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CAGE (cap analysis gene expression) and RNA-seq are two major technologies used to identify transcript abundances as
well as structures. They measure expression by sequencing from either the 59 end of capped molecules (CAGE) or tags
randomly distributed along the length of a transcript (RNA-seq). Library protocols for clonally amplified (Illumina,
SOLiD, 454 Life Sciences [Roche], Ion Torrent), second-generation sequencing platforms typically employ PCR pre-
amplification prior to clonal amplification, while third-generation, single-molecule sequencers can sequence unamplified
libraries. Although these transcriptome profiling platforms have been demonstrated to be individually reproducible, no
systematic comparison has been carried out between them. Here we compare CAGE, using both second- and third-
generation sequencers, and RNA-seq, using a second-generation sequencer based on a panel of RNA mixtures from two
human cell lines to examine power in the discrimination of biological states, detection of differentially expressed genes,
linearity of measurements, and quantification reproducibility. We found that the quantified levels of gene expression are
largely comparable across platforms and conclude that CAGE and RNA-seq are complementary technologies that can be
used to improve incomplete gene models. We also found systematic bias in the second- and third-generation platforms,
which is likely due to steps such as linker ligation, cleavage by restriction enzymes, and PCR amplification. This study
provides a perspective on the performance of these platforms, which will be a baseline in the design of further experiments
to tackle complex transcriptomes uncovered in a wide range of cell types.

[Supplemental material is available for this article.]

Measuring gene expression or transcript abundance is a key tool to

study the regulation and molecular basis of biological systems. The

emergence of next-generation sequencing technologies has en-

abled us to identify and quantify transcripts well beyond previous

microarray-based technologies (Cloonan et al. 2008; Marioni et al.

2008; Mortazavi et al. 2008; ‘t Hoen et al. 2008; Suzuki et al. 2009;

Valen et al. 2009; Levin et al. 2010; Plessy et al. 2010; Wu et al.

2010; Sam et al. 2011). The majority of transcriptome protocols

running on second-generation sequencing platforms have relied

on two PCR amplification steps: one for preamplication of cDNA

and the other as clonal amplification of templates on the flow cell

(or beads) prior to sequencing. These steps can generate potential

bias in the identification and quantification of RNA molecules.

With the use of single-molecule sequencers, it is possible to avoid

PCR altogether (Kanamori-Katayama et al. 2011; Sam et al. 2011),

thereby avoiding these potential biases.

RNA-seq is designed to identify transcript structure and

abundance by sequencing randomly fragmented RNA or cDNA

(Cloonan et al. 2008; Mortazavi et al. 2008). Several variations have

been developed and have recently been compared (Marioni et al.

2008; ‘t Hoen et al. 2008; Sam et al. 2011). For second-generation

sequencing using PCR, a ligation-based method is shown as the

leading approach (Levin et al. 2010), whereas the HeliScope single-

molecule sequencer reduced duplicated reads and avoided PCR

biases altogether (Sam et al. 2011).

CAGE (cap analysis gene expression), on the other hand, was

developed to identify and quantify 59 ends of capped RNAs based

on cap-trapping (Carninci et al. 1996). It originally employed

Sanger sequencing (Shiraki et al. 2003; Kodzius et al. 2006) and was

later adapted to 454 Life Sciences (Roche) and Illumina sequencers
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(Valen et al. 2009; The ENCODE Project Consortium 2011;

Kurosawa et al. 2011; Takahashi et al. 2012). To increase the

number of samples profiled while reducing the cost of sequencing,

we developed barcoding strategies that allow the pooling of mul-

tiple libraries, combined sequencing, and later, separation based

on the barcodes (Maeda et al. 2008; Kurosawa et al. 2011; Takahashi

et al. 2012). Together, CAGE and RNA-seq have been employed in

an extensive study of RNA subcellular localization by the ENCODE

Project (Djebali et al. 2012), and the activities of transcription

starting sites (TSSs) profiled by CAGE have also been used as

a primary data source in the quantitative modeling of tran-

scriptional output from epigenetic status (The ENCODE Project

Consortium 2012). Recently, a simplified version of the CAGE

protocol using a single-molecule sequencer, HeliScope, was de-

veloped; it avoids linker ligation, PCR, and enzymatic cleavage

(Kanamori-Katayama et al. 2011). The HeliScope CAGE protocol

(Kanamori-Katayama et al. 2011) has been used extensively to

generate a promoter-level expression atlas across a diverse col-

lection of mammalian cells in the FANTOM5 project (Forrest et al.

2014).

