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ABSTRACT
Background: Breast cancer is a pivotal cause of global women cancer death. Immunotherapy
has become a promising means to cure breast cancer. As constitutes of immune microenviron-
ment of breast cancer, macrophages exert complicated functions in the tumour development
and treatment. This study aims to develop a prognostic macrophage marker genes signa-
ture (MMGS).
Methods: Single cell RNA sequence data analysis was performed to identify macrophage marker
genes in breast cancer. TCGA database was used to construct MMGS model as a training cohort,
and GSE96058 dataset was used to validate the MMGS as a validation cohort.
Results: Genes included in the MMGS model were: SERPINA1, CD74, STX11, ADAM9, CD24,
NFKBIA, PGK1. MMGS risk score stratified by overall survival of patients divided them into high-
and low-risk groups. And MMGS risk score remained independent prognostic factor in multivari-
ate analysis after adjusting for classical clinical factors in both training and validation cohorts.
Besides, hormone receptors negative and human epidermal growth factor receptor 2 (HER2)
positive patients had higher risk score. MMGS showed better distinguishing capability between
high-risk and low-risk groups in hormone receptor positive and HER2 negative subgroup.
Conclusion: MMGS provides a new understanding of immune cell marker genes in breast can-
cer prognosis and may offer reference for immunotherapy decision for breast cancer patients.
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Introduction

Breast tumour is one of the pivotal cause of female
cancer death [1]. Although the survival outcomes have
significantly improved over the past decades, patients
with metastatic breast cancer still show poor progno-
sis. Accumulating evidence indicates that interplay
between tumour cells and stromal cells, including
diversity of immune cells, fibroblasts, etc., as well as
the tumour microenvironment (TME) evolve during
the progression of disease exert a crucial impact on
patients’ survival and response to therapies [2]. The
extensive TME heterogeneity contributes to the diffi-
culty of cancer management. In recent years, the
achievements of overall survival prolongation in breast
cancer patients through immunotherapy opens the
possibility for new treatment options. However, several
clinical trials indicate responses to immune checkpoint

inhibitor monotherapy or other combination therapies
vary in breast cancer subtypes. Immunological param-
eters, including tumour-infiltrating lymphocytes (TILs)
and stromal cell phenotypes, may be of great signifi-
cance in breast cancer treatment [3–5].

As the most abundant immune-related stromal cells
in the tumour microenvironment, tumour-associated
macrophages (TAMs) can be phenotypically polarized
in response to different microenvironmental signals to
mount specific functional programs. Macrophages play
an indispensable role in fighting off diseaseas part of
the immune system and marshalling other immune
cells to the scene. In cancer, macrophage phagocytosis
leads to tumour elimination, inflammasome activation
and antigen presenting which may induce adaptive
immunity against tumors [6,7]. Next to their antineo-
plastic effects, macrophages also contribute to tumour
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progression, metastasis and resistance to therapy
[6,8–10]. Our previous study showed that macro-
phages after antibody-dependent cellular phagocytosis
(ADCP) increase the expression of PD-L1 and IDO, two
immune checkpoint molecules, and phenotypically
transit to immunosuppressive state [11]. Also, TAM can
induce chemotaxis of circulating naïve CD4þ T cells to
breast cancer that differentiate into Tregs in situ and
lead to immunosuppression [12]. In addition, in
tumour tissue the TAM-like phenotype of macro-
phages activated by mesenchymal-type breast cancer
cells will, in turn, produce CCL18 to induce EMT of
cancer cells, forming a positive feedback loop and pro-
moting breast cancer metastasis [13,14]. Taken
together, these studies suggest the functional plasti-
city of macrophages reflects the efficacy of therapy
and prognosis of breast cancer. Therefore, it is neces-
sary to better understand the gene expression profiles
of immune cells, especially macrophages, in breast
cancer and their associations with prognosis and
therapeutic prediction.

