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Multiple aspects of molecular regulation, including genetics, epigenetics, and mRNA
collectively influence the development of age-related neurologic diseases. Therefore,
with the ultimate goal of understanding molecular systems associated with cognitive
decline, we infer directed interactions among regulatory elements in the local regulatory
vicinity of individual genes based on brain multi-omics data from 413 individuals. These
local regulatory networks (LRNs) capture the influences of genetics and epigenetics
on gene expression in older adults. LRNs were confirmed through correspondence to
known transcription biophysics. To relate LRNs to age-related neurologic diseases, we
then incorporate common neuropathologies and measures of cognitive decline into this
framework. This step identifies a specific set of largely neuronal genes, such as STAU1
and SEMA3F, predicted to control cognitive decline in older adults. These predictions
are validated in separate cohorts by comparison to genetic associations for general
cognition. LRNs are shared through www.molecular.network on the Rush Alzheimer’s
Disease Center Resource Sharing Hub (www.radc.rush.edu).

Keywords: Alzheimer’s dementia, cognitive decline, multi-omics data integration, gene regulatory network, xQTL,
expression quantitative trait DNA methylation, expression quantitative trait histone acetylation, GWAS

INTRODUCTION

The repeated failure of traditional drug discoveries for Alzheimer’s dementia (AD) (Cummings
et al., 2014; Gauthier et al., 2016) indicate the necessity of a paradigm shift toward precision
medicine that aims to perturb the right targets in specific people at the right time (Collins
and Varmus, 2015). To pursue this goal, big biomedical data including genomes, epigenomes,
transcriptomes, and proteomes have been generated by community aging studies and consortium
efforts (Hodes and Buckholtz, 2016). In theory, the integration of multi-omics data provides the
basis for a more complete and accurate understanding of complex molecular regulation and thus
increases the odds of identifying effective therapeutic targets for patients with cognitive decline.
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However, in practice, the elucidation of integrated molecular
regulatory mechanisms remains rare, especially in the context of
the aging human brain. Generating such integrated mechanisms
requires phenotypes and multiple omics assayed in the same set
of individuals, the mathematical and biological frameworks to
integrate these data, and external validation of results.

To provide integrated multi-omic molecular networks that are
relevant to the aging brain, it is necessary to first quantify and
validate cross-omics interactions from multiple omics gathered
in the same set of individuals from longitudinal studies of
aging. Then, utilizing these cross-omics interactions such as
relationships of DNA methylation and histone acetylation to
gene expression, we can accurately determine the relationships of
genes to AD-related neuropathologies and cognitive decline. The
caveat to cross-omic interactions from correlation-based analyses
is that they are not necessarily causal relationships. Approaches
which combine genetics with gene expression address this issue
to provide directed gene interaction networks (Chaibub Neto
et al., 2010; Zhang et al., 2013), while related approaches extend
causality from genetics to disease phenotypes (Schadt et al.,
2005).

We further develop an analytical framework for combining
genetic and multiple types of omics data to infer mechanisms
regulating gene expression levels in aged brains. This approach
infers a series of biophysically based links from genetic
variants, through multiple molecular traits to dementia-related
phenotypes, by modeling local regulatory networks (LRNs), in
the vicinity of individual genes. We extensively validate the
output of these models in terms of known biological relationships
between regulatory elements. Leveraging the inferred structure
of the LRNs, we find the epigenetic modifications predicted to
affect gene expression levels and show strong enhancer/repressor
activities of those modifications by assessing overlaps with a
variety of genomic annotations. Moreover, LRNs predict genes
upstream of dementia-related phenotypes and we validate their
genetic associations with general cognition in separate cohorts.
Overall, this approach begins to address the multiple data
integration challenges and the multi-layer regulation around
genes with predicted associations to ongoing disease phenotypes.
The results can increase the efficiency of experimental work
by directing it toward upstream regulators that are likely
to control cognitive decline and neuropathology in older
individuals.

MATERIALS AND METHODS

Cohort Summary
We infer LRN’s in the context of two longitudinal, community-
based aging studies: the Religious Orders Study (ROS) and
the Rush Memory and Aging Project (MAP), collectively
referred to as ROSMAP (Bennett et al., 2018). Together,
these ongoing studies have enrolled ∼3500 older persons
without dementia, all of whom have agreed to brain donation
and annual detailed clinical evaluation, cognitive testing and
blood donation. The cognitive levels, cognitive decline, and
pathological indices utilized in the LRNs all come directly

from measurements provided by this cohort. All phenotypes
and omics data are shared freely through the RADC hub
www.radc.rush.edu.

