deduced
from the quality scores provided by the sequencing ma-
chine. It is known, however, that the Illumina PHRED
scores, for instance, are biased. We discuss this point below.

First, we applied our method to simulated data, where
we assumed accurate sequencing error probabilities. The
obtained estimates of the AFS in pools from n 5 25
to n 5 200 chromosomes using Pool-Seq data at 100�
expected coverage were not biased and highly accurate

(fig. 1). This implies for instance that the frequency of sin-
gletons in a pool of 200 chromosomes can be reliably es-
timated using pooled NGS data at this coverage, despite of
sequencing errors. We then evaluated, again for n from 25
to 200 and 100� expected coverage, the power of detect-
ing a selective sweep event using pooled data. Our method
provided very similar levels of power to that for individual
sequencing of the entire pool (table 1). These promising
results for sweep detection indicate that Pool-Seq data pro-
vide a rich source of information and may be suitable for

FIG. 3. Selective sweeps detected on the X chromosome of D. melanogaster. We used either all base calls or base calls with PHRED score greater
than 35. The x axis labels permit to read off the physical position of the sweep window (in kilobases).

FIG. 2. AFS in Drosophila melanogaster. Estimated from all base calls (a) or only those with PHRED score greater than 35 (b). As we consider the
folded AFS, the probabilities for allele frequencies 98/194 to 193/194 (not shown) can be deduced by symmetry from those for allele
frequencies 1/194 to 96/194.
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the inference of demographic scenarios such as population
bottlenecks or expansions.

For applications to real data, the issue of inaccurate
PHRED scores needs to be addressed. Unfortunately, no re-
liable approach on how to deal with biased quality scores in
the context of Pool-Seq has been described so far. Although
several models dealing with Pool-Seq data and including
sequencing error probabilities have been proposed for
SNP selection (Bansal 2010; Li 2011; Wei et al. 2011) and
population genetic parameter estimation (Li 2011), only
a few (Bansal 2010; Li 2011) take advantage of PHRED
scores to determine these sequencing error probabilities.
Nevertheless, they did not evaluate the influence of this
strategy in the context of real reads and quality scores.
When analyzing two Pool-Seq samples of D. melanogaster,
we obtained underestimates of the probabilities of extreme
allele counts. To spot potential biases in the estimates of
sequencing error probabilities, we proposed to obtain re-
peated estimates of the AFS, by using base calls with dif-
ferent ranges of attached PHRED scores. If the estimated
AFS are different and given a sufficient amount of reads
for each individual estimate, this suggests that at least some
of the obtained estimates are biased. Our results also indi-
cate that recalibrating the PHRED scores using GATK or
other similar software can be difficult, if the populations
involved have not been extensively studied so that a large
proportion of the SNPs in the genome is already known. For
nonmodel organisms, another possible strategy might be to
sequence individually a small number of individuals at high
coverage in order to recalibrate the quality scores, and
a large pool of individuals at low coverage for further anal-
ysis. Alternatively, one could include a known SNP-free
DNA fragment in all sequencing runs and evaluate the se-
quencing error probabilities using this fragment, as done in
Druley et al. (2009).

Fortunately, our sweep detection method turned out to
be relatively insensitive to incorrect error probabilities. In-
deed, we identified 32 selective sweep signatures, most of
which were confirmed when using only high-quality base
calls (PHRED score more than 35) and when analyzing an
additional sample from the same population. One of the
regions with the strongest evidence for selection was the
wapl region, which was already identified as a sweep region
in Europe (Beisswanger et al. 2006). A natural question is
whether the signals our HMM is looking for, might have
been caused by phenomena other than selective sweeps.
One possibility are local fluctuations in the mutation pa-
rameter that may arise for instance from variable levels of
purifying selection among codon positions or coding/non-
coding sequences. Although we do not take the density of
segregating sites as a signal by itself, sequencing errors will
lead to an increase in the proportion of sites with low num-
bers of derived alleles in windows where h is small, as ob-
served in our simulations. This is due to the fact that the
classification between sequencing errors and correct reads
is not perfect. Notice, however, that the effect on the AFS
will be small, when only very high quality reads are used. For
our data analysis, it is therefore reassuring that most of our

sweep signals were confirmed when using only the high-
quality reads. If we assume that local stretches of sequence
where the mutation rate is reduced tend to be short, an-
other argument for the limited influence of sequencing er-
rors would be that the sweep windows we detected on
chromosome X of D. melanogaster tended to be fairly large.