In the past 15 years, different gene assays have
been developed and validated in multiple clinical trial
to stratify patients into different risk groups by analy-
sing the abundance of diverse target gene combina-
tions. These multi-gene expression assays like
Oncotype DX [15], MammaPrint [16] and PAM50
Prosigna Assay [17] now have been widely used to
predict the recurrence risk of breast cancer patients.
Application of these gene-expression signatures has
helped physician’ clinical practices. However, genes
detected in these assays were mainly proliferation-
related genes and restrict to tumour cells. None of the
current widely used multi-gene expression assays
include prognosis-related immune cell marker genes,
which may be crucial in the immunotherapy and other
combination therapies.

The application of single-cell RNA-sequencing
(scRNA-seq) offers researchers an effective tool to ana-
lyse and understand the mechanisms of oncogenesis
and heterogeneity of breast cancer to pave the way
for individualized management [18,19]. As has been
reported before, scRNA-seq analysis of immune cells in
the breast cancer microenvironment helped to dis-
cover some specific immune cell subpopulations
which serve as potential targets of immunotherapy
[20,21]. Selecting immune cell marker genes for
molecular signatures might be an effective approach
to predict long-term prognosis and therapeutic benefit
of breast cancer patients. In this study, we exploited
scRNA-seq profiles from the Gene Expression Omnibus
(GEO) and the Cancer Genome Atlas (TCGA) database

to construct macrophage marker genes signature
(MMGS) for breast cancer. Then, we validated the
prognostic value of MMGS in the GSE96058 database.

It has been reported that gene transcription could
be regulated by DNA methylation by recruiting repres-
sion proteins or by inhibiting transcription factors
binding to DNA [22,23], we further analysed the correl-
ation between mRNA expression and DNA methylation
of MMGS.

Method

Data source and acquisition

ScRNA-seqdata in the form of RSEM normalized counts
from six primary triple-negative breast cancers was
downloaded fromGSE118389 dataset (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389)
[18], and used to screen macrophages marker genes.
Normalized RNA sequencing data in the form of log2
(FPKM þ 1) was downloaded from UCSC Xena (https://
xenabrowser.net/datapages/) for further survival-
related genes screening and model construction.
Individual patient files and mRNA expression raw data
were obtained from TCGA data portal (https://portal.
gdc.cancer.gov/). To validate the prognostic ability of
the constructed model, normalized RNA sequencing
data in the form of log2 (FPKM þ 0.1) was down-
loaded from GSE96058 dataset (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE96058) [24,25]. DNA
methylation raw data were obtained from TCGA
data portal.

Identification of macrophages marker genes and
functional analysis

ScRNA-seq data analysis was performed by using
“Seurat”, “SingleR” packages [26]. Cells with more than
5% of mitochondrial gene were removed [27]. Cells
with number of gene mapped less than 200 and clus-
ters with cell counts less than 5 were moved. We per-
formed principal component analysis (PCA) using the
most 1500 variable genes in the dataset in order to
visualize transcriptional variability over the complete
scRNA-seq dataset. T-distributed Stochastic Neighbour
Embedding (t-SNE) was used for further dimensional
reduction of the significant principal components [27].
Genes that exhibited a jlog2 (fold change)j>0.8 and
adjusted p value< .01 were considered as the marker
genes. Kyoko Encyclopaedia of Genes and Genomes
(KEGG) pathway enrichments and gene ontology (GO)
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analysis were conducted by using “ClusterProfiler” [28],
“org.Hs.eg.db”, “GOplot” [29], “enrichplot” packages.

Construction and validation of macrophages
marker genes prognosis risk model

Cases with follow-up time more than 30days in the
TCGA database were included to build the risk score
model. Macrophages marker genes expression data
downloaded from UCSC Xena were merged with overall
survival (OS) time and status for each case. To screen
out the most significant genes account for OS, p value
was set as less than .01 in the univariate Cox analysis.
Statistically significant genes in the univariate Cox ana-
lysis were included to build multivariate Cox propor-
tional hazards model. Further, we detected whether the
genes in the signature model differentially expressed
between the tumour tissue and tumour adjacent normal
tissue in the TCGA dataset. X-tile software (version 3.6.1)
was used to define the optimum cut-off value for risk
scores based on the association with OS [30].”Survival”,
“survminer” packages were used to construct
Kaplan–Meier survival curves to evaluate survival differ-
ences between high-risk and low-risk groups both in the
training and validation set. Then the capacity of the risk
score to predict OS was tested by adjusting for classical
clinical variables in the multivariate Cox model in both
training and validation groups. Furthermore, time-
dependent receiver operating characteristic (ROC) curve,
area under the curve (AUC) and the concordance index
(C-index) were performed to evaluate the discrimination
power of this model [31]. Then, the heatmaps of these
model genes in both training and validation groups
were performed.