CAGE and RNA-seq identify different parts of RNA molecules:

capped 59 ends and random RNA fragments, respectively. Al-

though dedicated experimental design is required to understand

the performance of profiling technologies, the two approaches

have not yet been systematically compared. Here we provide their

systematic comparison, including variations of CAGE employing

second- and third-generation sequencers (Illumina Genome Analyzer

IIx and Helicos HeliScope) and RNA-seq on a second-generation

sequencer. Based on a minimum unit of profiling, we examine

technical reproducibility, expression level consistencies across

platforms, and linearity of expression levels, as well as demonstrate

their utility, with the aim of obtaining a less-biased perspective for

practical use.

Results and Discussion

Experimental design and data production

We applied three transcriptome profiling technologies based on

next-generation sequencers—CAGE with a second-generation

sequencer employing PCR preamplification prior to clonal

amplification (IlluminaCAGE), CAGE with a third-generation,

single-molecule sequencer skipping any PCR steps in all the steps

(HeliScopeCAGE), and RNA-seq with Illumina GA IIx employing

a ligation-based, strand-specific method—to the same series of

RNA pools (Fig. 1A). For this we prepared total RNA extracted from

THP-1 and HeLa cell lines and mixed them with different ratios

(100:0, 99:1, 95:5, 90:10, 50:50, and 0:100 ratio of THP-1:HeLa).

This asymmetric design could allow us to assess sensitivity in mea-

suring differences between cellular expression profiles, even with

a low amount of differentially expressed (<1%) ‘‘genes.’’ We profiled

these RNA mixtures by each technology and microarray. One ex-

ception was RNA-seq, where only the four mixtures, 100:0, 99:1,

50:50, 0:100, were profiled, due to cost limitations, since a barcod-

ing scheme was not available for this at the time. Although deeper

sequencing (i.e., a larger amount of reads) is ideal for sequencing-

based quantification methods theoretically, we performed each

profiling within its minimum unit to understand what we can ex-

pect from the minimum profiling, that is, one channel or lane per

one sample with HeliScopeCAGE and RNA-seq, and one lane per

eight samples (multiplexing) with IlluminaCAGE. The number of

replicates and obtained reads from individual profiles are summa-

rized in Supplemental Table 1.

Technical reproducibility

First we examined consistencies across technical replicates on the

same platform. We counted reads mapping within 500 bases of an

Figure 1. Experimental design and reproducibility. (A) Schematic representation of experimental design. (B) Scatter plots of quantified levels of gene
expression and basic statistics. (6) Standard deviation. (C ) Scatter plots of quantified levels of TSS activities at 1-bp resolution.
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annotated 59 end as expression from the transcript in CAGE, and

reads mapping within exons of known transcripts as expression

from the transcript in RNA-seq. Their fractions within the total

reads indicate signal ratio, and the fraction of ribosomal RNA in-

dicates unintended signals in both of the technologies. Figure 1B

shows scatter plots of gene expressions between technical repli-

cates obtained from THP-1 RNA with the fraction of the intended

and unintended signals. IlluminaCAGE captured the highest sig-

nal fraction, 84% of the mapped reads coming from promoter re-

gions, and variability of the promoter-hitting rate is comparably

low in all platforms (standard deviation #2.0%) (Fig. 1B). The

ability to exclude ribosomal RNA from other long RNAs is the

highest in IlluminaCAGE, which is consistent with the results on

the promoter ratio. The ribosomal RNA rate is the most variable in

RNA-seq, which indicates that the selection of polyA-tailed RNAs

by using oligo(dT) beads may be more variable than the selection of

59 end capped RNAs.

The scatter plots in Figure 1, B and C, show that all of the plat-

forms display high correlations between technical replicates at gene

levels (Spearman’s correlation coefficient $0.9) and even at a single

base pair of a TSS. Since the correlation coefficient itself is affected by

sequencing depth (deeper sequencing data leads to higher correla-

tion coefficients; in fact, the depth of IlluminaCAGE data is about

one-tenth of HeliScopeCAGE and RNA-seq, as indicated in Supple-

mental Table 1), we estimated relative standard errors (standard de-

viation of expressions relative to average expression; square root of

the estimated common overdispersion) by using edgeR (Robinson

et al. 2010) as a metric of reproducibility performance independent of

the sequencing depth. We found that estimated relative standard

errors are low (#10%) for RNA-seq and HeliScopeCAGE, whereas

IlluminaCAGE profiles are relatively variable.

Taken together, this comparison suggests that the outputs of

all the platforms are reasonably reproducible and that HeliScope-

CAGE quantifies gene expression with the least variability, which

could be explained by its simplified PCR-free protocol relying on

a single-molecule sequencer (Kanamori-Katayama et al. 2011).

Instead, IlluminaCAGE requires additional steps, including linker

ligation, use of restriction enzyme, and PCR amplification. Opti-

mization of individual steps likely contributes to enrich signal ratio

but increases the variability in gene expression quantification.