Standard Protocol Approvals,
Registrations, and Patient Consents
The parent cohort studies and substudies were approved
by Rush University Medical Center Institutional Review
Boards. Participants provided written informed consent and all
participants signed an Anatomic Gift Act for brain donation.

Tau and β-amyloid Measurement
To quantify the burden of parenchymal deposition of β-amyloid
and the density of abnormally phosphorylated paired helical
filament tau (PHFtau)-positive neurofibrillary tangles, tissue
was dissected from midfrontal cortex. 20 µm sections were
stained with antibodies to the β-amyloid protein and the tau
protein, and quantified with image analysis and stereology, as
previously described (Bennett et al., 2006, 2012b; Schneider
et al., 2012; Boyle et al., 2013). Briefly, β-amyloid was
labeled with an antibody for β-amyloid (10D5; Elan, Dublin,
Ireland; 1:1,000). Immunohistochemistry was performed using
diaminobenzidine as the reporter, with 2.5% nickel sulfate
to enhance immunoreaction product contrast. Between 20
and 90 video images of stained sections were sampled and
processed to determine the average percent area positive for
β-amyloid. PHFtau-tangles were labeled with an antibody specific
for phosphorylated tau (AT8; Innogenetics, San Ramon, CA,
United States; 1:1,000). Between 120 and 700 grid interactions
were sampled and processed, using the stereological mapping
station, to determine the average density (per mm2) of PHFtau-
tangles.

Cognitive Function Assessment
For each participant, comprehensive cognitive assessments were
administered at baseline and during each annual follow-up visit.
Details on cognitive assessment have been described previously
(Wilson et al., 2002, 2003, 2015; Bennett et al., 2006, 2012a).
Briefly, the battery contains a total of 17 cognitive performance
tests which assess 5 dissociable cognitive domains including,
episodic memory (7 measures), semantic memory (3 measures),
working memory (3 measures), perceptual speed (2 measures),
and visuospatial ability (2 measures). To minimize the floor and
ceiling effects, composite measures were used to examine the
longitudinal cognitive decline. For each test, raw scores were
standardized using the baseline mean and standard deviation
across the cohorts. The z-scores were subsequently averaged
across all the 17 tests to obtain a summary measure representing
global cognition. Similarly, summary measures for individual
cognitive domains were obtained by averaging z scores from
the corresponding tests. The longitudinal rate of decline was
computed for each participant using linear mixed models, which
estimate the mean rate of change for the sample as a whole, but
allow positive or negative deviations for each individual and are
less sensitive to the number of follow-up visits or missing data.
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Genotype Processing
Genotyping of the ROS and MAP subjects was performed on
the Affymetrix Genome-Wide HumanSNP Array6.0 (n = 1709)
and the Illumina OmniQuad Express platform (n = 382).
DNA was extracted from whole blood, lymphocytes, or
frozen brain tissue, as previously described (De Jager et al.,
2012). To minimize population admixture, only self-declared
non-Hispanic Caucasians were genotyped. At the sample
level, samples with genotyping success rate <95%, discordant
genetically inferred and reported gender, or excess inter/intra-
heterozygosity were excluded. At the probe level, genotyping
data from both platforms were processed with the same quality-
control (QC) metrics: Hardy-Weinberg equilibrium p < 0.001,
genotype call rate <0.95, misshap test <1 × 10−9. QC
was performed using version 1.08p of the PLINK software.
EIGENSTRAT was used with the default setting to remove
population outliers. The resultant datasets include 729,463
single nucleotide polymorphisms (SNPs) for 1,709 individuals
(Affy) and 624,668 SNPs for 382 individuals (Omni). Dosages
for all SNPs on the 1000 Genomes reference were imputed
using version 3.3.2 version of the BEAGLE software [1000
Genomes Project Consortium interim phase I haplotypes, 2011
Phase 1b data freeze(verify) data freeze]. The coordinate of
SNPs was updated with dbSNP Build 150. SNPs with minor
allele frequency greater than 0.05 and info score greater
than 0.3 were used for the analysis, resulting in 7,159,943
SNPs.