Correlation between gene methylation
and expression

Perl 64 was used to merge gene methylation and
gene expression data. Then we analysed the correl-
ation between methylation and gene expression by
using correlation test in R [32].

Statistical analysis

GSE96058 dataset normalized RNA sequencing data
were transformed into the same format as TCGA data
before model validation. All figure construction in this
study was conducted by using R package software
(version 4.0.3). Univariate and multivariate Cox regres-
sion model were performed by using “survival”,
“survminer” packages. Wilcox test was used to

determine statistical differences of categorical varia-
bles. Genes included in the multivariate analysis were
selected through stepwise Cox regression analysis
with both directions. Bootstrap method was used to
perform internal validation in the TCGA dataset. The
survival curves were measured by the Kaplan–Meier
method and the significance of disparity was assessed
by log-rank test. “timeROC”, “boot” packages were
used to evaluate the prediction capacity of the prog-
nostic model. Pearson correlation coefficient jrj>0.3
and p< .05 were defined as closely correlated.

Results

Identification of macrophages marker genes
expression profiles and function annotation

According to the screening criteria, a total of 1205
cells from 6 samples were analysed to identify and
characterize cell populations. We first reduced the
dimensionality of the data by PCA by using the 1500
variable genes (Figure 1(a)). We then assigned cell-
type identities by cross-referencing differentially
expressed genes in each cluster with previously
reported cell-type-specific marker genes (with jlog2
(fold change)j>0.8 as well as adjusted p value <.01)
[18,33], and identified 14 cell clusters using Seurat.
Cells in cluster 7 expressing macrophage-specific
markers were classified as macrophages (Figure 1(b)).
We also found that this cluster had distinct gene
expression profiles with a subset of genes differentially
expressed between the 14 clusters (Figure 1(c)). As a
result, we found out breast cancer-related 314 macro-
phage marker genes.

A total of 314 macrophage marker genes were
screened from GSE118389 dataset according to the
screening criteria. Then GO analysis (Figure 2(a)) and
KEGG pathway enrichment (Figure 2(b)) were per-
formed to explore the biological function of these
marker genes. We found that macrophages marker
genes were mostly involved in the process of neutro-
phil activation, phagocytosis, macrophage activation,
etc. (Figure 2(a)). The KEGG pathway enrichment dem-
onstrated that macrophages marker genes primarily
participated in the pathway of phagosome, antigen
processing and presentation, complement and coagu-
lation cascades, etc.

Construction of prognostic macrophage marker
genes signature (MMGS)

In order to identify a macrophages gene prognostic
signature, we used TCGA cohort as the training set.
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According to the screen criteria previously described,
there were a total of 1034 patients included in the
training cohort with follow-up time ranging from 31
to 8605 days, with a median follow-up of 865 days.
The clinicopathological characteristics of included
cases were shown in Supplemental Table S1.

The univariate Cox proportional hazards regression
analysis of TCGA database revealed that10macrophage
marker genes with significantly associated with OS
were selected as candidate genes of MMGS (Figure
2(c)). These 10 marker genes were then incorporated
into a multivariate Cox proportional hazards regression
model to determine the genes and their coefficients.
Ultimately, 7 macrophage marker genes were included
in the MMGS model (Figure 2(d)). The risk score which
was used to predict prognosis was given as follows:
MMGS risk score¼ SERPINA1expression � (�0.155) þ
CD74expression � 0.222þ STX11expression � (�0.572)
þ ADAM9expression � 0.190þCD24expression �
0.107þNFKBIAexpression � (�0.371) þ PGK1
expression � 0.360. The relative expression of the 7
marker genes in various clusters were shown in Figure
2(e), and the marker genes except CD24 were relatively
higher in the macrophages cluster (cluster 7) compared
to the other clusters as a whole.