Since IlluminaCAGE employs the multiplexing strategy based on

barcode sequences in linker oligonucleotides, one might expect

bias across the barcodes in a similar manner to small RNA se-

quencing (Kawano et al. 2010; Alon et al. 2011). Scatter plots of

gene expressions across replicates based on the same barcode se-

quence (Supplemental Fig. S1) demonstrate that variation across

the barcodes is smaller than the one across operational prepara-

tions. This is consistent with a previous study, where barcode-based

pooling contributes better reproducibility in CAGE employing the

454 Life Sciences (Roche) sequencer (Maeda et al. 2008). RNA-seq is

highly reproducible at a similar level to HeliScopeCAGE; however,

selection of polyA-tailed transcripts is relatively unstable. This could

be improved by standardization of the selection procedure or by

alternative approaches to deplete ribosomal RNA.

Quantification of RNA mixtures

Next we examined the gene expression profiles of the six RNA

mixtures that mimic an actual use in cellular profiling. One typical

analysis is to identify genes that are differentially expressed be-

tween two biological samples. Here we performed a differential

analysis to identify genes expressing higher in HeLa than THP-1

cells. Among 11,924 genes detected by all the technologies, 1701

genes are detected as significantly up-regulated in at least one

platform, and 652 of them (;38%) are detected in common (Fig.

2A). In comparison, in the case of HeliScopeCAGE and microarrays

(Kanamori-Katayama et al. 2011), we demonstrated that the dif-

ference between the technologies comes largely from inaccurate

gene models, that is, TSSs and isoforms of gene models are not

necessarily true in all cell types. This explains the difference between

Figure 2. Gene expression quantification across different RNAs. (A) Venn diagram of up-regulated genes in HeLa cells against THP-1 cells. (B) Hier-
archical clustering of the six RNAs, based on highly expressed 8000 gene expressions. Gray font indicates the reliability of the grouping, approximately
unbiased probabilities with multiscale bootstrap resampling calculated by the pvclust package (Suzuki and Shimodaira 2006).
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CAGE and RNA-seq, in addition to the difference between CAGE and

microarray. We will discuss this point again in the section below.

Next we examined the quantification of the panel of RNA

mixture. As a comparison with a conventional technology, qRT-

PCR, we selected three genes (CPS1, TM4SF1, TIMP4) enriched in

HeLa cells, and found that they are consistently quantified with

CAGE and RNA-seq as well as conventional technologies such as

microarrays and qRT-PCR (Supplemental Fig. S2). Further, we

tested whether they can be used to measure similarity or distances

between transcriptome states. We performed unsupervised clus-

tering of the six RNA profiles based on Spearman’s correlation

coefficient, which reflects similarity relationships between in-

dividual profiles (Fig. 2B). For example, the THP-1 RNA 100% pool

is the closest to a 1% mixture of HeLa cells in any platform. The

hierarchical relationships are identical across the two CAGE plat-

forms, and the hierarchical structure based on the HeliScopeCAGE

profiles is robust in computational resampling (Fig. 2B). Notably,

the hierarchical structure of the microarray-based clustering is

different from the others, where a 5% mixture of HeLa cells is the

closest to 10%. This does not reflect the actual mixing ratio, since

the 5% mixture has just a 4% difference from the 1% mixture. This

result demonstrates a difficulty in measuring the accurate distance

between the transcriptome profiles based on a microarray. Al-

though it is not possible to assess this point in RNA-seq from our

experimental design, we expect that RNA-seq has a similar per-

formance to HeliScopeCAGE based on its consistency with Heli-

ScopeCAGE, as shown below.

CAGE and RNA-seq profiles

Gene expressions obtained from different technologies theoreti-

cally should agree if they measure the same materials. We asked if

the profiled gene expressions are comparable with each other in

HeLa cells (Fig. 3A). As expected, the lowly expressed genes are

poorly quantified with our IlluminaCAGE profile. This can be

explained by the shallowness of the sequencing depth, where its

minimum unit of profiling becomes much lower by the adoption

of barcodes. The microarray shows saturation for highly expressed

genes in comparison with CAGE and RNA-seq due to its detection

method based on hybridization to probes. This may explain the

difficulties in monitoring sensitive distances between RNA pro-

files, as shown above.

Interestingly, HeliScopeCAGE and RNA-seq show the best

agreement across the technologies, even though they employ

distinct sequencers to determine different parts of RNA molecules.

