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a b s t r a c t

In this work, the inhibitory activity of pyridine N-oxide derivatives against human severe acute respira-
tory syndrome (SARS) is predicted in terms of quantitative structure–activity relationship (QSAR) models.
These models were developed with the aid of multivariate adaptive regression spline (MARS) and adaptive
neuro-fuzzy inference system (ANFIS) combined with shuffling cross-validation technique. A shuffling
MARS algorithm is utilized to select the most important variables in QSAR modeling and then these vari-
ables were used as inputs of ANFIS to predict SARS inhibitory activities of pyridine N-oxide derivatives.
A data set of 119 drug-like compounds was coded with over hundred calculated meaningful molecu-
lar descriptors. The best descriptors describing the inhibition mechanism were solvation connectivity
index, length to breadth ratio, relative negative charge, harmonic oscillator of aromatic index, average
molecular weight and total path count. These parameters are among topological, electronic, geometric,

2
daptive neuro-fuzzy inference system constitutional and aromaticity descriptors. The statistical parameters of R and root mean square error
(RMSE) are 0.884 and 0.359, respectively. The accuracy and robustness of shuffling MARS–ANFIS model
in predicting inhibition behavior of pyridine N-oxide derivatives (pIC50) was illustrated using leave-one-
out and leave-multiple-out cross-validation techniques and also by Y-randomization. Comparison of the
results of the proposed model with those of GA-PLS-ANFIS shows that the shuffling MARS–ANFIS model is
superior and can be considered as a tool for predicting the inhibitory behavior of SARS drug-like molecules.
. Introduction

The discovery of a novel human coronavirus (H-CoV) as the cause
f the newly recognized severe acute respiratory syndrome (SARS)
rovides a new challenge to the medical community to keep con-
rol on this disease [1]. Human coronaviruses cause up to 30% of
olds and they sometimes cause a lower respiratory tract disease. In
ontrast, animal coronaviruses are known to cause devastating epi-
ootics of respiratory or enteric diseases in livestock and poultry [2].
he SARS coronavirus is clearly new to the human population and

ts RNA genome differs substantially from sequences of all known
oronaviruses.

SARS, with high rates of transmission needs a rapid, sensitive and
nexpensive treatment method that can be used to effectively pre-
ent the rapid spread of the infection. Therefore, it is wise to develop

afe and effective drugs against SARS-CoV as quickly as possible in
ase a novel widespread outbreak would occur. The development of
ffective drugs against SARS-CoV may also provide new strategies
or the prevention or treatment of other coronavirus diseases in ani-
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mals or humans [3]. SARS inhibitor has potential therapeutic value
and has been extensively studied in pharmaceutical industry [4].
Recently, a total of 119 compounds that all belong to the class of the
pyridine N-oxide derivatives with good inhibitory concentration
has been reported against SARS-CoV [5].

To find and design new compounds with enhanced inhibitory
activity, a systematic study of the different substituents on the activ-
ity of the analogues is needed. On the other hand, the growth of
computational techniques has accelerated the drug design process.
Many databases of inhibitors exist that have yet to be evaluated
against SARS. Quantitative structure–activity relationship (QSAR)
has been demonstrated as a capable tool for the investigation of
bioactivity of various classes of compounds [6–12].

Experimental evaluation of inhibitory activity of newly designed
compounds is time-consuming and expensive; as a result, it is of
interest to develop a method for the prediction of biological activity
before the synthesis. QSAR searches information relating chemi-
cal structure to biological activity by developing a mathematical

model. Building of a QSAR model begins with calculating theoret-
ical parameters or selecting structural features for the compounds
involved. Nowadays, hundreds of descriptors could be generated in
QSAR studies, but only some of them are statistically significant in
terms of correlation with biological activity for a particular analy-

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:jalali@sharif.edu
dx.doi.org/10.1016/j.jpba.2009.07.009
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is. Therefore, variable selection techniques have become important
or producing a useful predictive model. A suitable feature selec-
ion method ensures the model stability and the consistency of
elationship between the descriptors and biological activity [13].

In order to make sure that the most important descriptors have
een selected, shuffling cross-validation technique was used in this
ork. In this method, the data set was divided into several subsets,

nd variable selection process was performed for different com-
inations of these subsets. Then the most frequent descriptors in
odels were selected as most important variables describing the

nhibitory effect.
In this study, multivariate adaptive regression spline (MARS)

ombined with shuffling cross-validation (SCV) was employed to
elect the most important parameters describing SARS inhibitors
ctivity. The selected descriptors were then used as inputs of adap-
ive neuro-fuzzy inference system (ANFIS) and a hybrid model
alled shuffling MARS–ANFIS was developed. As final step, the gen-
rated model was used to predict the activity of pyridine N-oxide
erivatives as SARS inhibitors.