Since macrophages in TME were activated to pro-
tumoral phenotype, we assumed the MMGS risk score
would discriminate macrophage characters between
tumour and normal tissues. We detected the relative
marker genes expression between tumour and tumour
adjacent normal tissue. As shown in Supplemental
Figure 1, ADAM9 and SERPINA1 expression between
tumour and tumour adjacent normal tissue were not
significantly different (p¼ .634, .491, respectively).
CD24, CD74, PGK1 showed significantly higher expres-
sion in tumour tissue compared with tumour adjacent
normal tissue, while STX11 and NFKBIA showed the
opposite trend (p< .001 for all). Risk score showed

significantly higher expression in tumour tissue com-
pared with tumour adjacent normal tissue (p< .001).

MMGS risk score was calculated for each individual
patient from the TCGA cohort (Figure 3(a)). The heat-
maps of model genes in the training set and the valid-
ation set are shown in Supplemental Figure S2(a, b),
respectively. The cut-off of risk score (2.8425) gener-
ated by X-tile software was set to divide patients into
high- and low-risk groups (Figure 3(b)). Patients in the
high-risk group had a significantly shorter OS than
those in the low-risk group (hazard ratio: 3.077
[95%confidence interval (CI): 1.912–4.954], p< .001)
(Figure 3(c)). A time-dependent ROC analysis demon-
strated that the AUC for 3-year and 5-year OS of this
classifier were 0.662 and 0.701, respectively, indicating
MMGS possesses good sensitivity and specificity in
predicting the prognosis in training set (Figure 4(a)).
The C-index of MMGS for OS prediction in training set
was 0.666 (95%CI: 0.609–0.723).

Validation of the prognostic value of MMGS

We first performed internal validation by bootstrap
method (B¼ 1000), and the C-index of bootstrap valid-
ation of the prediction model was 0.667 (95% CI:
0.589–0.745), indicating good distinguishing capacity
of this model. In an external independent cohort from
the GSE96058 validation dataset, MMGS risk score was
calculated for each individual patient (Figure 3(d)), and
patients were classified into high- and low-risk sub-
groups based on the same risk score cut-off value pre-
viously mentioned (Figure 3(e)). The OS in the high-
risk group was significantly shorter than that of the
low-risk one (hazard ratio: 1.808 [95%CI: 1.458–2.243],
p< .001) in the validation set (Figure 3(f)). AUC for 3-
year and 5-year time-dependent ROC were 0.646 and
0.599, respectively (Figure 4(b)). The C-index of MMGS
for predicting OS invalidation set was 0.618
(95%CI: 0.586–0.651).

Figure 1. Identification macrophages marker genes by single cell sequence analysis. (a) PCA plot coloured by various samples. (b)
t-SNE plot coloured by various cell types. (c) identification marker genes of different cell types.
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Figure 2. Screen of macrophage marker genes signature. GO analysis (a) and KEGG pathway enrichment (b) of macrophages
marker genes were performed to explore the biological function of these marker genes. Macrophages marker genes related risk
score model was developed by univariate analysis (c) and multivariate analysis (d) of macrophages marker genes that were associ-
ated with overall survival of breast cancer patients in the TCGA database. (e) Dot plot showing the expression of macrophages
marker genes included in the risk score model in various cell types. Dot intensity of colour indicates the average expression in a
particular cluster and dot size represents the percent of cells expressing the gene in that cluster. Cluster 7 represents
macrophages.
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Figure 3. Breast cancer patients’ survival status, risk score distribution and Kaplan–Meier curves of OS in the TCGA database and
the GSE96058 validation dataset. (a) Breast cancer patients were separated into high-risk and low-risk groups with the cut-off of
risk score generated by X-tile software. (b) Breast cancer patients survival status and risk score distribution in the TCGA database.
(c) Kaplan–Meier curves of OS between high-risk and low-risk groups in the TCGA database. (d) Breast cancer patients in the
GSE96058 validation set were separated into high-risk and low-risk groups with the same cut-off in the TCGA database. (e) Breast
cancer patients survival status and risk score distribution in the GSE96058 validation set. (f) Kaplan–Meier curves of OS between
high-risk and low-risk groups in the GSE96058 validation set.

