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Abstract

A long-standing problem in muscle control is the “curse of dimensionality”.

In part, this problem relates to the fact that coordinated movement is only

achieved through the simultaneous contraction and extension of multitude

muscles to specific lengths. Couched in robotics terms, the problem includes

the determination of forward and inverse kinematics. Of the many neurophys-

iological discoveries in cortex is the existence of position gradients. Geometri-

cally, position gradients are described by planes in Euclidean space whereby

neuronal activity increases as the hand approaches locations that lie in a

plane. This work demonstrates that position gradients, when coupled with

known physiology in the spinal cord, allows for a way to approximate propri-

oception (forward kinematics) and to specify muscle lengths for goal-directed

postures (inverse kinematics). Moreover, position gradients provide a means

to learn and adjust kinematics as animals learn to move and grow. This

hypothesis is demonstrated using computer simulation of a human arm.

Finally, experimental predictions are described that might confirm or falsify

the hypothesis.

Introduction

Proprioception is the sense of one’s kinematics. This

includes a high-level, cortical understanding of posture, as

well as a low-level representation of muscle lengths, joint

angles, and their relation to Euclidean space. This low-

level aspect of proprioception suggests the existence of a

forward kinematic model. Forward kinematics determines

position and orientation of the hand given some combi-

nation of joint angles, or equivalently, muscle lengths. Put

another way, forward kinematics maps muscle lengths in

“muscle space” (Kakei et al. 1999) to Cartesian coordi-

nates of the hand in Euclidean space. Notwithstanding,

the human arm has proprioceptive receptors in the joints

and in the muscles (muscle spindles). These receptors are

capable of sensing joint angles and muscle lengths, respec-

tively. Muscle spindles play a predominant role in propri-

oception (Ferrell et al. 1987). Goal-directed postures or

inverse kinematics, considers kinematics in the opposite

direction. Inverse kinematics relates hand locations in

Euclidean space to muscle lengths in muscle space. Not

only is the mapping from Euclidean coordinates to joint

angles is nonlinear, the mapping from joint angles to

muscle lengths is also nonlinear. In the case of manipula-

tors that have kinematic redundancies, such as the human

arm, hand locations maps to an infinite number of joint

angles and muscle lengths.

Current motor theory posits that movements are coded

dynamically. Given that activity in the motor cortex is

known to encode for velocity (Ashe and Georgopoulos

1994; Moran and Schwartz 1999; Paninski et al. 2004),

and force (Taira et al. 1996; Sergio and Kalaska 1998; Li

et al. 2001), that assumption appears sound. Muscle syn-

ergies (Sherrington 1947; d’ Avella and Bizzi 2005; Che-

ung et al. 2009; Tresch and Jarc 2009), or similarly motor

primitives (Thoroughman and Shadmehr 2000; Flash and
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Hochner 2005; Gizzi et al. 2010), provide an attractive

solution for multijoint movements. According to this

view, the central nervous system (CNS) sends a volley of

time-varying activations to various muscle groups in

order to achieve motion. Without doubt, such a scheme

could generate trajectories, torques, and forces. However,

from the perspective of accurate positioning of the hand

or even shaping trajectories, muscle synergies, by them-

selves, are unworkable without a kinematic model of

some kind. Lacking kinematics, a separate muscle synergy

is needed to move the hand from every conceivable start

location to every conceivable end location. Moreover,

impedances or muscle fatigue would result in significant

and cumulative position errors. One might argue that

muscle synergies are workable provided that they incor-

porate proprioceptive afferents for start and end condi-

tions (Bizzi and Abend 1985), but this is tantamount to

saying that a kinematic models exists.

It is known that some cells in the motor cortex encode

for a particular direction of motion. Activities of popula-

tions of motor cortical neurons encode a population vec-

tor that points in the direction of intended movement

(Kettner et al. 1988). Population vectors were used to

spectacular effect in controlling robotic arms in real time

using neuronal activity in the motor cortex (Wessberg

et al. 2000; Velliste et al. 2008; Vato et al. 2012). No

doubt, such work has huge potential in terms of prosthet-

ics and brain-controlled interfaces (Schwartz et al. 2006).

However, even though population vectors allow a robot

to accurately predict an animal’s intended movement, this

is only accomplished using an implicit inverse kinematic

model for the robot’s kinematics. The animal’s ability to

control its own skeletal muscles remains unresolved. It

might be argued that the animal’s CNS simply calculates

kinematics in an analogous way to the robot. However,

there exist no known neurological mechanisms that

approximate the coordinate frame transformations used

in robotics. Moreover, calculating inverse kinematics

using conventional methods in robotics proves problem-

atic when applied to complicated systems such as the

musculature of the human arm (Full and Koditschek

1999). In this sense, the problem of calculating kinematics

touches on aspects of the degrees of freedom problem

(Bernstein 1967; Arimoto et al. 2005), or on the “curse of

dimensionality” (Full and Koditschek 1999).

A complete theory of motor control must include kine-

matics. This statement derives from the inescapable truth

that hand positions and arm postures are inextricably

determined by muscle lengths, muscle attachment points,

and skeletal dimensions. Kinematics captures the geome-

try of problems.

A physiologically based model for calculating kinemat-

ics is proposed. This hypothesis is not presented as an

overarching model that describes all aspects of muscle

control, or even all aspects of kinematics. Problems such

as kinematic redundancy resolution, orientation, trajec-

tory shaping, force compensation, muscle contraction

dynamics, and so on, are out of scope. Rather, the “vir-

tual points” hypothesis is presented as a kinematic bridge

between high-level cortical processing and low-level con-

trol of muscles. In order to validate the hypothesis, at

least in principle, a model that describes virtual points

was applied to the human arm and simulated on a

computer.

Methods

Virtual points hypothesis – spatial
representations

The concept of muscle synergy has different meanings in

the literature, but it is often described in terms of muscle

innervations or forces (Thoroughman and Shadmehr

2000; Cheung et al. 2005; Ting and Macpherson 2005;

Danna-Dos-Santos et al. 2009). For these purposes, mus-

cle synergies are described in the context of kinematics,

which by definition, does not involve forces. Therefore,

let us consider a different type of synergy called a muscle

length synergy (MLS). An MLS is defined as a combina-

tion of muscle lengths for a given posture of the arm.