. Computational methods

.1. Multivariate adaptive regression splines

Multivariate adaptive regression spline (MARS) is a non-
arametric regression method proposed by Friedman in 1991
14,15]. Nowadays, the MARS is used for analyzing biological, eco-
omical, sociological and other databases [16].

The main idea in MARS which makes it different from other
ethods is its ability for dividing the whole space of each indepen-

ent variable into various sub-regions and then defining a different
athematical equation for each area. This equation relates each

ub-region of independent variable to response of the system, sep-
rately. This framework makes the MARS a method that is useful
or modeling non-linear and complicated systems and also appli-
able for the conditions which the behavior of the system is highly
ffected by just a specific area of independent variable.

Generally a regression couple can be presented by (Xi, Yi, which
i, represents for one or, n, independent variable(s) and Yi is a
ependent variable. In the MARS model, for every independent
ariable there is/are one or more split point(s), named ti. For Xi
reater than ti, there is one equation named right side-basis func-
ion (BF) and for Xi less than ti there is another equation named
eft side-basis function. These two left and right basis functions
spline functions) relate Xi to the dependent variable Yi. The fol-
owing equations indicate the mathematical representation of right
nd left basis functions:

−(Xi − ti)]
q
+ =

{
(ti − Xi)

q If Xi < ti

0 otherwise
(1)

+(Xi − ti)]
q
+ =

{
(Xi − ti)

q If Xi ≥ ti

0 otherwise
, (2)

here q(≥0) is the power to which the splines are raised and which
etermines the degree of smoothness of the resultant function esti-
ate. Final response in MARS can be calculated by summing up all
basis functions with suitable coefficients (cm) as:

ˆ = fM(X) = c0

M∑
m=1

cmBm(X) (3)
here Ŷ is the dependent variable predicted by MARS model, c0 is
constant and Bm(X) is the mth basis function.

To determine which basis function should be included in the
odel, MARS utilizes the generalized cross-validation (GCV). The
nd Biomedical Analysis 50 (2009) 853–860

GCV is mean squared residual error divided by a penalty depen-
dent on the model complexity. The GCV is defined in the following
way:

GCV(M) =

1
n

n∑
i=1

(Yi − f̂M(Xi))
2

((1 − C(M))/n)2
(4)

where C(M) is the complexity penalty that increases with the num-
ber of basis functions in the model and can be defined as Eq. (5):

C(M) = C(M + 1) + dM (5)

where M is the number of basis functions in this equation and
the parameter d is a penalty for each basis function included in
the model. Large value of d leads to fewer basis functions and
therefore smoother function estimates. The theory behind the mul-
tivariate adaptive regression spline has been adequately described
elsewhere [17].

In this study, the data set containing p observations were divided
into (p − k) calibration and k validation objects. The root mean
square error of validation set (RMSEv) has been used as fitness func-
tion for the search algorithm. Because there are various states for
selecting k samples out of p, various models can be built using exter-
nal validation strategy. The parameters of the generated models
depend on training and validation set, as a result various variables
and split points are expected to be determine in this way. We have
used the most frequent variables appearing in the built models as
inputs for the final modeling.

2.2. Shuffling cross-validation

In this technique, the data set would be divided into several sub-
sets, and variable selection process and model developing would
be performed for all combinations of the subsets. Then the most
frequent descriptors appeared in the developed models would be
selected as most important variables in describing the variation in
inhibitor activity.

In the present work, the data set was randomly divided into
six subsets (A–F). For variable selection procedure, four groups
were applied as calibration set and the two remaining subsets
were used as validation set for evaluating the selected param-
eters. Mathematically, there are fifteen possible states that one
can select four unrepeated objects from six independent ones.
The data set was divided into six subgroups, so, fifteen MARS
models can be developed with various calibration and validation
sets.

The molecules included in subsets of A–F are shown in Table 1 .
Fifteen different combinations of calibration and validation subsets
were used in the present study to develop the MARS model. The use
of shuffling MARS technique guarantees that the developed model
is robust and reliable and it is not obtained by chance.