We found that a majority of genes quantified at a very similar level

in both platforms (Fig. 3A, black dots), and the rest were clear

outliers (Fig. 3A, red and blue dots). After manual inspection, it

turned out that all of the CAGE enriched outliers (Fig. 3A, red dots)

were histone genes that do not have polyA at their 39 end. This is

totally consistent with the scopes of individual protocols, where

CAGE uses total RNA selected by cap regardless of polyA structure,

while polyA-selected RNA is used for RNA-seq. The RNA-seq

enriched outliers (blue dots in Fig. 3A) likely come from inaccurate

gene models in most of the cases. For example, transcriptional

initiation of SNAPC4 is far (1k–2k bp) upstream of the RefSeq and

GENCODE gene model 59 ends (Fig. 3B). CAGE finds a peak up-

stream, which is supported by ChIP-seq for H3K27 acetylation

performed by the ENCODE Project (Ram et al. 2011). Such inac-

curacies of gene models are also observed in complex loci, where

multiple genes are annotated closely on the same strand. AHRR is

one of the RNA-seq enriched genes (Fig. 3A, blue dots), and its

promoter does not have substantial peaks of CAGE and H3K27

acetylation signals, while its 39 end has some signals of RNA-seq

Figure 3. Gene expression quantification by using different platforms. (A) Scatter plot of gene expressions by using different platforms, where RPKM
(reads per kilobase of exon models per million) is used for RNA-seq. The Spearman’s correlation coefficient is shown for individual comparisons.
(B) Individual profiles in SNAPC4 locus. Blue signals indicate reverse-strand signals by the CAGE and RNA-seq platforms. ENCODE histone modification
profiles indicating promoter and elongation activities are shown below. (C ) MA plot between the 50% mixture experimental profile and the computa-
tionally synthesized one from the THP-1 and HeLa profiles. The 50% profile is based on the average of triplicates, while the computational one is based on
combining six profiles (triplicates of THP-1 and HeLa).
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(Supplemental Fig. S3). Instead, its upstream gene, PDCD6, is ob-

viously transcribed according to the CAGE, RNA-seq, and ChIP-seq

signals. Interestingly, an RNA polymerase II elongation mark,

H3K36 trimethylation, continues from PDCD6 to AHRR gene

bodies, and several peaks of H3K27 acetylation are observed in

AHRR introns. It is clear that AHRR is not transcribed—as docu-

mented by the gene model—and we can expect read-through of

RNA polymerase II from PDCD6 to the AHRR region, or a novel

transcriptional initiation site in the AHRR introns. Taken together,

the gene model–based inconsistencies between CAGE and RNA-

seq imply inaccurate gene models rather than technological in-

compatibility. They demonstrate the complementarity of these

two technologies, and their combination will contribute to accu-

rate monitoring of the complex transcriptome that is indicated by

deep characterization of different cellular compartments in the

ENCODE Project (Djebali et al. 2012).

Next we asked if gene expression is quantified linearly. We

tried to mix the two RNA profiles (THP-1 and HeLa cells) compu-

tationally and checked if such a computationally mixed profile is

consistent with the experimentally mixed one. Surprisingly, a

computational mix of 70% THP-1 and 30% HeLa more closely

matched the experimentally observed profile of a 50:50 mix of the

two RNAs (seen with all platforms, Supplemental Fig. S4). This

could be explained by the different complexity of quantified

transcripts (Supplemental Fig. S11) or the different ratios of non-

quantified (but contained in the RNA extracts) RNA molecules,

such as ribosomal RNA or RNA transcribed from the genomic re-

gions that do not appear in the reference genome sequences, such

as genomic rearrangement seen in cancer cell lines such as HeLa.

Computational mixing with this ratio is very close to the experi-

mentally mixed profile (Fig. 3C) with all the platforms. Notably,

only the microarray profiles are skewed at the lowly expressed

genes (Fig. 3C, red arrow), which suggests that a microarray can

quantify the transcriptome linearly within a limited range of ex-

pression levels (approximately three orders of magnitude),

whereas the other sequencing platform shows linear quantifica-

tion with a full range of expression levels. The result of microarray

nonlinearity is consistent with a previous study (Shen-Orr et al.

2010).

Transcript quantification by CAGE employing
the second- and third-generation sequencers

One of the unique points in this study is a comparison between the

CAGE protocols optimized for second- and third-generation se-

quencers. Both of them employ the cap-trapping step to select the

59-end–capped site of long RNAs (Carninci et al. 1996), but they

treat the resulting cDNAs differently afterward (Fig. 4A), and their

results of sequencing can be different depending on reverse tran-

scriptase activities, which can add nontemplated bases to cDNAs at

the cap-site (Chen and Patton 2001). The scatter plot between

HeliScopeCAGE and IlluminaCAGE (Fig. 2A) suggests that their

gene expression profiles are largely consistent; however, the

agreement is not very precise. This can be explained by protocol

differences as well as sequencing depth. Here we examine sys-

tematic differences that cannot be explained by the sequencing

depth only.

First, we asked if GC content could introduce any differences

since it is reported that PCR amplification efficiency depends on

GC content (Kozarewa et al. 2009) and elevated error rates occur in

GC-rich sequences on the Illumina platform (Dohm et al. 2008;

Nakamura et al. 2011). Relative gene expression profiles of the two

CAGE technologies against RNA-seq demonstrate that the GC

contents clearly affected the IlluminaCAGE profiles but not Heli-

ScopeCAGE (Fig. 4B).