RNAseq Processing
Details on RNAseq are published (Ng et al., 2017; Mostafavi et al.,
2018). Briefly, RNA from 540 individuals was extracted from
the dorsolateral prefrontal cortex (DLPFC) with the miRNeasy
mini kit (Qiagen, Venlo, Netherlands) and the RNase free
DNase Set (Qiagen, Vento, Netherlands). RNA concentration
was quantified using Nanodrop (Thermo Fisher Scientific,
Waltham, MA, United States), and RNA quality was assessed
using an Agilent Bioanalyzer. RNAseq was performed using
Illumina HiSeq with 101 bp paired-end reads with an average
depth of 90 m reads. The trimmed reads were aligned to the
reference genome using Bowtie and the expression fragments
per kilobase million (FPKM) values were estimated using RSEM.
Samples from 508 individuals which have genotype data and
pass the expression outlier test are further normalized. Only
highly expressed genes were kept (mean expression >2 FPKM),
resulting in 13,484 expressed genes for analysis. The FPKM
values were log transformed and biological covariates and
technical covariates were removed from gene expression data via
linear regression. Biological covariates include sex, age at death,
and three genotyping principal components (PCs). Technical
covariates include post mortem interval (PMI), RNA integrity
number (RIN), study index (ROS or MAP), and lab processing
batch. In this study, the genomic coordinates coding genes were
updated to Ensembl release 90 with the annotables R package
for 13,412 genes. RNA-seq data of 413 individuals with both
epigenome and SNP measurements undergo the cross-omic
analysis.

Methylation Processing
Details on DNA methylation data are published (De Jager
et al., 2014). DNA from 740 individuals was extracted from
DLPFC using the Qiagen QIAamp DNA mini protocol. DNA
methylation data were generated using Illumina Infinium
HumanMethylation450k Bead Chip assay. Raw data were further
processed using Methylation Module v1.8 from the Illumina
Genome Studio software suite to generate a beta value for
each cytosine guanine dinucleotide. The Illumina 450K platform
contains a mixture of “type 1” and “type 2” probes which have
distinct methylation levels that can negatively affect the analysis,
so we used the wateRmelon R-package to account for this mixture
and process all raw 450K arrays into Beta methylation values.
Next, we performed an initial data reduction using the minfi
R package to collapse adjacent probes with similar methylation
levels into single units. This reduced the ∼450K methylation
probes to 194,244 DNA 5C methylation (DNAm) clusters, which
we refer to simply as DNAm loci. Samples from 663 individuals
which have genotype data were used for further normalization
step. Then, Beta methylation values were converted to M-values
(Du et al., 2010) and quantile normalized. To remove outlier
samples based on DNA methylation data, the statistic di was
calculated and samples with a di value outside of 1.5x the
interquartile range (n = 27) were excluded. Then, biological
covariates and technical covariates were removed from DNA
methylation data via linear regression. Biological covariates
include sex, age at death, cell epigenotype specific indexes,
and three genotyping PCs. Technical covariates include PMI,
variables related to the position of arrays, study index (ROS
or MAP), and lab processing batch. DNA methylation data of
413 individuals with other omics measurements are used in the
cross-omic analysis.