2.3. Adaptive neuro-fuzzy inference system

The proposed neuro-fuzzy model in ANFIS is a multilayer neural
network-based fuzzy system [18]. Its topology is shown in Fig. 1,
and as can be seen the system has a total of five layers. In this
connectionist structure, the input (layer 0) and output (layer 5)
nodes represent the descriptors and the response, respectively, and
in the hidden layers, there are nodes functioning as membership

functions (MFs) and rules. This eliminates the disadvantage of a
normal feed forward multilayer network, which is difficult for an
observer to understand or to interpret its results. ANFIS simulates
TSK (Takagi–Sugeno–Kang) fuzzy rule [19] of type-3 where the con-
sequent part of the rule is a linear combination of input variables
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Table 1
Experimental and calculated inhibitor data using shuffling MARS–ANFIS model for pyridine N-oxide derivatives.

No. Subseta Rb X1 X2 X3 X4 X5 Z1 Z2 Y1 Y2 Y3 Y4 Exp. pIC50 MARS–ANFIS
pIC50

1 A H H H H H H O O H H H H 3.840 3.866
2 C H Me H H H H O O H H H H 4.060 4.272
3 B H H Me H H H O O H H H H 4.059 4.327
4 D H H Me H H H O O H H H H 3.825 3.952
5 A H H H Me H H O O H H H H 4.040 4.232
6 B H H H Me H H O – H H H H 4.352 4.845
7 E H Me H Me H H O O H H H H 4.239 4.082
8 D H Me H H Me H O O H H H H 3.938 4.359
9 C H Me H H Me H O – H H H H 3.736 3.325

10 F H Me Me H H Me O O H H H H 4.423 4.721
11 A H Me Me H H Me O – H H H H 5.294 5.128
12 E H H H Et H H O O H H H H 4.361 4.150
13 D H H H iProp H H O O H H H H 4.239 4.633
14 C H iProp H H iProp H O O H H H H 4.491 4.699
15 B H iProp H H iProp H O – H H H H 4.717 4.327
16 E H H H tBut H H O O H H H H 4.502 4.663
17 D H H H tPent H H O O H H H H 4.652 4.626
18 A H H H OMe H H O O H H H H 4.756 4.874
19 F H H H OMe H H O – H H H H 3.955 3.910
20 C H OMe H H OMe H O O H H H H 5.098 5.199
21 E H H OMe OMe H H O O H H H H 3.712 3.738
22 B H H OMe OMe H H O – H H H H 3.878 4.083
23 C H H OMe OMe OMe H O O H H H H 5.321 5.680
24 F H H OMe OMe OMe H O – H H H H 3.823 3.498
25 E H OMe H H Me H O O H H H H 3.811 4.002
26 A H OMe H H Me H – – H H H H 3.834 3.752
27 E H OEt H H H H O O H H H H 4.037 3.952
28 D H OEt H H H H O – H H H H 3.899 3.905
29 C H H F H H H O O H H H H 3.651 3.250
30 B H H H F H H O – H H H H 4.148 4.250
31 F H Cl H H H H O O H H H H 3.461 3.138
32 A H Cl H Cl H H O O H H H H 4.174 4.007
33 E H Cl H H H Cl O O H H H H 4.710 4.872
34 B H H Cl Cl H H O O H H H H 4.327 4.140
35 D H Cl Cl H H Cl O O H H H H 5.040 4.892
36 F H Cl Cl Cl Cl Cl O O H H H H 4.734 4.809
37 A H Cl Cl Me Cl Cl O O H H H H 5.546 5.770
38 E H Cl H NO2 H H O O H H H H 5.302 5.119
39 A H H Br H H H O O H H H H 4.732 4.567
40 C H Br H H OMe H O O H H H H 4.647 4.170
41 F H iProp H Br iProp H O O H H H H 4.378 4.190
42 B H I H H H H O O H H H H 4.972 4.892
43 F H NO2 H H H H O O H H H H 4.176 4.103
44 C H H H NO2 H H O O H H H H 4.355 4.349
45 E H H NO2 H NO2 H O O H H H H 4.588 4.404
46 B H H NO2 Me H H O O H H H H 4.887 4.438
47 F H H Me NO2 H H O O H H H H 4.726 4.421
48 C H Me H H NO2 H O O H H H H 4.799 4.849
49 A H OMe H H NO2 H O O H H H H 3.733 3.717
50 D H H NO2 Cl H H O O H H H H 4.281 4.439
51 F H CN H H H H O O H H H H 4.883 4.672
52 B H H H CN H H O O H H H H 4.262 4.069
53 E H H H Phe H H O O H H H H 4.359 4.188
54 D H OPhe H H H H O O H H H H 4.850 4.615
55 A H H OMe OBz H H O O H H H H 4.533 4.783
56 B H H CF3 H H H O – H H H H 4.667 4.873
57 C H OH H H NO2 H – – H H H H 3.747 3.250
58 F Me H H H H H O – H H H H 3.876 3.994
59 B Me H H Me H H O – H H H H 5.420 5.237
60 C Me Me H H Me H – – H H H H 5.646 5.860
61 D Me H H F H H O – H H H H 3.545 3.407
62 A Me Cl H H Me H O – H H H H 5.905 5.390
63 E Et H H H H H O O H H H H 6.192 5.717
64 C Et Me H H Me H O O H H H H 3.658 3.525
65 F Prop H H H H H O O H H H H 3.582 3.633
66 B Prop H H H H H – – H H H H 3.831 3.934
67 D Prop Me H H Me H – – H H H H 3.622 3.473
68 A Hept H Me Me Me H – – H H H H 4.495 4.380
69 F Hept Me H H Me H O O H H H H 4.252 4.272
70 D Undec Me H H Me H O O H H H H 5.043 4.767
71 C Isobut Me H H Me H O O H H H H 3.691 3.399
72 E C3H6 Me H H Me H O O H H H H 4.731 4.549
73 B C6H5 Me H H H H O O H H H H 3.922 3.603
74 C C6H5 Me H H Me H O O H H H H 3.859 3.781
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Table 1 (Continued )