Since PCR amplification and Illumina sequencing are also

employed in the RNA-seq platform, we asked if RNA-seq quanti-

fication is affected in a similar way as IlluminaCAGE. Relative gene

expression levels quantified by RNA-seq in comparison with Hel-

iScopeCAGE (Fig. 4D) indicate that RNA-seq results are also biased

by GC content. These results demonstrate that sequencing-based

analysis relying on PCR amplification steps, used in both Illumi-

naCAGE and RNA-seq, quantifies gene expression levels re-

producibly, but that the quantified levels are biased by GC content.

Conversely, a PCR-free protocol, HeliScopeCAGE, successfully

overcomes such biases.

Second, we examined whether RNA target molecules that

contained EcoP15I recognition sites (Hadi et al. 1979), a type III

restriction enzyme used to generate 27 base tags in the Illumina tag

protocol, were biased compared with transcripts that lacked these

sites. The IlluminaCAGE protocol employs EcoP15I to obtain

59-end cDNA molecules with a fixed length, where EcoP15I rec-

ognizes the sequence within the 59 linker and cleaves 25–27 bp

downstream from the recognition site (Fig. 4A; Takahashi et al.

2012). Native EcoP15I sites harboring in the target RNA molecules

could potentially affect the cleavage efficiency; however, this

possibility has not yet been examined. We examined relative ex-

pression levels against RNA-seq depending on the existence of a

EcoP15I site, and found that internal recognition sites indeed

disrupt quantification of RNA abundance (Fig. 4C). Quantified

gene expression levels are overestimated when internal recogni-

tion sites are located in the reverse orientation and within 400 bp

from the TSS, which can be interpreted as the internal restriction

site increases the chance of observation in sequencing results by

providing an additional opportunity of cleavage.

TSS activities at a single-base-pair resolution
by the CAGE platforms

We found that the CAGE platforms are less consistent at the TSS

level than at the gene level (Supplemental Fig. S5), while they are

correlated with each other at the gene level and their technical

reproducibility is quite high even at the TSS level (as shown in

Fig. 1C). We asked if there exist any systematic differences that

depend on the sequence around the transcriptional initiation site.

Because of the template-free activity of the reverse transcriptase

used to prepare the cDNA, an additional G nucleotide is often at-

tached to the 59 side (Supplemental Fig. S6), and a previous study

estimated the probability as ;87% (Carninci et al. 2006). Such an

additional G cannot be distinguished as an artifact or not when

G is encoded at 1 bp upstream of the TSS in the genome, unless

performing an active correction (Carninci et al. 2006). This base

addition is rarely observed in sequences produced by HeliScope-

CAGE (Fig. 4A; Supplemental Fig. S6) due to ‘‘fill and lock’’ treat-

ment of the DNA template immediately before sequencing (Harris

et al. 2008). On the other hand, in case that base addition does not

happen during reverse transcription, identified TSSs can be shifted

one or more bases downstream, depending on the starting bases, in

HeliScopeCAGE (Supplemental Fig. S6). The examination of TSS

profiles depending on the starting bases suggests that both can

occur (Fig. 5A). G-starting TSSs are overestimated in IlluminaCAGE,

and downstream shifting after a T stretch happens in HeliScope-

CAGE. The extent of the difference is remarkable in T-stretch shifting,

but the effect is quite limited to a small fraction of the TSSs (0.6%,

Kawaji et al .
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166 of 28,446 TSSs). Unexpectedly, we found an underestimation

of C-starting TSS activities, which is remarkable in comparison

with A- and T-starting ones. This cannot be explained by over-

estimation of G-starting TSSs, and one potential interpretation

would be different efficiency of 59 linker ligation. The Illumina-

CAGE protocol uses two types of linker sequences, 20% of random

six nucleotides and 80% of G plus random five nucleotides (Sup-

plemental Fig. S7; Takahashi et al. 2012), to supply enough amounts

of 59 linkers in the ligation step. One could hypothesize that dom-

ination of G-starting linkers decreased the probability to capture

C-starting TSSs, while we cannot reject other possibilities without

further experiments. These differences can be found at individual

loci. At the TSS region of tubulin, beta class I (TUBB) (Fig. 5B),

HeliScopeCAGE identified one striking TSS starting with C, while

IlluminaCAGE identified a downstream TSS starting with G as

dominant. RNA-seq supports the HeliScopeCAGE profile, since it

suggests the presence of abundant RNA up to the upstream

C-starting TSS. In the case of protein phosphatase 1, regulatory

subunit 15B (PPP1R15B), we can see a case of T-stretch shifting in

HeliScopeCAGE as well as C depletion and G overestimation in

IlluminaCAGE (Supplemental Fig. S8). While we found systematic

differences at a single-pair resolution, averaging over three bases

(upstream and downstream one base) improves the correlation sig-

nificantly (from �0.2 to 0.2). This is consistent with the screenshots

(Fig. 5B; Supplemental Fig. S8), in which identified TSSs are largely

consistent with each other, while TSS shapes are slightly different.