Histone Acetylation Processing
Details on histone acetylation data are published (Ng et al.,
2017; Klein et al., 2018; Mostafavi et al., 2018). Gray matter
was dissected on ice from 714 biopsies of DLPFC. The tissue
was minced and crosslinked with 1% formaldehyde at room
temperature and then homogenized in a cell lysis buffer. Then
the nuclei were lysed in nuclei lysis buffer and chromatin was
sheared by sonication. Chromatin was incubated overnight with
the anti-H3K9Ac mAb (Millipore, Bedford, MA, United States)
and purified with protein A sepharose beads. The final DNA was
extracted and used for Illumina library construction following
usual methods of end repair, adapter ligation and gel size
selection. Samples were pooled and sequenced with 44 bp single
end reads on the Illumina HiSeq. Single-end reads were aligned
by the BWA algorithm (Li and Durbin, 2010), and peaks were
detected in each sample separately using the MACS2 algorithm
(Zhang et al., 2008) (using the broad peak option and a q-value
cutoff of 0.001). A series of QC steps were employed to identify
and remove low quality reads (Landt et al., 2012), and samples
that did not reach (i)≥15× 106 unique reads, (ii) non-redundant
fraction ≥ 0.3, (iii) cross-correlation ≥ 0.03, (iv) fraction of
reads in peaks ≥ 0.05 and (v) ≥ 6000 peaks were removed. In
total, 669 samples passed quality control. Acetylation at the 9th
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lysine residue of the histone H3 protein (H3K9ac) domains were
defined by calculating all genomic regions that were detected
as a peak in at least 100 of the 669 samples (15%). Regions
within 100 bp from each other were merged and very small
regions of less than 100 bp were removed. Read counts were
log2 transformed with the addition of 0.5 with accounting the
effective library sizes estimated by trimmed mean of M values
(TMM) scale-normalization using edgeR software (Robinson
et al., 2010). Finally, quantified histone acetylation data were
quantile normalized. To remove outlier samples based on
quantified histone acetylation data, the statistic di was calculated
and samples with a di value outside of 1.5x the interquartile
range (n = 9) were excluded. Then, biological covariates and
technical covariates were removed from histone acetylation data
via linear regression. Biological covariates include sex, age at
death, and three genotyping PCs. Technical covariates include
PMI, study index (ROS or MAP), and quality metrics strongly
correlated with PC1 (mean fold enrichment, total number of
reads, 50% quantile of the mapping quality of all uniquely
mapped unique reads, non-redundant fraction and experimental
batch for polymerase chain reaction). Histone acetylation data of
413 individuals with other omics measurements are used in the
cross-omic analysis.

Quantitative Trait Locus (QTL) and
Epigenomic Features Mapping
Quantitative trait locus mapping for mRNA levels, DNA
methylation, and histone acetylation were conducted using
FastQTL software (Ongen et al., 2016) with 1,000 random
permutations. For QTL mapping for mRNA, SNPs located within
50 kbp of upstream or downstream of transcriptional start site
were used for mapping cis-QTL. For DNA methylation and
histone acetylation peaks, SNPs located within 5 or 50 kbp of
upstream or downstream from the center of each peak were used,
respectively. The relatively narrow window of genomic regions
for QTL analysis is based on the result from published QTL
results from GTEx version 7, and HapMap (Banovich et al.,
2014), for gene expression, and DNA methylation, respectively.
We found the power of QTL detection for gene expression in
cortex regions increases as the decrease of QTL window and
maximizes at 5 kbp of genomic windows with about 50% increase
in the number of QTLs (Supplementary Figure 1A). Although
a QTL analysis for H3K9ac has not been conducted, the same
trend was also observed for QTLs for an alternative histone
acetylation for active transcription in three different cells in
BLUEPRINT (Chen et al., 2016) (Supplementary Figure 1B).
Then, we decided to use a relaxed condition of 50 kbp as a
genomic window considered for QTL analysis in this study. Prior
to QTL mapping, hidden covariates were removed from each
omic data. Hidden covariates for each data type were estimated
via PEER (Stegle et al., 2010). Consistent with the previous
report (Stegle et al., 2010), removing hidden covariates increased
the number of genes/epigenomic features associated with SNPs
reaching saturation with the removal of 30, 10, and 10 hidden
covariates for gene expression, DNA methylation, and histone
acetylation (Supplementary Figure 2). We set the significance

criteria at a false discovery rate (FDR) of 0.05. To identify
epigenomic peaks associated with mRNA levels, we calculated
correlations between gene expression levels and epigenomic
peaks located within 1 Mbp of upstream or downstream of
the transcriptional start site for each gene using MatrixEQTL
software (Shabalin, 2012). To control the bias of error rate
raised from the difference in the number of peaks around
transcriptional start site (TSS) for each gene, we also conducted
a permutation-based test to identify the gene associated with
at least one epigenetic peak using FastQTL software modified
to handle continuous values with 1,000 random permutations.
We set significance criteria at FDR of 0.05 in both gene level
and peak level. To handle outliers conservatively, mRNA levels
and quantities of epigenomic peaks were quantile-normalized
before the cross-omics mapping. The Storey’s method (Storey
and Tibshirani, 2003) was used to calculate a replication rate
(π1) with the previously published eQTL result (Ng et al.,
2017). To visualize overlap of genes associated with cis-
regulatory signals, UpSetR software was used (Conway et al.,
2017).