No. Subseta Rb X1 X2 X3 X4 X5 Z1 Z2 Y1 Y2 Y3 Y4 Exp. pIC50 MARS–ANFIS
pIC50

75 D C6H5 Me H H Me H – – H H H H 3.915 3.749
76 F CH2Ph Me H H Me H – – H H H H 3.976 4.003
77 A CN Me H H Me H – – H H H H 5.111 5.216
78 D CH2CO2H Me H H Me H O O H H H H 3.900 3.617
79 F Br Me H H Me H O O H H H H 3.567 3.598
80 B CO2CH3 Me H H H H O – H H H H 3.643 3.576
81 C CO2CH3 Me H H Me H O O H H H H 3.769 3.392
82 D CO2CH3 H OPh H H H O O H H H H 3.969 3.860
83 F CF3 Me H H Me H O O H H H H 4.186 4.199
84 A CH2OMe Me H H Me H O O H H H H 3.926 3.480
85 E Me, Cl H H H H H O O H H H H 4.143 3.895
86 C Me, Cl Me H H Me H O O H H H H 4.474 4.177
87 B Me H H Me H Me O O H H Me H 4.151 3.881
88 D H H H H H H O O H H H Me 4.087 4.356
89 F Me H H Me H Me O O H H H Me 3.973 3.970
90 A Me H H Me H H O – H H H Me 3.905 3.804
91 E Me H H H H H O O H H H Me 3.817 3.616
92 D Me H Me H H H O O H H H Me 4.213 4.120
93 B Me H H Me H Et O O H H H Me 4.423 4.289
94 F Cl H H H Cl H – – H H H Me 4.203 4.127
95 C H H H H H Me O O H H H Me 3.986 3.957
96 E Cl H H H H H O O H H H Me 3.665 3.634
97 A Me NO2 H H H H O O H H H Me 4.152 4.113
98 B Me H Me H H Me O O H H H Me 4.526 4.321
99 F Cl H H H H Me O O H H H Me 3.832 3.577

100 D Me NO2 H H H Me O O H H H Me 3.914 3.719
101 E Me H H Me H H O O H H H OMe 3.545 3.801
102 A Me H H Me H H O – H H H OMe 4.585 4.150
103 C Me H H Me H H – – H H H OMe 3.672 3.983
104 E Me H H Me H H – – H H H OH 3.595 3.088
105 B H H OMe H H H O O H H t-Bu H 3.604 3.629
106 D H H OMe H H H – – H H t-Bu H 3.946 4.304
107 E H H H H H H – – Cl H H H 3.801 3.871
108 A Me H H Me H H O O Cl H H H 3.720 3.324
109 B Me H H Me H Me O O Cl H H H 4.892 4.610
110 F H H H H H H – – H Cl H H 4.860 4.651
111 C Me H H Me H H O O H Cl H H 3.633 3.495
112 E Me H H Me H H O – H Cl H H 4.709 4.628
113 A H H H H H Cl O O H Cl H H 4.325 4.674
114 D H H H H H H O O H H H Cl 5.141 4.740
115 F H H H H H H O – H H H Cl 5.277 5.216
116 C Me H H Me H H – – H H H Cl 4.860 4.638
117 B Me H H Me H Me O O H H H Cl 3.824 4.007
118 D Me H H Me H Cl O O H H H Cl 5.283 5.216

–

a
t

119 A H H H H H H

a A–F subsets.
b Substituted groups in pyridine N-oxide derivatives is shown in Fig. 2.