Figure 4. Systematic bias at the gene level. (A) Schematic view of the CAGE platforms. Blue box indicates RNA; pink box, DNA; yellow box, EcoP15I
sites; red box, internal EcoP15I sites; and green and purple boxes, 59 and 39 linkers. Text in blue suggests potential causes of gene quantification bias.
(B) Relative expression of the CAGE profiles against RNA-seq quantification, according to GC content within 500 bp from RefSeq TSS. (C ) Relative
expression of the CAGE profiles depending on the presence of EcoP15I sites on an antisense strand to the gene orientation. (D) Relative expression of the
RNA-seq profiles against HeliScopeCAGE quantification, according to GC content of the exons.
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Last, we examined whether the two CAGE platforms identi-

fied the same transcription initiation events. Since the depth of

sequencing is totally different, here we asked if all IlluminaCAGE

TSSs have been found by HeliScopeCAGE or not. Of about 90,000

TSSs identified with more than 10 counts at least in a single profile,

0.5% (467) are found only by IlluminaCAGE. Just 0.04% (35) was

not neighbored by HeliScopeCAGE’s TSS with three or more

counts (Supplemental Fig. S9). Manual inspection of the 35 TSSs

revealed two major classes (Supplemental Table S2): G-starting

ones, which are likely to be favored by the IlluminaCAGE, and T-

rich 59-end sequences, which can be misidentified as artifacts by

filterSMS (see Methods below). Taken together, the CAGE plat-

forms identified almost the same transcription initiations overall,

while favored TSSs are different depending on the platforms.

Conclusion
We systematically investigated several sequencing-based tran-

scriptome profiling platforms: IlluminaCAGE, HeliScopeCAGE,

and RNA-seq. The results demonstrate their performance. Their

reproducibility is quite high even at the gene level or individual

TSS levels. Quantified RNA levels are comparable across the plat-

forms; however, we found that GC content affects IlluminaCAGE

and RNA-seq measurements, most likely due to employment of

PCR amplification in their protocols. We also found that naturally

encoded EcoP15I sites at the 59 end of RNA molecules influenced

IlluminaCAGE measurements, presumably due to competition

between the EcoP15I sites in the cDNA affecting tag cleavage ef-

ficiencies. The HeliScopeCAGE protocol, which relies on single-

molecule sequencing technology, quantifies gene expression levels

without PCR-amplification biases.

TSS activities at the ultimate single-base-pair resolution,

which are quantifiable only on the CAGE platforms, are reasonably

reproducible within replicates of a single platform; however, they

are less consistent across different platforms than are gene ex-

pression levels. This can be explained by the efficiency of linker

ligation, template-free G addition by reverse transcriptase, and the

‘‘fill and lock’’ steps of single-molecule sequencing. While the

fraction of affected TSSs in HeliScopeCAGE is very minor (<1%),

the result indicates that it is still challenging to quantify TSS ac-

tivities at a single-base-pair resolution without any systematic bias.

Nevertheless, it should be noted that the identified TSSs and their

activities are largely consistent across the platforms, and even the

slightly biased levels of TSS activities by IlluminaCAGE were ef-

fectively used in quantitative modeling of transcription based on

epigenetic marks (The ENCODE Project Consortium 2012).

Last, the in-depth inspection in this study demonstrates that

the combination of CAGE and RNA-seq enables us to approach

unknown variation in transcript structures. Besides the technical

performance of these technologies, their complementary applica-

tion will be crucial for revealing and refining the complexity and

estimating the expression levels of individual genes.

Methods

Cell culture and RNA preparation
THP-1 cells were cultured in RPMI1640 (Invitrogen) supplemented
with 10% FBS, penicillin/streptomycin (Invitrogen), 10 mM HEPES
(Invitrogen), 1 mM sodium pyruvate, and 50 mM 2-mercaptoethanol.
HeLa cells were cultured in Eagle’s MEM (Invitrogen) supple-
mented with 10% FBS, 1% NEAA (Invitrogen), and penicillin/
streptomycin. Total-cell lysates were harvested in TRIzol reagent
(Invitrogen); total RNA was purified from TRIzol lysates according
to the manufacturer’s instructions; and we used RNase-free glycogen
(Invitrogen) as a carrier in the aqueous phase prior to precipitating
the RNA with isopropyl alcohol. The RNA extracts were checked by
an Agilent 2100 Bioanalyzer, which confirmed their qualities as
RIN scores 9.6 and 9.9 for the THP-1 and HeLa RNA extracts. The
prepared total RNAs were mixed with the ratio described above.
The same RNA extracts previously described (Kanamori-Katayama
et al. 2011) were used.