If there is uncertainty about the homogeneity of the mu-
tation rate at a larger scale, sweep detection (but not AFS
estimation) can also be based on sites with at least k ob-
served minor alleles, for instance with k 5 2 or k 5 3. Our
method can easily be adapted for this purpose by replacing
Pð
Pri

j51 Zi;j50Þ by Pð
Pri

j51 Zi;j,kÞ in equation (5). Note,
however, that the computation time will increase. Indeed,
while there is only one vector Zi verifying

Pri
j51 Zi;j50,

there are ri!=l!ðri � lÞ! vectors verifying
Pri

j51 Zi;j5l, and
the likelihood of all these vectors needs to be computed
for l from 0 to k�1.

Like several other methods for the detection of selection,
our approach is designed for hard sweeps with the favor-
able allele being fixed recently. Partial selective sweeps, as
well as soft sweeps, will therefore usually not be detected.
On the other hand, it is well known that some demo-
graphic effects, in particular bottlenecks, can produce sim-
ilar genomic patterns as selective sweeps, potentially
leading to false positives. In a previous study focusing
on standard sequencing data (Boitard et al. 2009), we sim-
ulated a wide range of bottleneck scenarios and showed
that the HMM method proposed for individual sequencing
generally led to fewer false positive signals than several
competing methods. The reason is that HMMs do not only
use the site frequency spectrum but take into account also
the correlation of allele frequencies between sites. As bot-
tlenecks tend to increase the correlation between sites, we
expect also the Hidden Markov Model proposed here to be
more robust against bottlenecks than for instance compos-
ite likelihood methods. To put us further on the safe side,
the sweeps detected in D. melanogaster were identified us-
ing the HMM with very conservative tuning parameters
(see Materials and Methods).

Overall, our study shows that sequencing large pools of
individuals at low coverage is a promising strategy for pop-
ulation genetic analyzes. Indeed, the method we proposed
permits for cost effective and powerful scans for selection
using this type of data. Its practical applicability is dem-
onstrated by the selective sweep signals we identified
in D. melanogaster. Alternative cost effective sequencing
strategies, such as Restriction site Associated DNA se-
quencing (Hohenlohe et al. 2010) and Genotyping-by-
Sequencing (Andolfatto et al. 2011; Elshire et al. 2011), have
been proposed for population genetic studies based on
large samples. These molecular methods generate individ-
ual low-coverage sequence data for a subset of the genome,
thus providing individual genotypes at a large number of
SNPs (typically from tens to hundreds of thousands). This
represents a clear advantage over Pool-Seq for applications
requiring haplotype information. However, the estimation
of individual genotypes requires a minimum per individual
coverage, at the very least 3� for calling homozygotes and

Detecting Selective Sweeps from Pooled NGS Samples · doi:10.1093/molbev/mss090 MBE

2185



5� for calling heterozygotes (Hohenlohe et al. 2010). In
contrast, our study demonstrates that a per individual cov-
erage around 1� is sufficient in a Pool-Seq analysis. Of
course, sequencing individuals at 1� or 2� coverage is also
a reasonable strategy for allele or haplotype frequency es-
timation, provided the uncertainty about individual geno-
type calls is taken into account in the analyzes (Gompert
et al. 2012). Although this experimental design was shown
to be less efficient than Pool-Seq for allele frequency esti-
mation (Futschik and Schlötterer 2010), it provides partial
information about individual genotypes. Another advan-
tage of Pool-Seq over Genotyping-by-Sequencing is to ex-
plore the whole genome rather than a subset of positions.
In populations with low levels of linkage disequilibrium, an
(almost) exhaustive screening of the genome certainly in-
creases the power of scans for selection or association stud-
ies. For inference based on allele frequencies only, such as
our method of detecting hard sweeps, we therefore believe
that Pool-Seq is an attractive design.

Supplementary Material
Supplementary material and figures S1–S3 are available
at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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