nd a constant. For a Sugeno fuzzy model a common rule set with
he fuzzy if-then rules is as following:

Rule 1: IF x is A1 and y is B1 THEN
f1 = p1X + q1Y + r1

Fig. 1. A typical ANFIS structure.
– H H H NO2 4.363 4.643

Rule 2: IF x is A2 and y is B2 THEN

f2 = p2X + q2Y + r2

For simplicity, we assume that the examined fuzzy inference
system has two inputs x and y and one output. The ANFIS contains
five layers (Fig. 1):

Layer 1. The fuzzy part of ANFIS is mathematically incorporated in
the form of membership functions (MFs). A membership function
�Ai(x) can be any continuous and piecewise differentiable func-
tion that transforms the input value x into a membership degree,
that is to say a value between 0 and 1. The most widely applied
membership functions are the generalized bell (gbell MF) or the
Gaussian function in Eqs. (6) and (7), which are described by the

three parameters, a–c. Therefore, Layer 1 is the fuzzification layer
in which each node represents a membership:

�Ai(x) = 1

1 +
[

((x − ci)/ai)
2]bi

(6)
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M

[20]. In this work, over hundred meaningful descriptors were cal-
culated for each compound, which encoded different aspects of the
ig. 2. Main skeleton with different functional positions of pyridine N-oxide deriva-
ives.

�Ai(x) = exp
[
−((x − ci)/ai)

2] (7)

As the values of the parameters {ai, bi and ci} change, the bell-
shaped functions vary accordingly, thus exhibiting various forms
of membership functions on linguistic label Ai. Parameters in this
layer are referred to as premise parameters.
Layer 2. Every node in this layer is a fixed node labeled, whose
output is the product of all the incoming signals:

O2,1 = wi = �Ai(x) × �Bi(y) for i = 1, 2 (8)

Every node in this layer computes the multiplication of the input
values and gives the product as the output as in the above equa-
tion. The membership values represented by �Ai(x) and �Bi(y) are
multiplied in order to find the firing strength of a rule where the
variables x and y have linguistic values Ai and Bi, respectively.
Layer 3. This layer is the normalization layer which normalizes the
strength of all rules according to Eq. (9):

O3,i = w̄i = wi

w1 + w2
for i = 1, 2 (9)

where wi is the firing strength of the ith rule which is computed in
layer 2. Node i computes the ratio of the ith rule’s firing strength
to the sum of all rules’ firing strengths. For convenience, outputs
of this layer are called normalized firing strengths.
Layer 4. Every node i in this layer is an adaptive node with a node
function:
O4,i = w̄ifi = w̄i(pix + qiy + ri) (10)

where wi is a normalized firing strength from layer 3 and {pi, qi,
ri} is the parameter set of this node. Parameters in this layer are
referred to as consequent parameters.

able 2
electing the important variables using shuffling MARS method.

un Calibration
set

R2
Cal RMSECal Validation

set
R2

Val RMSEVal

1 A + B + C + D 0.834 0.241 E + F 0.767 0.458
2 A + B + C + E 0.820 0.268 D + F 0.810 0.372
3 A + B + D + E 0.831 0.279 C + F 0.805 0.367
4 A + C + D + E 0.835 0.253 B + F 0.751 0.476
5 B + C + D + E 0.803 0.226 A + F 0.740 0.450
6 A + B + C + F 0.833 0.240 D + E 0.802 0.393
7 A + B + D + F 0.819 0.273 C + E 0.783 0.422
8 A + C + D + F 0.843 0.226 B + E 0.745 0.449
9 B + C + D + F 0.825 0.282 A + E 0.730 0.470

10 A + B + E + F 0.839 0.228 C + D 0.804 0.418
11 A + C + E + F 0.813 0.265 B + D 0.806 0.416
2 B + C + E + F 0.826 0.250 A + D 0.784 0.464

13 A + D + E + F 0.837 0.242 B + C 0.787 0.466
14 B + D + E + F 0.821 0.255 A + C 0.769 0.471
15 C + D + E + F 0.818 0.235 A + B 0.750 0.483

ean 0.827 0.251 0.776 0.438
Fig. 3. The selected descriptors and the frequency of each one in the shuffling MARS
models.

Layer 5. The single node in this layer is a fixed node labeled �,
which computes the overall output as the summation of all incom-
ing signals:

overall output = O5,i =
∑

i

w̄ifi =
∑

iw̄ifi∑
iwi

(11)

Thus we have constructed an ANFIS system that is functionally
equivalent to Sugeno fuzzy model. This system is used in the
present QSAR study due to its transparency and efficiency.