IlluminaCAGE

We followed the CAGE protocol previously described (Takahashi
et al. 2012), and sequenced with Illumina GA IIx, where we used

Figure 5. Systematic bias at a single-base-pair resolution. (A) Relative TSS activities of IlluminaCAGE against HeliScopeCAGE. (B) The CAGE and RNA-seq
profiles on the TUBB promoter.
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linkers including specific barcodes (the samples and barcodes used
here are described in Supplemental Table S1). After base calling, we
grouped the reads according to the barcode sequences identifying
the RNA source and trimmed the barcode sequence. We removed
artifactual sequences originated from adapter linkers with tagdust
(Lassmann et al. 2009) and identified the reads matching to ribo-
somal DNA repeat sequences (U13369) within two mismatches.
Only the remaining reads were used for alignment with the human
genome assembly (GRCh37), where we employed BWA (Li and
Durbin 2009) for the alignment and selected only the alignment
with a mapping quality score $20. When the alignments harbor
mismatches at the 59 end of the CAGE tags, the mismatched bases
are trimmed to identify the starting position of the alignments.
CAGE read alignments starting close to known TSSs represent our
targeted signals; therefore, we examined the distance distribution
of CAGE reads from known TSSs, which we defined as the 59 end of
RefSeq transcripts (Pruitt et al. 2012), to determine the CAGE reads
for gene expression analysis. The result (Supplemental Fig. S10)
indicates that the signal ratio for the CAGE protocols (Illumina-
CAGE as well as HeliScopeCAGE) reaches saturation after 400–500
bp; therefore, we took 500 bp as the threshold for gene expression
analysis. That is, we quantified abundance of genes based on the
reads aligned within the upstream/downstream 500-bp region
from the 59 end of the RefSeq transcripts. In comparison with micro-
array analysis, we quantified gene expression by the accumulation of
all the signals (read counts or TPMs) corresponding to the gene.

HeliScopeCAGE

We followed the CAGE protocol previously described (Kanamori-
Katayama et al. 2011), and sequenced with HeliScope. As for the
THP-1 and HeLa profiles (100%:0% and 0%:100%), we obtained
the sequence data previously described (deposited in DRA as
DRA000368) (Kanamori-Katayama et al. 2011). Additionally, we
took the remaining profiles for this study. Artifactual sequences were
filtered out with filterSMS, a tool included in Helicos HeliSphere
software, accepting only 20- to 70-nt read lengths, and the remain-
ing reads were aligned with the human genome assembly (GRCh37)
by using an in-house alignment program called Delve as previously
described (Itoh et al. 2012). It employs a paired hidden Markov
model to iteratively map reads to the genome and estimate position-
dependent error probabilities, and individual reads are placed in
a single position on the genome where the alignment has the
highest probability to be true according to the pHMM model. We
selected only the alignment with a mapping quality score $20
and percentage identity $85%. We performed the following
analyses—quantification of transcript abundance and gene
expression—in the same way as IlluminaCAGE. Overlaps of genes
detected by HeliScopeCAGE, RNA-seq, and microarray are shown
in Supplemental Figure S12.

RNA-seq

We constructed sequencing libraries starting from 500 ng of total
RNA. We isolated poly(A)+ RNA using Dynabeads Oligo(dT)25

(Invitrogen) according to the manufacturer’s protocol. This iso-
lation step was repeated two times. Poly(A)+ RNA was fragmented
by heating for 3.5 min at 70°C in a 0.53 fragmentation buffer
(Ambion). Fragment RNA was purified with the RNeasy MinElute
kit (Qiagen) following the instructions of the manufacturer except
675 mL of 100% ethanol was used in step 2. Purified RNA was
dephosphorylated by adding 2 mL of 103 phosphatase buffer,
5 units of Antarctic phosphatase (NEB), and 40 units of RNaseOUT
(Invitrogen) and incubating for 30 min at 37°C followed by 5 min
at 65°C. After incubation, the sample was set on ice and 5 mL of

103 PNK buffer, 20 units of T4 polynucleotide kinase (NEB), 5 mL
of 10 mM ATP (Epicentre), 40 units of RNaseOUT, and 17 mL of
water were added, and incubated at 37°C for 60 min. Phosphorated
RNA was purified with the RNeasy MinElute kit (Qiagen) as de-
scribed before. Purified RNA was concentrated to 6 mL by a miVac
DNA concentrator (Genevac). A mixture of 2 mM preadenylated 39

DNA adaptor and 1 mL concentrated RNA was incubated for 2 min at
70°C and immediately kept on ice for 2 min. One microliter of 103