Figure 4. Receiver operating characteristic curves of the MMGS model to predict the 3- and 5-yearOS in the training set (a), valid-
ation set (b).
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The correlation of MMGS risk score with classical
clinical variables

To investigate the correlation of MMGS risk score with
clinicopathological factors, including age, tumour size,
lymph node status, ER status, PR status, HER2 status, we
calculated MMGS risk scores distribution in patients from
TCGA database stratified by each clinical risk factors. We
found the risk score was lower in the ER and PR positive
groups while higher in HER2 positive group in training
set (p< .001) (Figure 5). The same results were observed
in the validation set (Figure 6). While the correlations of
MMGS risk score with age, tumour size, lymph node sta-
tus were inconsistent in training set and validation set
(Figures 5 and 6). Then we explored the prognostic
value of MMGS in different subgroups. In the training
set, a significant poor survival probability was associated
with high MMGS risk score in patients with different clin-
icopathological factors except age (�40) and HER2 posi-
tive subgroups (Figure 7(a)). In the validation set, MMGS
risk score effectively predict patients’ prognosis in hor-
mone receptor positive and HER2 negative subgroups as
well as all age and lymph node status subgroups
(Figure 7(b)).

Next, we determine whether MMGS can be
employed to independently predict the survival of
breast cancer patients. MMGS and clinical characteris-
tics, including age, tumour size, lymph node status, ER
status, PR status, HER2 status, were included in uni-
variate and multivariate analysis. MMGS remained an
independent prognostic factor after adjusting for clin-
ical characteristics in the multivariate analysis with the
hazard ratio of 3.185 (95%CI: 1.983–5.115, p< .001) in
training set (Table 1) and 1.362 (95%CI: 1.055–1.757,
p¼ .018) in the validation cohort (Table 2).

The association between gene methylation and
expression in MMGS

It is said that gene transcription could be regulated by
DNA methylation level [22,23]. To lay the foundation
for further research of these model genes, we
obtained the gene methylation data from TCGA data-
base and investigated the association between gene
methylation and expression levels in the MMGS
model. As shown in Figure 7(c), CD74 and SERPINA1
promoter hypermethylation is significantly correlated
with lower gene expression (p< .001, cor¼ �0.532 for

Figure 5. The relation between risk score and age (a), tumour size (b), lymph node status (c), ER status (d), PR status (e), HER2
status (f) of breast cancer patients in the TCGA database.
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CD74 and p< .001, cor¼ �0.429 for SERPINA1), while
STX11, ADAM9, NFKBIA, PGK1 promoter hypermethyla-
tion is not significantly correlated with gene expres-
sion (jrj<0.3, Supplemental Figure 3). CD24 promoter
hypermethylation data were not obtained in the TCGA
dataset, so the relationship remains unclear.

Discussion

In this study, we performed bioinformatics analysis of
breast cancer sc-RNA-seq profiles, and found out
macrophage marker genes in the breast cancer tissue.
The functions of macrophage marker genes are
enriched in neutrophil activation, phagocytosis, macro-
phage activation, antigen processing and presentation,
complement and coagulation cascades, etc. Then, we
further constructed MMGS based on gene expression
profiles and clinical information of breast cancer
patients in the TCGA database and validated the
MMGS with GSE96058 dataset. MMGS served as an
independently prognostic factor of OS in breast cancer
patients of both datasets. Besides, MMGS risk score is
closely related to hormone receptors status. In

hormone receptor positive and HER2 negative sub-
group (HRþ/HER2�), MMGS showed better distin-
guishing capability between high risk and low risk
groups. It is suggested that macrophages play a piv-
otal role in breast cancer, especially in
luminal subtypes.