3. Data set collection and descriptor generation

A set of 119 variously functionalized pyridine N-oxide was col-
lected along with their activity data [5]. The IC50 values were
converted to pIC50 values and used as dependent variables in the
QSAR study. The main skeleton with different functional posi-
tions for pyridine N-oxide derivatives is shown in Fig. 2. A list of
inhibitory activities is given in Table 1. Prior to the calculation of
the molecular descriptors, the 3D structures of the studied com-
pounds were optimized using semi-empirical quantum-chemical
methods of PM3 implemented in Hyperchem computer program
molecular structures. These descriptors were consisted of constitu-
tional, topological, electronic, geometric and empirical descriptors.
Pairs of descriptors that were highly correlated (R > 0.90) encoded

Fig. 4. Plot of the shuffling MARS–ANFIS calculated pIC50 values against the exper-
imental ones for the training, test and validation sets.
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imilar information, and therefore one of them has been elimi-
ated. Descriptors with constant or almost constant values for all
olecules were also eliminated. All these molecular descriptors
ere generated using Dragon3 software [21]. Table 2 shows 15 dif-

erent combinations of calibration and validation subsets used for
he variable selection via shuffling MARS. Fig. 3 shows the selected
escriptors and the frequency of each descriptor that has been
ppeared in the shuffling MARS models. Shuffling MARS–ANFIS
lgorithm was written in our laboratory using MATLAB 7.0 [22] and
un on a personal computer (Intel Pentium processor 4/1.8 GHz 1 GB
AM).

. Results and discussion

.1. Shuffling MARS–ANFIS modeling

First, all 119 molecules studied in this work were sorted accord-
ng to their biological activity. Then the molecules were divided into
ix groups, five groups of them consisted of twenty molecules each
nd one consisted of nineteen molecules. Each group was selected
n such a way that it consisted of all range of inhibitory activity
rom weak to highly active compounds. In the variable selection
rocedure, four groups were applied as calibration set and the two
emaining subsets were used as validation set for evaluating the
elected parameters. The data set was divided into six subgroups,
o, we can make 15 MARS models with various calibration and val-
dation sets. Because these calibration and validation sets contain
ifferent molecules, various descriptors are expected to be selected
y MARS search strategy, in each model. In the calibration proce-
ure, the forward selection and backward deletion algorithm uses
he parameter, root mean square of validation set (RMSEv) as an
ndex for evaluating the selected split points. Statistical parameters
btained for 15 models are shown in Table 2. The selected descrip-
ors and the frequency of each descriptor in shuffling-MARS models
re shown in Fig. 3. Inspection of this figure shows that parame-
ers of solvation connectivity index (X3sol), length to breadth ratio
L/Bw), relative negative charge (RNCG), harmonic oscillator of aro-

atic index (HOMA), average molecular weight (AMW) and total
ath count (TPC) have appeared more frequently (more than 10
uns) in the 15 runs compared to the other descriptors. These six
escriptors are among topological, electronic, geometric, constitu-
ional and aromaticity descriptors. The detailed description of these
escriptors is given in Reference [23]. The most important selected
ariables (six variables) using the shuffling MARS algorithm were
sed as inputs for developing the ANFIS model to predict the value
f pIC50 for the SARS inhibitors.

The ANFIS modeling involves two steps: (a) structure identifi-
ation and (b) parameter identification. The former is related to
nding a suitable number of rules and a proper partition of the

eature space. The latter is concerned with the adjustment of sys-
em parameters, such as membership function (MF) parameters,
inear coefficients, and so on. It is concluded that by increasing the
umber of MFs per input, the number of rules increases accordingly
13]. For the first stage of ANFIS modeling grid partitioning was used
or partitioning the features. The number and type of membership
unctions were optimized using RMSE as a criterion for the test set.

For the ANFIS modeling, data set was divided into three groups:
raining, test and prediction sets. All molecules were randomly
ncluded in these sets. The training set, consisted of 70 molecules
nd was used for the model generation. However, the test set, con-

isted of 30 molecules, was used to take care of the overtraining.
he prediction set, consisted of 19 molecules, was used to evaluate
he generated model.

The predicted values of pyridine N-oxide inhibition behavior
btained using shuffling MARS–ANFIS model are listed in Table 1.
Fig. 5. Plot of residuals versus experimental values of pIC50 for the shuffling
MARS–ANFIS.