The human arm has kinematic redundancies (not to be

confused with redundant muscles). That is, for a given

hand location, the arm might assume a range of different

postures (Scholz and Sch€oner 1999). The movements

being simulated will restrict the elbow and hand to

move in a plane so that kinematic redundancies are not

permitted.

In a sense, the musculoskeletal system constitutes a

physical embodiment of a kinematic calculator. For exam-

ple, one might imagine adjusting arm muscle lengths.

Without having to calculate the resulting posture, the for-

ward kinematic solution is essentially available by simply

observing the physical hand location. Conversely, one

might imagine moving the hand to some location and

measuring the associated muscle lengths. Thus, the mus-

cle lengths are also available without having to calculate

inverse kinematics. The virtual points hypothesis relies on

the fact that the muscle lengths associated with a given

hand location, whatever those lengths happens to be, is a

particular inverse kinematic solution for that location.

Thus, if the hand were to move through space while

being observed, the observer (or CNS) might record the

coordinates in Euclidian space along with the correspond-

ing set of muscle lengths. Indeed, learning kinematics

does seem to depend heavily on visual feedback (Wolpert

et al. 1995). In an overly simplistic model, a hand
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location is accomplished by simply fetching the needed

set of muscle lengths from a lookup table. The muscles

would then change in length until the specified muscle

lengths are achieved and a stable posture is obtained

(Feldman 1966; McIntyre and Bizzi 1993). However, there

is a problem. For the hand to span continuous Euclidian

space, an infinite number of recorded coordinate points

are required. Thus, for the CNS to employ such a strat-

egy, an infinite amount of memory is required. Therefore,

it is assumed that only a finite set of MLS’s are retained.

This set is denoted as a muscle length synergy matrix, S.

Due to the finite information storage capacity in the

CNS, it might seem that the hand would be restricted to

move to specific locations in task space. However, this

limitation is surmountable using interpolation. In terms

of spaces, interpolation along a line requires two indepen-

dent pieces of information. Interpolation along a surface

requires three independent pieces of information. Interpo-

lation along a volume requires four independent pieces of

information. Given that the hand moves in 3D Euclidean

space, it is assumed that interpolation will require four

independent pieces of information. Another generalization

relates to the dimensionality of coordinates. For a line,

points describe coordinates. For a surface, coordinates

relate to independent or nonparallel lines along the sur-

face. The intersection of any two lines defines a coordi-

nate point. For a volume, coordinates relate to

independent planes. The intersection of any three nonpar-

allel planes describes a coordinate point. Again, because

the hand moves in 3D Euclidean space, it is assumed that

position is described by planes. For these reasons, it is

assumed that interpolation for each MLS involves the

recruitment of four independent or nonparallel planes.

The preceding description of planes has a physiological

basis in the arm area of the motor cortex and somatosen-

sory cortex. It was found that the discharge rate in pri-

mates increased as the hand moves toward planar surfaces

in the Euclidean space. These planes were termed “position

gradients” (Georgopoulos et al. 1984; Kettner et al. 1988).

The discharge rate or tuning curve, of position gradients

are modeled in this work as a normal distribution that is

centered on a plane. In other words, the normal distance

to a plane is modeled as the random variable. Note, a nor-

mal distribution was selected with the caveat that another

bell-shaped function might model neurophysiology of

position gradients with greater accuracy.

The planes that describe position gradients are used to

define a coordinate system. This coordinate system is par-

titioned using the mutual intersections of four sets of

planes. The planes within each set of planes are all parallel

and equally spaced from neighboring planes within that

set. Four unit vectors are used to describe plane orienta-

tion and are given as follows,

û1 ¼ 1

2
îþ 1

2
ĵþ 1ffiffiffi

2
p k̂ (1)

û2 ¼ � 1

2
î þ 1

2
ĵ þ 1ffiffiffi

2
p k̂ (2)

û3 ¼ 1

2
î � 1

2
ĵ þ 1ffiffiffi

2
p k̂ (3)

û4 ¼ � 1

2
î � 1

2
ĵ þ 1ffiffiffi

2
p k̂ (4)

where î , ĵ , and k̂ are unit vectors that point in the x, y,

and z directions, respectively. The location of a given

plane within each set of planes is given by an index. The

distance between planes of consecutive indices is d, and

the indices are given by i, j, k, and l for planes parallel to

û1, û2, û3, and û4 respectively. A graphical depiction is

provided in Figure 1.

The entire ensemble of plane intersections forms a

grid of regularly spaced points in the Euclidean space.

Note, the unit vectors given in equations (1–4) form a

45° angle with the x–y plane. However, the position

gradient planes will continue to have mutual points of

intersection for angles other than 45° and 45° was

assumed ad hoc. The geometry of this grid of intersect-

ing planes is revisited further on. Before continuing, a

cautionary warning is in order. Specifying coordinates

and indices using the planes described by equations 1–4
is cumbersome. This makes the mathematical descrip-

tion of position gradients appear complicated and unin-

tuitive. However, outside of indexing, the underlying

calculations are actually quite simple.

Ultimately, the position gradient arrangement in Fig-

ure 1 is used as a means to learn proprioception and to

estimate inverse kinematics. Before embarking on those

Figure 1. Plane geometry. All 4 sets of planes have the same

plane spacing. The geometry of plane intersection points is

depicted in the upper right.
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topics, the underlying model is described in equations 5–
11. The discharge rate or tuning curve, at distance v from

each plane is modeled by the normal distribution func-

tion given as follows,

Nðmean ¼ 0; var ¼ c2d2Þ ¼ 1

cd
ffiffiffiffiffi
2p

p exp � v2

2 cdð Þ2
 !

(5)

where the “mean” value is assumed to equal zero and the

“standard deviation” is assumed to equal cd. A plane

spacing of d = 40 mm and c = 0.389, was used for all

simulations. As is described latter on, the selection of c

and d are related. A justification for these selections is

provided in the Results section.