In the past decades, multigene assays have been
applied to instruct clinical practices. Currently, the
two clinically available assays recommended by
National Comprehensive Cancer Network (NCCN)
guideline were Oncotype Dx and MammaPrint
[34,35]. Oncotype DX relies on the genes that define
the ER status, HER2 status, tumour proliferation, and
tumour invasion. Compared with Oncotype DX,
MammaPrint included genes associated with various
pathways—such as adhesion and angiogenesis—as
well as proliferation and HR-related genes. However,
neither of them includes immune genes, especially
specific immune cell marker genes. Even though
immunotherapy becomes the promising manage-
ment of prolonging overall survival of breast cancer
patients, the biomarkers of immunotherapy efficacy
and patients’ outcome are still uncertain. Here, we

Figure 6. The relation between risk score and age (a), tumour size (b), lymph node status (c), ER status (d), PR status (e), HER2
status (f) of breast cancer patients in the GSE96058 validation dataset.
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Figure 7. The correlation of MMGS risk score with classical clinical variables and the correlation between gene methylation and
expression in MMGS. (a) The prognostic value of MMGS model in different subgroups in the TCGA training dataset. (b) The prog-
nostic value of MMGS model in different subgroups in the GSE96058 validation dataset. (c) The correlation between DNA methyla-
tion and mRNA expression of CD74 and SERPINA1 in the risk score model.
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performed a detailed analysis of breast cancer
scRNA-seq data, identified prognostic macrophage
marker genes and further constructed a MMGS
model, which is an independent factor of OS after
adjusting classical clinical variables in both training
and validation dataset. Besides, it is the first model
constructed by using the specific immune cell
marker genes expression profile and might reflect
macrophages function in TME somehow. It is said

that osteoclasts differentiate from monocytes/macro-
phages and exert great influences on osseous
metastasis of breast cancer [36,37]. Based on the
excellent distinguishing capability in HRþ/HER2�
subgroup, this model provides mechanism tips for
osseous metastasis preference of HRþ/HER2� sub-
type breast cancer. Further, we screened out sur-
vival-related macrophage marker genes and provides
a basis for further study of the role of macrophages

Figure 7. (Continued)

Table 1. Univariate and multivariate analysis of breast cancer in the TCGA database.

Variables

Univariate analysis Multivariate analysis

HRa (95% CI) p Value HRa (95% CI) p Value

risk score
(high vs. low)

3.172 (2.220–4.534) <.001 3.185 (1.983–5.115) <.001

age (y)
(>40 vs. �40)

0.993 (0.589–1.672) .978 1.024 (0.568–1.846) .938

lymph node status (N2-3 vs. N0-1) 2.305 (1.547–3.433) <.001 2.161 (1.285–3.635) .004
tumour size (cm)

(>5 vs. �5)
1.608 (1.093–2.364) .016 1.432 (0.853–2.402) .174

ER status (positive vs. negative) 0.711 (0.490–1.033) .074 0.974 (0.484–1.963) .942
PR status (positive vs. negative) 0.759 (0.535–1.077) .123 0.890 (0.475–1.669) .716
HER2 status (positive vs. negative) 1.024 (0.570–1.839) .936 0.670 (0.339–1.327) .251
aHazard ratio.
p values less than 0.05 in multivariate analysis were highlighted in bold.

Table 2. Univariate and multivariate analysis of breast cancer in the GSE96058 dataset.

Variables

Univariate analysis Multivariate analysis

HRa (95% CI) p Value HRa (95% CI) p Value

risk score
(high vs. low)

1.809 (1.456–2.247) <.001 1.362 (1.055–1.757) .018

age
(>40 vs. �40)

1.868 (0.926–3.766) .081 11.313 (1.584–80.792) .0156

lymph node status (N2-3 vs. N0-1) 2.860 (2.191–3.735) <.001 2.341 (1.701–3.221) <.001
tumour size

(>5cm vs. �5cm)
3.506 (2.332–5.270) <.001 2.137 (1.279–3.571) .004

ER (positive vs. negative) 0.524 (0.366–0.750) <.001 0.735 (0.448–1.205) .222
PR (positive vs. negative) 0.484 (0.361–0.648) <.001 0.592 (0.392–0.895) .013
HER2 (positive vs. negative) 1.197 (0.888–1.613) .238 0.936 (0.643–1.365) .733
aHazard ratio.
p values less than 0.05 in multivariate analysis were highlighted in bold.
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in the immune microenvironment and immunother-
apy in the future.