This table shows that the calculated pIC50 is a good estimate of
experimental pIC50. The correlation between the experimental and
calculated values of pIC50 is shown in Fig. 4. The adjusted R2 for train,
test and prediction set in shuffling MARS–ANFIS model are 0.856,
0.862 and 0.870, respectively. Also the RMSE for train, test and pre-
diction set are 0.285, 0.337 and 0.382, respectively. The residuals of
the calculated values of pIC50 are plotted against the experimental
values in Fig. 5. The propagation of the residuals in both sides of
zero line indicates that no symmetric error exists in the develop-
ment of the QSAR model. From this figure, one can find there is no
out-layer in the generated shuffling MARS–ANFIS model.

4.2. Validation of shuffling MARS–ANFIS model

Second step of this work was investigating the validity of the
generated model. The consistency and reliability of a method
can be explored using the cross-validation techniques [24]. The
cross-validation techniques of leave-one-out (LOO-CV) and leave-
multiple-out (LMO-CV) were used to assess the consistency of
the model. In order to examine the robustness of the developed
model, the Y-randomization test was performed in this contribu-
tion. In LOO-CV algorithm, one compound was left in each step
as prediction set and the model was developed using the remain-
ing molecules as training set [24]. The accuracy of cross-validation
results is extensively acceptable in the literature considering Q2

LOO
value using Eq. (11):

Q 2 = PRESS
SSY

= 1 −
∑n

i=1(yexp − ypred)2∑n
i=1(yexp − ȳ)2

(11)

In this sense, a high value for the statistical parameter (Q2 > 0.5)
is considered as proof of high predictive ability of the model [25].
However, several authors suggest that a high value of Q 2

LOO appears
to be necessary but not sufficient [26]. Consequently, we also used
LMO-CV and Y-randomization techniques. In the case of LMO, M
represents a group of randomly selected data points which would
leave out at the beginning and would be predicted by the model
which was developed using the remaining data points. Therefore,
M molecules are considered as prediction set. The R2

LMO can be cal-
culated by using Eq. (12):

R2
LMO = PRESS

SSY
= 1 −

∑test
i=1 (yexp − ypred)2∑test
i=1 (yexp − ytrain)2

(12)
In the present contribution, we have performed leave-12-out
(L12O) and leave-18-out (L18O) cross-validations. A group of 12
and 18 compounds was randomly selected, respectively from the
training set. Then each group was left out and was predicted by the
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Table 3
Statistics using LOO-CV and LMO-CV methods for comparing the results of shuffling
MARS–ANFIS method with GA-PLS-ANFIS method.

Method LOO L12Oa L18Oa

Q2 RMSEp R2b RMSEp R2 RMSEp

Shuffling MARS–ANFIS 0.892 0.331 0.884 0.359 0.870 0.380
GA-PLS-ANFISc 0.813 0.446 0.787 0.489 0.785 0.494

a Calculation of R2
LMO was based on 1000 random selections of groups of 12 and

18 samples.
b All R2 are adjusted coefficient regression.
c Selected variables: X3sol, TPC, RNCG and AROM.

Table 4
Mean values of R2

p and Q 2
LOO after performing 100 Y-randomization tests.

M

S
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m
w
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ethod Mean of R2
p Mean of Q 2

LOO

huffling MARS–ANFIS 0.185 0.096
A-PLS-ANFIS 0.236 0.143

odel developed from the remaining observations. This procedure
as carried out 1000 times. Table 3 shows the results for LOO and

MO cross-validations. High values for Q 2
LOO and R2 indicate the con-

istency of the developed model. In order to assess the robustness
f the shuffling MARS–ANFIS, the Y-randomization test was applied

n this contribution. The dependent variable vector pIC50 was ran-
omly shuffled and a new QSAR model was developed using the
riginal variable matrix. The new QSAR model is expected to show
low value for R2

p and Q 2
LOO. One hundred random shuffles of the y

ector were performed for which the results are shown in Table 4.
he poor values for the mean of R2

p and Q 2
LOO indicate that the good

esults of the shuffling MARS–ANFIS model are not due to a chance
orrelation or structural dependency of the training set.

.3. Comparison of shuffling MARS–ANFIS with GA-PLS-ANFIS

For further investigation, GA-PLS technique is also used to select
he most important descriptors in the present work. The theories
ehind this algorithm are discussed elsewhere [27]. To find the best
odel, GA-PLS were run many times with different settings of ini-

ial populations. The best models of GA-PLS with best fitness were
elected. Fig. 6 shows the result of GA-PLS variable selection after

000 runs. This figure shows the most important descriptors are
3sol, TPC, RNCG and AROM (aromaticity). The selected descriptors
ppeared in GA-PLS model were used in developing ANFIS model
o predict the value of pIC50. The results of Q2

LOO, R2
LMO and RMSEp

Fig. 6. Selected variables using GA-PLS method after 3000 runs.
nd Biomedical Analysis 50 (2009) 853–860 859

for LOO, L12O and L18O in GA-PLS-ANFIS model are summarized in
Table 3. This table shows that the best model also has four variables
for GA-PLS technique. The poor values for the mean of adjusted R2

p

and Q 2
LOO in Table 4 confirm that the good results of the GA-PLS-

ANFIS model are not due to a chance correlation and the developed
model is reliable.