Let p denote the observed location of the hand. In

terms of cortical processing, it is uncertain which speci-

fic anatomical feature of the arm or hand, plays a pre-

dominant role for positioning. For the purposes of

simulation, hand positions are assumed to relate to the

center of the wrist joint. Being able to identify which

planes have the smallest normal distance from p is

needed for future calculations. Along those lines,

assume a 1 9 3 vector of Cartesian coordinates, given

by p, denotes hand position. The plane indices that

most closely neighbor p are given by the integers along

the diagonal of the following,

where the ‘|| ||’ operator rounds the dot products to the

nearest integer. The projections of p onto the planes are

given by the following equation.

DðpÞ ¼
p � û1 0 0 0
0 p � û2 0 0
0 0 p � û3 0
0 0 0 p � û4

2
664

3
775 (7)

The distance from p to the nearest plane is determined

by the following.

DðpÞ ¼ DðpÞ � dIðpÞ (8)

Substituting DðpÞ for v in Eq. 5 calculates the discharge

rate at location p from each of the planes of the nearest

virtual point. These discharge rates are given along the

diagonal of the following matrix.

XðpÞ ¼ 1

cd
ffiffiffiffiffiffi
2p

p exp � DðpÞ2
2 cdð Þ2

 !
(9)

Note, matrix DðpÞ is being squared, and raised to an

exponential. These operations act individually on the ele-

ments for diagonal matrices such as this. Finally, the

combined discharge rate, at location p, from all four

planes is given as follows.

RðpÞ ¼ traceðXðpÞÞ (10)

Because the planes in equation 10 describe vector fields

of increasing discharge rate as the hand approaches a given

plane, the discharge rate, R, is especially high when the

hand approaches locations where all four planes intersect.

These points are referred to as “virtual points”. Though dif-

ficult to graph, the discharge rate around these points is

analogous to the three-dimensional probability density

function or cloud that is associated with an electron orbit-

ing a hydrogen atom. A grid of virtual points is depicted

graphically in Figure 2 for two heights along the z axis. As

the hand sweeps across the x and y axes, the discharge rate

increases as the hand approaches the various virtual points.

The discharge rate is depicted along the vertical axes in Fig-

ure 2A and C. It is depicted as a color map in (B) and (D).

Notice in Fig. 2 that levels of peak activity alternate for

different distances along z. In particular, for the plane ori-

entations given by equations 1–4, the virtual point loca-

tions toggle as z increment by d/
ffiffiffi
2

p
. An executable script

in MATLAB is provided in Appendix I. That script gener-

ates, and graphs this grid. For added perspective on the

three-dimensional structure, this virtual point grid geom-

etry is very similar to the Bravais lattices found in hexag-

onal close packed crystals.

The contention that the motor cortex partitions space

into families of equally spaced position gradients is a the-

oretical prediction and has not been reported experimen-

tally. Notwithstanding, there is precedent for such an

organization in the entorhinal cortex (Moser et al. 2008).

It was found that “grid cells” exhibit patterns of activity

that resemble Figure 2 for navigation tasks. Admittedly,

grid cells were only reported for two-dimensional naviga-

tion. However, it stands to reason that grid cells might

IðpÞ ¼
i ¼ kp � û1=dk 0 0 0

0 j ¼ kp � û2=dk 0 0
0 0 k ¼ kp � û3=dk 0
0 0 0 j ¼ kp � û4=dk

2
664

3
775 (6)
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also be at work for three-dimensional navigation tasks

such as tree climbing or flight, and that grid cell firing

for planar movement might extend to three dimensions,

as is the case here. A reasonable objection to the activity

depicted in Figure 2 is that grid cell-like activity has not

been observed in the arm area of the cortex. Indeed, Fig-

ure 2 is not intended to depict position gradients, but

rather, subcortical activity which is generated by a sum-

mation of position gradients. Equation 10 is revisited

when proprioceptive learning and adaption are consid-

ered. The predicted grid cell-like activity in subcortical

regions is considered further in the Discussion section.

The relationship between MLS’s and position gradients

now becomes easier to describe. Virtual points are cortical

representations of points in external Euclidean space.

When the hand is located at a virtual point, the set of

associated muscle lengths constitutes an MLS given by

sijk ¼ ðL1; L2; . . . L9Þ (11)

where si j k 2 S. For this work, six muscles in the elbow

and two muscles in the shoulder are modeled. An

anatomically fictitious ninth muscle is also included for

reasons that are discussed later on. In this way, MLSs

map points in Euclidean external space to muscle lengths

in “muscle space”. Though, nine muscles are being simu-

lated in this work, the hypothesis places no restrictions

on the number of muscles being included in each MLS.

The relationship between external space and muscle space

is a few-to-many mapping; in that, more than one muscle

is required to move a joint. Subscripts i, j, and k denote

the index of the MLS within S. Indices i, j, and k have

two interpretations. In equation 6, they relate locations in

Euclidean space using plane indices. In equation 11, they

index to sets of muscle lengths in S.

Consider what would happen if an arm MLS were

somehow activated. The muscles of the arm should

change in length such that the arm assumes a posture

that moves the hand to the location of a virtual point. Of

course, the musculature of the arm is viscoelastic and the

arm would be unable to maintain the posture with perfect

rigidity (Feldman and Latash 2004). Thus, displacing the

hand from the virtual point would result in a restoring

force. This restoring force should increase with increasing

displacement. Indeed, such a phenomenon was observed

using microstimulation of spinal cord gray matter in frogs

(Bizzi et al. 1991; Giszter et al. 1993), rats (Tresch and

Bizzi 1999), and cats (Lemay and Grill 2004). When

spinal cord tissue was stimulated in these animals, their

extremity would move to a repeatable location in space.

When the extremity was displaced from one of these loca-

tions, the extremity exhibited a restoring force toward its

point of attraction. This phenomenon was termed “con-

vergent force fields” (Bizzi et al. 1991). Therefore,

Figure 2. Discharge rate activity for movement along the x–y plane.
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interneurons in the C3–C7 region of the spinal cord are

possible candidates for storing arm MLSs. Locating MLSs

closer to muscles (i.e., in the spinal cord as opposed to

the cortex) also reduces latencies associated with muscle

length error correction. This follows the same reasoning

that explains why the stretch reflex or the nociceptive

withdrawal reflex, are spinal phenomena (Andersen

2007).