Macrophage marker genes included in this model
are: SERPINA1, CD74, STX11, ADAM9, CD24, NFKBIA,
PGK1, indicating pivotal roles in macrophages’ bio-
logical behaviours. SERPINA1encodes a member of ser-
ine protease inhibitor superfamily, a1-antitrypsin
(AAT), and is highly expressed in the liver and cultured
hepatoma cells and, to a lesser extent, in macro-
phages. Independent of its primary function as a
major inhibitor of proteases including neutrophil elas-
tase (NE), SERPINA1is now recognized as immunomo-
dulatory agent. It was reported to be the monocyte/
macrophage featured gene involving in the host
innate immune response against pathogen infections
and facilitates macrophage polarization towards
inflammatory phenotype [38]. Also, there were studies
that showed AAT-treated macrophages exhibit a simi-
lar trend by polarizing towards the M2-like profile [39].
In the present study, we found low expression of
SERPINA1 predicts patients’ poor outcome, indicating
SERPINA1 functions anti-neoplastic roles in breast can-
cer. CD74 is the cognate receptor of macrophage
migration inhibitory factor (MIF). MIF/CD74 is a well-
established pro-tumorigenic signalling in several solid
malignancies partially by participating in the alternate
activation of tumour-associated macrophages [40,41].
Syntaxin 11 (STX11) is found to be enriched in
immune cells, including natural killer cells, cytotoxic T
cells and monocytes/macrophages. In macrophages
STX11 is located on endosomal membranes and lyso-
somes, functions in vesicular trafficking and secretion.
Silencing of STX11 enhances the phagocytosis of
apoptotic cells and antibody-dependent target cells,
as well as the secretion of TNFa, suggesting an anti-
tumoral effect of STX11 [42]. ADAM9 is known to be
expressed by monocytes and activated macrophages.
ADAM9 degrades several extracellular matrix (ECM)
proteins indicating its pro-metastasis roles in tumour
progression [43]. CD24 is a widely accepted cell sur-
face marker for breast cancer stem cells. Its low or
deficiency expression together with high CD44 level
correlates with stem cell properties. Also, CD24 acts as
a costimulatory molecule to promote adaptive immun-
ity and sustain macrophage activity and survival dur-
ing carcinogenesis [44]. NF-jB signalling is the central
mechanism that maintains the alternative phenotype
of TAMs and maintains the immunosuppressive
phenotype of TAMs. NFKBIA (IjBa) that binds to and
sequesters NF-jB in the cytoplasm is considered as a
major brake on NF-jB signalling and TAM functions
[45]. PGK1 is the first identified ATP-generating

enzyme, which plays important role in regulating
mitochondrial metabolism, thereby promoting tumori-
genesis [46]. Nevertheless, functions of PGK1 in macro-
phage are largely unknown. Considering metabolic
shifting between glycolysis and mitochondrial oxida-
tive phosphorylation might determine macrophage
polarization, PGK1 probably participants in macro-
phage activation [47]. Overall, the results of the pre-
sent study may provide potential gene targets for
prognostic evaluation to help improve the clinical out-
comes of breast cancer.

Next, we analysed the correlation between gene
expression level and DNA methylation of genes in
MMGS. CD74 and SERPINA1 mRNA levels negatively
correlated with DNA methylation, suggesting that
DNA methylation may be one of the key regulators of
these two genes’ transcription.

One of limitations of this study is that our study
was based on retrospective cohorts. Besides, the inter-
action of macrophage marker genes with tumor-spe-
cific genes was not analysed in this study.

In conclusion, although there are still some limita-
tions, our study provides a new understanding of
immune cell marker genes in breast cancer prognosis
and offers immunotherapy practices instructions
for physicians.
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