It is clear from Table 3 that the results of LOO, L12O and L18O for
the shuffling MARS–ANFIS model are superior compared with those
of the GA-PLS-ANFIS. However, the shuffling MARS–ANFIS model
has 6 descriptors and the GA-PLS-ANFIS model has 4 descriptors,
but the adjusted R2 is relatively independent from the number of
variables. It is obvious that the RMSE of both LOO and LMO has been
reduced about 50% using shuffling MARS–ANFIS.

4.4. Descriptors appeared in QSAR model

The most repeated variable in the shuffling MARS–ANFIS model
is X3sol which is among salvation connectivity indices. These
molecular descriptors are defined to model salvation entropy and
describe dispersion interactions in solution.

The next important variable selected by the shuffling
MARS–ANFIS model is relative negative charge (RNCG). This
descriptor is the partial charge of the most negative atom divided by
the total negative charge and is defined by the following equation.

RNCG = Q−
max

Q−
total

(13)

Different hetero atoms such as nitrogen, oxygen and halo-
gen affect Qtotal and Qmax dramatically. Also the presence of
donor–acceptor atoms for H bond influences the value of both Qtotal
and Qmax. Therefore, the presence of these functions is important
in inhibitor–isozyme interaction.

It is shown that another important factor in inhibition mecha-
nism is Length to breadth ratio (L/Bw) of the inhibitor [28]. Length
to breadth ratio is defined as the ratio of the longest (L) to the short-
est (B) side of the rectangle that envelopes the molecular structure
and at the same time maximizes the L/B ratio. This shape parame-
ter not only accounts for the distance between extreme atoms along
the principle axis but also for the distribution of all atoms around
the molecule center.

The parameter TPS is the total path count of the H-depleted
molecular structure and is a useful quantitative measure of molec-
ular complexity. The TPS parameter for molecules with simple
structures is smaller than those calculated for molecules with var-
ious branching in their structures [23].

The parameter HOMA is harmonic oscillator model of aromac-
ity index and is among resonance indices. The resonance indices
are theoretical quantities to explain the stability of benzene and
predicting the degree of delocalization of conjugated systems [23].

The last parameter which has been used for modeling and has
acceptable frequency of repetition in shuffling-MARS approach is
the average molecular weight (AMW). This parameter is calculated
by dividing the molecular weight by the number of atoms in the
considered molecule. This parameter is a simple molecular descrip-
tor which encodes information on elemental composition of the
molecule.

5. Conclusions

A cumbersome step in every QSAR studies is selecting suitable

descriptors using a feature selection method. This is more serious
when the data set under study is diverse or the mechanism of the
process is complex. The data set considered in this work consisted
of drug-like molecules inhibiting SARS and consequently, the
mechanism of their action could be complicated. An approach
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f shuffling MARS–ANFIS was successfully applied for predicting
he inhibitor activity of pyridine N-oxide derivatives against SARS.
he reasons behind this success could be: (1) the strength of the
huffling MARS as feature selection technique. It is shown that the
ix parameters of AMW, X3sol, LBw, RNCG, HOMA and TPC chosen
y shuffling MARTS affect significantly the inhibition process of
he drug-like molecules. (2) The role of ANFIS as mapping model
hich has the power of prediction of the inhibition behavior. It

s a general framework that combines two technologies, namely
eural networks and fuzzy systems; by using fuzzy techniques,
oth numerical and linguistic knowledge can be combined into
fuzzy rule, which require extensive trails and errors for the

ptimization of their architecture. The shuffling MARS–ANFIS has
een testified to be an effective method for variable selection
nd developing model by using the cross-validation techniques
f leave-one-out, leave-multiple-out and also Y-randomization.
omparing the results of GA-PLS-ANFIS with those for shuffling
ARS–ANFIS reveals that the latter model selects the best variables

o predict the inhibition action of pyridine N-oxide derivatives.
he appearance of the above-mentioned parameters in the model

ndicates that type of the atoms, size of the molecule, complexity
f the compound, aromacity and elemental composition of the
olecule are playing roles in the mechanism of inhibition.
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