Virtual points hypothesis – inverse
kinematic estimation

In principle, equation 10 could specify a posture by

increasing the neuronal activity for a given set of four

planes. Peak discharge rate for the corresponding virtual

point would then project onto an MLS in the spinal cord.

However, the motor cortex must also perform interpola-

tion between virtual points. In the following section, the

mathematics of interpolation is described. Before embark-

ing on a formal mathematical description, interpolation is

described presently in words. Any desired posture will

position the hand at a location that is neighbored by a

collection of virtual points. Let pD denote the desired

location of the hand in Euclidean space. Note, pD differs

from p; in that, p relates the observed or actual hand

location, while pD relates to a target location. The posi-

tion gradients of closer virtual points will exhibit larger

discharge rates than more distant virtual points. Those

discharge rates are used to weight the MLSs that corre-

spond to the given virtual points. This makes sense

because virtual points near pD will map to an MLS that is

more similar to the muscle lengths needed to achieve an

arm posture that places the hand at pD. As such, they

should receive a higher weight. Distant virtual points will

map the MLSs that are less similar to the muscle lengths

that achieve pD. As such, they should receive a lower

weight.

The volley of descending weights or efferent activity,

could be construed as the transmission of a “forward

model” (Miall and Wolpert 1996). The scaled MLSs are

then neurologically summed (Carandini and Heeger

1994) at lower levels to find a set of muscle lengths that

achieve the interpolated posture. In other words, a collec-

tion of MLSs are activated simultaneously using various

weights. Consistent with this theory, experimental evi-

dence shows that simultaneous stimulation of several

spinal cord sites results in a summative effect of conver-

gent force fields (Tresch and Bizzi 1999).

The preceding remarks assume that efferent activity

projects onto interneurons within the spinal cord.

Descending weights are then used to excite neurons

that encode for muscle lengths. Thereafter, motor neu-

rons projecting from the ventral root are used to

modulate skeletal muscle length. Presumably, spinal

cord processes, such as the stretch reflex, in combina-

tion with muscle spindle afferent feedback, would act

to eliminate the error between the specified muscle

lengths and the actual muscle lengths. This error cor-

recting process would persist until the muscles achieve

the desired lengths in accordance with the equilibrium

point hypothesis (Feldman 1986). Modeling of neuronal

activity in spinal cord grey matter is outside the scope

of this work.

Returning to the model, assume proprioception is

learned. In other words, assume that the elements of S

are populated with MLSs that accurately correspond to

the muscle lengths of the arm when the hand is located

at each virtual point. The vector between two virtual

points is given by

pR r; p; qð Þ ¼ ½rd pd qd=
ffiffiffi
2

p � (12)

where p, q, and r, are integers that describe relative index-

ing between virtual points. A derivation that describes the

spacing between virtual points is given in Appendix II.

The location of a virtual point relative to pD is given by,

pVPðpD; r; p; qÞ ¼ pD þ pRðr; p; qÞ (13)

where pVP is a function of desired hand position and the

relative indexing. Substituting equation 13 into equa-

tion 8 provides the distance from pD to the planes of pVP
and is given by,

DðpD; r; p; qÞ ¼ DðpDÞ � dIðpVPðpD; r; p; qÞÞ (14)

where D is a 4 9 4 diagonal matrix. Equation 10

summed the discharge rates from the four closest posi-

tion gradients or equivalently the closest virtual point.

However, equation 14 is being used for interpolation

and more distant virtual points should contribute lower

levels of activity than closer points. Recall that the

position gradient discharge rate for each of the four

planes of a given virtual point is given by the diagonal

elements in equation 9. As such, the minimum activity

from pD to the virtual point is found by expressing

equation 9 as a function of equation 14 and in finding

the minimum value among the diagonal elements. This

is accomplished as follows.

xðpD; r; p; qÞ ¼ minðXðpD; r; p; qÞ11; . . . ;XðpD; r; p; qÞ44Þ
(15)

Note, equation 15 is a scalar, not a matrix as was the

case for equation 9. Recall in an earlier discussion that
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interpolation within a volume requires four independent

pieces of information. For this reason, four planes with

different orientations were included in this model. The

need for four nonparallel planes is reflected in equa-

tion 15. For perspective, interpolation was first tried using

only three planes. Interpolation must consider the nearest

planes that surround pD. If this is done using only three

plane orientations, then interpolation must include two

planes with the same orientations and consecutive indices.

In that case, the volume that surrounds pD is a sliver-

shaped polyhedron with a distant virtual point as one of

its vertices. Recall that virtual points are being used to

perform interpolation from the Euclidian space to muscle

space. For nonlinear interpolations such as this, the refer-

ence points or virtual points, should be as close pD as

possible. For a sliver-shaped polyhedron, the distant vir-

tual point is equally likely to be included in the interpola-

tion as the closer points. This has the effect of increasing

the error to such an extent that interpolation is no more

accurate than simply selecting the nearest virtual point. It

is for this reason that four different plane orientations

were required.

The discharge rate given by equation 15 is used as part

of a weighed arithmetic mean that includes a collection of

virtual points that neighbor pD. More specifically, inter-

polation will make use of the 33 = 27 neighboring virtual

points in the vicinity of pD. The scaling factor for each

virtual point is calculated as follows.

x̂ ðpD; r; p; qÞ ¼
xðpD; r; p; qÞP1

r¼�1

P1
p¼�1

P1
q¼�1xðpD; r; p; qÞ

(16)

The indices of the MLSs in S that are scaled by equa-

tion 16 are calculated using diagonal elements within the

following 4 9 4 matrix.

gðpD; r; p; qÞ ¼ IðpVPðpD; r; p; qÞÞ (17)

Finally, the muscle lengths in S are interpolated as a

function of pD using equation 17 for the indices of s as

follows,

L pDð Þ ¼
X1

r¼�1

X1

p¼�1

X1

q¼�1
x̂ pD; r; p; qð Þsg11g22g33

(18)

where L is a 1 9 9 vector of interpolated muscle lengths.

Note, indexing to a coordinate only requires 3 planes.

Therefore, the subscript g44 is omitted from equation 18.