T4 RNA ligase 2 truncated buffer, 0.8 mL of 100 mM MgCl2, 20 units
of RNaseOUT, and 200 units of RNA ligase 2 truncated (NEB) were
added to make a 10 mL reaction. The reaction was incubated for 60
min at 20°C. One microliter of heat-denatured 5 mM 59 RNA adapter
was ligated with 39 adapter ligation products with 20 U of T4 RNA
ligase 1 (NEB) and 1 mL of 10 mM ATP (NEB) for 60 min at 20°C. We
mixed 4 mL of adaptor-ligated RNA with 1 mL of 20 mM RT primer,
followed by incubation for 2 min at 70°C and being immediately
kept on ice. We synthesized single-stranded cDNA with this RNA
primer mix by adding 2 mL 53PrimeScript buffer, 1 mL of 10 mM
dNTP, 20 units of RNaseOUT, and 200 units of PrimeScript reverse
transcriptase (Takara) and incubating for 30 min at 44°C. The whole
cDNA product is amplified by PCR with 10 mL of 53 HF buffer, 1.25
mL of 10 mM of each dNTP mix, 2 mL of 10 mM FWD primer, 2 mL of
REV primer, and 1 unit of Phusion high-fidelity DNA polymerase
(NEB). PCR is carried out in a total of 50 mL. After incubation for 30
sec at 98°C, 12 PCR cycles were performed for 10 sec at 98°C, 30 sec
at 60°C, and 15 sec at 72°C. Finally, the sample is incubated for
5 min at 72°C and kept at 4°C. We removed PCR primers using 1.2
volumes of AMPure XP beads (Beckman). This step was repeated two
times. We sequenced libraries with the Illumina Genome Analyzer II
(35-base single read) using the following custom sequencing
primers:

pre-adenylated 39 DNA adaptor, App/ATCTCGTATGCCGTCTTC
TGCTTG/39 idT

59 RNA adapter, guucagaguucuacaguccgacgaucgaaa
RT primer/REV primer, CAAGCAGAAGACGGCATACGA
FWD primer, AATGATACGGCGACCACCGACAGGTTCAGAGTT

CTACAGTCCGA
sequencing primer, CGACAGGTTCAGAGTTCTACAGTCCGACG

ATCGAAA

After base calling, we removed artifactual sequences origi-
nated from adopter linkers with TagDust (Lassmann et al. 2009),
and identified the reads matching to ribosomal DNA repeat se-
quences (U13369) within two mismatches. Only the remaining
reads are used for alignment with the human genome assembly
(GRCh37), where we employed BWA (Li and Durbin 2009) for the
alignment and selected only the alignment with a quality score
$20. Quantification of transcript abundance and gene expression
levels is based on the reads aligned within exons of RefSeq tran-
scripts (Pruitt et al. 2012).

Microarray

Five hundred nanograms of total RNA was amplified using the
Illumina TotalPrep RNA amplification kit (Ambion), according
to manufacturer’s instructions. cRNA was hybridized to Sentrix
Human-6 Expression BeadChips v3 (Illumina), according to standard
Illumina protocols. Chips scans were processed using the Illumina
BeadScan and BeadStudio software packages, and summarized data
were generated in BeadStudio (version 3.4). We used the lumi (Du
et al. 2008) and Limma (Smyth 2004) packages for normalization
and differential analysis of detected intensities by individual
probes. In the comparison of gene expression levels with other
platforms, we averaged all the probe signals to the corresponding
gene. As for the THP-1 and HeLa profiles (100%:0% and 0% and
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100%), we used the same data obtained by Kanamori-Katayama
et al. (2011) (deposited in GEO as GSE28148).

Quantitative reverse transcription-polymerase
chain reaction (qRT-PCR)

Reverse transcription of the total RNA was achieved with Prime-
Script reverse transcriptase (Takara) and random hexamer in ac-
cordance with the manufacturer’s protocol. The PCR primer se-
quences from this analysis are given in Supplemental Table S3. PCR
amplification was performed on the ABI PRISM 7900HT system
(Applied Biosystems). For amplification, SYBR Premix Ex Taq II
(Takara) was used as instructed in the manufacturer’s manual. The
PCR conditions were an initial step of 10 sec at 95°C, followed by
40 cycles of 3 sec at 95°C and 20 sec at 62.5°C.

Data access
The sequencing data obtained for this study have been submitted
to the DDBJ Read Archive (http://trace.ddbj.nig.ac.jp/dra/index_
e.shtml) under accession number DRA001100. This work is part
of the FANTOM5 project. Data downloads, genomic tools, and
copublished manuscripts are summarized at http://fantom.gsc.
riken.jp/5/. Supplemental data are accessible at http://fantom.
gsc.riken.jp/5/suppl/Kawaji_et_al_2013 as a part of the FANTOM
web resource.
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