Beyond the complexities associated with indexing, equa-

tion 18 is essentially a simple equation that sums muscle

lengths by a weighted arithmetic mean of nearby position

gradients.

Virtual points hypothesis – proprioceptive
learning/adaption

Animals must continually adapt to changing kinematics

as they mature and grow. Having described virtual

points and their relationship with MLSs, a learning/adap-

tion process is describable. As the hand moves through

space, the hand will inevitably pass close to virtual

points. Let s(p) denote the muscle lengths for the hand’s

current position. The location of the hand is discernable

from visual or tactile observation, and this will result in

some level of discharge rate given by equation 10. If the

hand moves near a virtual point, the associated muscle

lengths constitute a fairly accurate MLS solution for that

location. If s(p) happens to map the hand closer to

the virtual point than the formerly learned MLS, then

the MLS should be updated with the better solution. In

this way, the CNS is constantly checking and updating S.

This process is now stated mathematically. Recall that

the first three diagonal elements in equation 6 provide

the indices of the nearest virtual point to p. Learning

is thus accomplished using the following condition

statement.

sIðpÞ1;IðpÞ2;IðpÞ3 ¼
sðpÞ; if RðpÞ[RðpIðpÞ1;IðpÞ2;IðpÞ3Þ
sIðpÞ1;IðpÞ2;IðpÞ3 ;otherwise:

�
(19)

The update process in equation 19 suggests that MLS’s

are retained and updated. If MLS’s were retained in the

spinal cord, this in turn suggests a spinal learning mecha-

nism that is mediated by higher cortical levels (Kargo and

Giszter 2000; Cheung et al. 2009; Roh et al. 2011). A

number of experiments have demonstrated spinal motor

leaning mechanisms, that is, neuroplasticity, (Chen and

Wolpaw 2002; Wolpaw and Chen 2006; Edgerton et al.

2005) and subcortical motor learning has been proposed

as a mechanism in stroke recovery (Simkins et al. 2014).

The inequality in equation 19 evaluates if the discharge

rate of the current hand position is greater than the dis-

charge rate that would occur if the hand were positioned

using the previously stored MLS. In doing this compar-

ison, equation 19 suggests that the CNS calculates posi-

tion gradients from MLSs, presumably in the reverse

process of equation 18. While this assumption was used

for the purposes of simulation, there are alternative, and

more plausible means for updating S. This update process

essentially reduces to a problem of retaining information

based on an elevated discharge rate. In this case, the

retained information are muscle lengths. The elevated dis-

charge rate result from cortical activity associated with

equation 10. From an algorithmic perspective, learning

processes such as this are used widely in artificial neural

networks and there is a substantial body of relevant work

ª 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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in reinforcement learning (Kaelbling et al. 1996). A physi-

ologically relevant model would leverage work done using

long-term potentiation. Indeed, long-term potentiation

models have a long history and numerous models have

been proposed since long-term potentiation was con-

firmed experimentally in the hippocampus (Bliss and Col-

lingridge 1993). Thus, inclusion of a learning model in

the spinal cord would largely duplicate past work. For

this reason, equation 19 was deemed a sufficient simplifi-

cation for these purposes.

This model includes two distinct mechanisms. Notice

that equation 19 is a function of the actual hand position,

p, not the desired position, pD. This distinction relates to

the fact that actual hand positions, or even trajectories,

may differ from what is desired (Bizzi et al. 1983; Won

and Hogan 1995). For example, if the desired position

was behind a fixed obstacle, the hand might simply push

against the obstacle (Bizzi et al. 1992). If a desired trajec-

tory was interrupted by an unexpected force field, the

field might push the hand along a different trajectory

(Shadmehr and Musa-Ivaldi 1994; Mussa-Ivaldi and Pat-

ton 2000). One might say that equation 18 relates to

where the hand should go while equation 19 relates to

where the hand is. Estimating where the hand should go

relates to movement planning and efferent activity. Evalu-

ating where the hand is relates to learning and reafferent

activity. Thus, even though equations 18 and 19 utilize

similar mechanisms, the two calculations are essentially

different. This distinction is revisited in the Discussion

section.

Computer simulation

The simulation is divided into a “learning” phase and

an “adaption” phase. During learning, the CNS learns

to position an adult sized arm from an empty S

matrix, that is, from a “blank slate”. During the adap-

tion phase, the CNS adjusts a previously populated S

matrix to adapt to changing kinematics that is associ-

ated with limb growth.

In the learning phase, the S matrix is initially popu-

lated with zeros. Learning is accomplished by populating

S with MLSs according to equation 19 using randomly

generated movements, similar to a Monte Carlo method.

One billion randomly generated joint angles, or “itera-

tions” were performed. An analogy of this learning phase

is of an infant flailing its arms at random. Let FK(sijk)

denote the forward kinematic solution, or position, that

the hand achieves when the muscles are stretched to the

lengths given by sijk. Recall that equation 12 described the

relative location of a virtual point, pR, using indices p, q,

and r. However, expressing equation 12 as a function of i,

j, and k describes the Cartesian coordinate of a virtual

point relative to the origin, see Figure 1. The average dis-

tance between FK(sijk) and virtual point locations, pR(i,j,k),

are given by

d̂ learn ¼ 1=l
Xl

m¼1
kFKðsijkÞ � pRði; j; kÞk (20)

where l is the number of elements in S with nonzero

MLSs. As the hand moves early in the learning process, it

is unlikely that the hand will have traveled close to most

virtual points and dlearn will be large. As the hand contin-

ues to move randomly, it will have more opportunities to

pass nearer to virtual points and dlearn will diminish in

size. Thus, equation 20 is a measure of the completeness

of proprioceptive learning.

Demonstrating the adaption phase is accomplished by

increasing the length of Lu and Lf by five discrete

lengths. For each growth size, the arm is then moved

at random as if the arm performed numerous, unfore-

seen movements associated with activities of daily liv-

ing. In this way, equation 19 adjusts S to new

kinematics. Growth is simulated as if the upper arm

and forearm were lengthened instantaneously by 1, 2,

3, 4, or 5 mm. Thus, the overall arm length (upper

arm plus forearm) increases by 2, 4, 6, 8, and 10 mm,

respectively. A test trajectory is then used to evaluate

the position errors caused by growth. Of course, the

notion that the overall arm length might grow instanta-

neously, or “overnight,” by 10 mm, or even 2 mm, is

implausible. The purpose of modeling proprioceptive

adaption is to demonstrate the ability of equation 19 to

adapt to changing kinematics. In reality, this process

would occur imperceptivity during maturation as the

limbs grow slowly over time.

The test trajectory consists of 140 desired points,

(pD’s), or “via points”. Thus, a series of hand positions

was used to simulate hand trajectories, or “movement

from posture” (Merton 1953). The via points forms a

200 mm by 80 mm rectangle. The average error for all

140 points along this test trajectory was calculated by fol-

lowing equation.

error ¼ 1

140

X140
m¼1

kpm � pDmk (21)

where m is the mth via point along the test trajectory.

A two-joint simulation of the arm was implemented in

MATLAB (Mathworks Inc., Natick, MA, USA). Hand

positioning was simulated using the following forward

kinematic model,

xðh1; h2Þ ¼ Lu cosðh1Þ þ Lf cosðh1 þ h2Þ (22)
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yðh1; h2Þ ¼ Lu sinðh1Þ þ Lf sinðh1 þ h2Þ � 600 (23)

zðh3Þ ¼ h3 (24)

where h1 is the shoulder angle, h2 is the elbow angle, Lu
is the upper arm length of 361 mm, and Lf is the forearm

length of 278 mm. These lengths match the average

length for an adult man (Winter 2005). The purpose of

h3 is discussed later on.

There is an important point worth mentioning for

equations 22 and 23. These are forward kinematic solu-

tions that map joint angles to Cartesian coordinates. They

are used for simulation purposes. Inverse kinematics cal-

culates joint angles, or by extension, muscle lengths, as a

function of Euclidian coordinates. The inverse problem is

much more difficult to calculate than the forward prob-

lem. For a first hand perspective, consider solving for

h1(x, y) and h2(x, y) using equations 22 and 23. Despite

their simple appearance, the inverse solution is not easily

obtainable. Solving for inverse kinematics often requires

geometric reasoning, algebraic substitutions, and trigono-

metric identities. In many cases, there is no inverse solu-

tion and iterative techniques, such as Newton’s method,

are required. An inverse kinematic solution for equa-

tions 22 and 23 is never used in this work. Instead,

inverse kinematics is estimated using position gradients

and MLSs exclusively. Demonstrating a way for the CNS

to perform such complicated calculations by leveraging

known physiology is core to this work.

Muscles are being simulated, not joint angles. There-

fore, joint angles in equations 22 and 23need to be con-

verted into muscle lengths. Muscle lengths were estimated

as a function of joint angles using OpenSim 3.0 (Stanford

University, Palo Alto, CA; Delp et al. 2007), in conjunc-

tion with an upper limb muscle model (Holzbaur et al.

2005). Joint angles ranged from 23° to �90° for h1, and
3° to 130° for h2. These angles were selected such that the

elbow and wrist were constrained to move in a sectional

plane that intersects the glenohumeral joint, see Figure 3

(Mussa-Ivaldi 1997). Curve fits were then applied to the

simulated muscle lengths using a second-order polyno-

mial. The muscle names, abbreviations, curve fits, and

goodness-of-fit (R2) are given in Table 1. This nine mus-

cle model includes three agonist and three antagonist

muscles pairs for the elbow, as well as an agonist and

antagonist muscle for the shoulder.

The actual functional relationship between muscle

length and joint angles are certainly more complicated

than is suggested by second-order polynomials. However,

the purpose of simulating the nonlinear relationships in

Table 1 is to show that the model can learn and adapt to

nonlinear muscle kinematics. As is evident from the R2

values in Table 1, the lowest R2 is 98%. Therefore, the

Figure 3. The OpenSim muscle model. The origin of the torso

coordinate frame is located behind the shoulder.

Table 1. Summary of the muscle model.

Muscle Abbreviation 2nd Curve fit R2

Shoulder

Anterior Deltoid DELT1 L1 = �7e-4h1
2 � 0.6h1 + 102.6 0.99

Posterior Deltoid DELT3 L2 = �1e-3h1
2 + 0.7h1 + 121 0.98

Elbow

Triceps Long Head TRIlong L3 = �1e-3h2
2 + 1.1h2 + 100 >0.99

Triceps Medial Head TRImed L4 = 3e-4h2
2 + 0.3h2 + 68.2 0.99

Triceps Lateral Head TRIlat L5 = 2e-3h2
2 + 0.5h2 + 71.4 0.99

Biceps Brachii (long head) BIClong L6 = �5e-3h2
2 � 6e-2h2 + 166 0.99

Biceps Brachii (short head) BICshort L7 = �5e-3h2
2 + 0.1h2 + 197.4 0.97

Brachiali BRD L8 = �8e-3h2
2 � 0.2 h2 + 194.4 0.99

Fictitious Z L9 = h3 1.0
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actual kinematic equations would differ only slightly from

these second-order approximations. Another approxima-

tion in Table 1 relates to independence. Specifically, BIC-

long, BICshort, and TRIlong actually change in length for

both elbow rotation and shoulder rotation. However, they

are modeled as only changing in length in response to

elbow flexion and extension.

An anatomically fictitious muscle is included in equa-

tion 24, and in Table 1 as muscle Z. Z varies 1:1 with h3.
Not only is prismatic translation anatomically incorrect

but also the Z muscle has no antagonist. Inclusion of Z

relates to the fact that the four plane orientations given

by equations 1–4 establish a coordinate system that is

intrinsically three dimensional. For example, consider the

test trajectory. The test trajectory is constrained to a plane

that is parallel to the x–y plane (not to be confused with

position gradient planes). However, the virtual points

used for interpolation reside above and below the trajec-

tory plane. Those virtual points must have nonzero ele-

ments in S. In order to populate those MLSs in S, the

hand must be allowed to traverse space in the z direction

during random movements. Therefore, S was populated

by allowing Z to translate though a distance of

6d=
ffiffiffi
2

p � 170mm.

Results

Depicted in Figure 4A–C are three test trajectories at vari-

ous stages in the learning process. Hollow circles are

target points, pD, and solid point indicate the position of

the hand, p, using the interpolated muscle lengths. After

only 103 iterations, set S is insufficiently learned and

equation 18 is unable to accurately interpolate muscle

lengths. Accordingly, error = 130 mm, see (A). By 109

iterations, pD and p have more overlap and error drops

to only 1.77 mm, see (C). Thus, Figure 4A–C demon-

strates the ability of equation 18 to interpolate muscle

lengths. It also demonstrates the ability of equation 19 to

learn kinematics starting with a matrix of zeros.

Depicted in Figure 4D is a plot of dlearnversus the num-

ber of iterations. As the number of iterations continues

beyond 109, dlearn is expected to continue approaching

zero. Accordingly, the approximations given by equa-

tion 18 would continue to improve, albeit slightly. The

relationship between dlearn and error is apparent from the

(A), (B), and (C) reference points included in (D).

By 109 iterations, dlearn is 3.21 mm, see Figure 4D.

Though this number of iterations might appear large, it is

not unreasonable. This computer simulation is inherently

discrete. Each iteration simulates the hand moving instan-

taneously from one point to another. In reality, the hand

traverses space in a continuous manner. To justify this

level of iteration, let us consider the likelihood of achiev-

ing a dlearn = 3.21 mm using a continuous trajectory.

The geometry of virtual points described by equation 12

is somewhat complicated. As a rough approximation,

assume that the hand randomly sweeps across space and

that the distance between virtual points is d. As such, the

Figure 4. Parts A–C depict the rectangular test trajectory that is generated during various stages of learning. Note, (A) is rescaled but the

trajectory is identical to (B) and (C). Depicted in (D) is the average distance between leaned solutions and virtual points.
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hand-to-virtual point proximity will range from 0 (hand

is incident on the virtual point) to d/2 (hand is in

between two virtual points). The probability that the

hand would pass a virtual point with a proximity of

between 0 and 3.21 mm is given by 3.21/(0.5d) = 0.16. If

it is assumed that the distance between virtual points is

approximately d, then for every meter that the hand trav-

els, it sweeps past 1/d = 25 virtual points. For every meter

that the hand travels, it will near roughly 0.16 9 25 = 4

virtual points with a proximity ≤ 3.21 mm. Therefore,

dlearn seems reasonable although 109 iterations were

required using simulation.

Recall that equation 5 included c = 0.389 and d = 40.

A justification for these constants is now provided. Recall

that the tuning curve was modeled with a normal distri-

bution. Increasing c effectively spreads the position gradi-

ent activity across a larger volume. In other words, cd in

equation 9 substitutes for the “standard deviation,” or r.
Constant c was obtained iteratively by minimizing error.

Constant c equal to 0.389 optimally reduces error inde-

pendently of d. From the perspective of a sensitivity anal-

ysis, error doubles when c increases by 50% or decreases

by 15%. Therefore, interpolation in equation 18 depends

critically on c. This also suggests that interpolation pre-

dominantly involves virtual points in the immediate

vicinity of pD. Note, equation 19 was comparatively

insensitive to c in that variations in c had no noticeable

effect on proprioceptive learning or adaption.

These considerations beg the question as to why a

plane spacing of d = 40 mm was selected. Using a plane

spacing of 40 mm with minimal error translates to an

r = 15.56 mm. Being derived from a normal distribution,

this means that the 95% of the position gradient dis-

charge rate activity would occur within 4r, or approxi-

mately 62 mm. While there is no known model that

describes position gradients in exactly the same way that

they are described in this work, graphical depictions of

position gradient data was provided in (Kettner et al.

1988). In that work, position gradient activity was pre-

sented within a 152 mm cubic workspace. The 62 mm

wide swath of activity that is assumed in this work

approximately matches the swatch of activity depicted in

(Kettner et al. 1988).

Proprioceptive adaption is depicted in Figure 5. The

numbers of iterations are depicted along a logarithmic

scale. Again, the plots in Figure 5A depict proprioceptive

adaption after the upper arm and forearm are each

lengthened by 1, 2, 3, 4, or 5 mm. For the first 103–105

iterations, the hand moves using an S matrix that was

learned with the pregrowth kinematics. As such, the new

kinematics is not yet learned and the growth causes an

error that is proportional to the growth. By 109 iterations,

equation 19 has updated S to account for the growth and

the error is comparable to the pregrowth baseline error of

1.77 mm. Again, even though these levels of growth are

exaggerated, they demonstrate the ability of equation 19

to adapt to changing kinematics through maturation.

The interpolated muscle lengths after 109 iterations are

depicted in Figure 5B. These muscle lengths guide the

hand to via points plotted in Figure 4C. Though the mus-

cle lengths in Figure 5B are plotted as continuous lines,

they are actually discrete sets of muscle lengths for each

via point. Ordinarily, such calculations would require

inverse kinematic solutions. The results depicted in Fig-

ure 5B are of particular importance because they graphi-

cally demonstrate the ability of equation 18 to calculate

muscle lengths. In other words, Figure 5B demonstrates

the ability of equation 18 to estimate inverse kinematics

in muscle space given desired points in Euclidian space.

Discussion

Position gradients and convergent force fields were

exploited in this work. Through computer simulation, it

was shown that these physiological mechanisms can be

structured in a way to learn kinematics, select muscle

lengths in order to position the hand as desired, and to

adapt to changing kinematics through maturation. Funda-

mentally, the hypothesis is simple. Muscle lengths are cal-

culated using a weighted sum of MLSs. Learning was

accomplished using a simplified condition statement

Figure 5. Proprioceptive adaption is summarized in (A). Depicted

in (B) are the interpolated muscle lengths that guide the hand

through the test trajectory.
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involving those weights. This construction, if true, helps

to bridge the gap between low-level muscle enervations in

muscle space with high-level cortical representations of

positioning in the Euclidian space. Moreover, position

gradients were modeled as tuning curves. In turn, tuning

curves were used as a means of spatial interpolation for

the hand. The resulting patterns of activity resemble pat-

terns of activity observed in grid cells. An analogous

mechanism might be at work for spatial navigation tasks

involving grid cells. Given that tuning curves are also

observed in connection to auditory and visual processing,

tuning curves may provide a similar function for auditory

and visual interpolation.

Even though this model was constructed from experi-

mentally determined findings from the literature, several

key assumptions were made. The position gradients that

were modeled as planes used orientations and plane spac-

ing that were selected ad hoc. Despite the fact position

gradients were found in animals, the various orientations

that they assume are unknown. With respect to plane

spacing, the simulated distances were 40 mm. A smaller

plane spacing would result in more virtual points, thereby

increasing the information storage demands on the CNS.

However, this would provide the benefit of reducing posi-

tion error. Experimentally determined proprioceptive

position errors are significantly larger than the 1.77 mm

average error achieved in this work (Van Beers et al.

1998). Therefore, plane spacing much less than 40 mm

would seem unlikely.

This model makes several specific predictions about

position gradients. First, for a given limb, there should be

a minimum of four different position gradient orienta-

tions. Second, position gradients of a given orientation

should repeat with equal spacing. Third, there should

exist locations where four planes, of different orientation,

converge at a common point. These are theoretically

derived predictions. Given that the location and orienta-

tion of position gradients are measurable, these predic-

tions are not only specific, they are falsifiable.

As was alluded to in the Methods section, position gra-

dients are used in two distinct ways. Equation 18 uses

position gradients to weight MLSs as a means of interpo-

lation. That sort of calculation lends itself to motor plan-

ning and the generation of efferent commands. Equation

19 uses position gradients to update MLSs as a means of

achieving proprioceptive learning. That sort of calculation

lends itself to reafferent processing. Accordingly, position

gradients were observed in both the motor cortex, and

area 5 for somatosensory association (Ashe and Geor-

gopoulos 1994). Given that the motor cortex is associated

with dispatching efferent information, and area 5 is asso-

ciated with processing reafferent information (Geor-

gopoulos et al. 1984), it stands to reason that equation 18

would model activity in the motor cortex while equa-

tion 19 models activity in area 5. Assuming that MLSs

reside in subcortical structures, possibly in interneurons

of the spinal cord, the hypothesis predicts that area 5

should have projections along the spinal cord whereby

MLSs are continually evaluated and updated. Recall that

Figure 2 depicted levels of activity that were allegedly

similar to grid cell behavior. A fourth, and final predic-

tion is that descending commands to MLSs should exhibit

grid cell-like activity. More specifically, for each nerve

fiber that projects onto an MLS, equation 18 should gen-

erate increasing levels of activity as the hand nears the

associated virtual point. Assuming that MLSs are retained

within spinal grey matter, this activity should be present

along descending pathways within the spinal cord.
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Appendix I

This MATLAB script generates the plot in Figure 2B and

D using equation 10. The volume under the plot depicts

a convolution of discharge rate along the x–y plane.

z = 1;

c = 0.389;

d = 40; %Distance between planes

U = [1/2 1/2 1/sqrt(2); �1/2 1/2 1/sqrt(2);1/2 �1/2

1/sqrt(2); . . .

�1/2 �1/2 1/sqrt(2)];%Plane directions as unit vector

inc = 0.3;%Set to 1.0 for accurate axis scaling.

for i = 1:500

for j = 1:500

impulses = 0; %Represents action potential rate

P = [i*inc,j*inc,z];
for k = 1:4;

D = [dot(P,U(1,:)) dot(P,U(2,:)) dot(P,U(3,:)). . .

dot(P,U(4,:))];

I = round(D/d); %Plane index

for m = 1:4

W = 1/(d*c*sqrt(2*pi()))*exp(�(D(m). . .

�I(m)*d)^2/(2*(c*d)^2));
Impulses = impulses + W;

end
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end

IMPs(i,j) = impulses;

end

end

axis(‘off’), surface(IMPs, ‘EdgeColor’, ‘none’)

Appendix II

Consider the plane orientation given by equations 1–4. For
each index where i = j = k = l, all four planes have a com-

mon intercepts at the x, y, and z axes. Given that each unit

vector forms a 45° angle with the x–y, plane it follows that
the triangle formed by the unit vector, the axes, and the

plane forms a 45° right triangle. Given that the hypotenuse

of these triangle are length d times the index, it follows that

the intercepts are at the product of the index, the plane dis-

tance, and the
ffiffiffi
2

p
. Given these intercepts, equation 1 is

rewritten as equations of a plane as follows,

1

2
x1 ¼ 0ð Þ þ 1

2
y1 ¼ 0ð Þ þ 1ffiffiffi

2
p z1 ¼

ffiffiffi
2

p
di

� �
þ C ¼ 0

(A1)

where subscript 1 indicates that this is the plane equa-

tion for (1). Solving for C in equation A1 we find that

C = �di. By similar reasoning, the plane equations for 1–
3 are

1

2
x1 þ 1

2
y1 þ

1ffiffiffi
2

p z1 � di ¼ 0 (A2)

� 1

2
x2 þ 1

2
y2 þ

1ffiffiffi
2

p z2 � dj ¼ 0 (A3)

1

2
x3 � 1

2
y3 þ

1ffiffiffi
2

p z3 � dk ¼ 0 (A4)

where subscripts 2 and 3 indicate that these are the plane

equations for equations 2 and 3, respectively. For these

plane equations to mutually intersect at virtual points, the

planes must be independent. In other words, the four

family of planes must have different orientations. Accord-

ingly, the location of virtual points occurs when

x1 = x2 = x3, y1 = y2 = y3, and z1 = z2 = z3.This system

of plane equations is expressed as follows,

di
dj
dk

2
4

3
5 ¼

1
2

1
2

1ffiffi
2

p

� 1
2

1
2

1ffiffi
2

p
1
2 � 1

2
1ffiffi
2

p

2
64

3
75 xijk

yijk
zijk

2
4

3
5 (A5)

Given that all three planes are nonparallel, (A5) is full

rank. Solving simultaneously obtains the following,

xijk ¼ dði� jÞ (A6)

yijk ¼ dði� kÞ (A7)

zijk ¼ dffiffiffi
2

p ðjþ kÞ (A8)
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