Construction of Local Regulatory
Networks (LRNs)
To infer the structure of LRNs, we used a Bayesian network,
which is a multivariate probabilistic model whose conditional
independence relations can be represented graphically by a
directed acyclic graph (DAG) with vertices (V = V1,...,Vp), and
directed edges (i, j ∈ E ⊂ V × V) (note that we use the notation i
and Vi, interchangeably, to refer to a node). A vertex j in a DAG
G corresponds to a random variable Xj in the Bayesian network.
Assuming the local directed Markov property, each variable is
independent of its non-descendant variables conditional on its
parent variables. Thus, the state of Xj can be determined only
by the state of parent variables, which is formally expressed
by the conditional probability, P(Xj|XGj) where Xj state occurs
under given parents’ state XGj . Therefore, the probability where
observed data, X, is generated from a given DAG G can be
factored as P(X|G) =

∏p
j=1 P(Xj|XGj) where X = (X1, ...,Xp)

T ,
Gj is the set of parents of j, and XGj = {Xi : i ∈ Gj}. To learn
DAG structure, which is essentially the process of finding G with
high P(X|G), we used a Markov chain Monte Carlo (MCMC)
method to sample DAGs based on the posterior distribution of
DAG structures

P(G|X) =
P(X|G)P(G)∑
G∈g P(X|G)P(G)

where P(G) is a prior on the network structure G, and g
represents the space of all DAGs with p vertices. The MCMC
sampling allows us to obtain ensembles of DAGs with high
P(X|G) and avoid overfitting to the data. LRNs consist of six
types nodes including phenotype (p), mRNA levels (∈), DNA
methylation levels (m), histone acetylation levels (h), and SNPs
associated with mRNA levels (ge), DNA methylation levels (gm),
or histone acetylation levels (gh), and hidden covariates used
for the QTL mapping (Ce,Cm,Ch). For each variable, hidden
covariates were combined asCej =

∑
i weijFei,Cmj =

∑
i wmijFmi,
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and Chj =
∑

i whijFhi, where wij represents the weight of jth
variable for ith peer factor (Fi). Both w and F were estimated
via PEER method as described in the method of QTL mapping.
To utilize SNPs information as a clue to infer the directions
of other edges, we restricted a direction of edges so that
SNPs can have only out-going edges to other nodes. For non-
genetic variables, the parent set used for each node type is as
follows;P(e) ∈ {ge,m, h, p,Ce}, P(m) ∈ {gm, e, h, p,Cm}, P(h) ∈
{gh,m, e, p,Ch}, and P(p) ∈ {ge, gm, gh,m, h, e}. The levels of
non-genetic nodes were quantile-normalized before applying
structural learning. We ran 75,000 steps of Markov chain Monte
Carlo sampling using the REV algorithm (Grzegorczyk and
Husmeier, 2008) and discarded the first 10% of samples as
a burn-in. Then, edge frequencies in the sampled networks
were counted and generated a consensus network by taking
the regulation that presented the most frequently among the
three possible states: node1 regulates node2, node2 regulates
node1, and node1 is independent of node2. The detailed
implementation of learning network structure based on systems
genetics data can be found in the previous work (Tasaki et al.,
2015).

Definition of Relations Between Nodes
If there is a path from node1 to node2 in LRN, node1 is
classified as upstream of node2 and vice versa. If there is no
path between node1 and node2, these two nodes are classified as
independent. In the case of calling genes upstream of phenotype,
the genes whose mRNA nodes were directly connected to AD
phenotypes with outgoing edges were classified as upstream
genes. All analyses on network structure were conducted based
on the igraph R package.

Genomic Annotation Enrichment
Gene models were obtained from GENCODE v14. For each
transcript, the region from 3 kbp upstream to 3 kbp downstream
of TSS was defined as a promoter region, and the region
from transcriptional end site (TED) to 3 kbp downstream of
TED was defined as a downstream region. The non-promoter
region from TSS to TED was defined as a gene-body region.
The remaining regions were defined as intergenic regions.
Super-enhancer regions for human brains were obtained from
dbSUPER (Khan and Zhang, 2016). The uniformly processed
ChIP-seq data from 565 of human TFs was downloaded from
GTRD (Yevshin et al., 2017). For the enrichment analysis of
gene coordinates and super-enhancers, each H3K9ac peak or
DNAm site was assigned to a genomic annotation if the center
position of H3K9ac peak or DNAm site is overlapped with the
annotation. For the enrichment analysis of transcription factor
(TF) binding sites, each H3K9ac peak was assigned to a TF
if H3K9ac peak is overlapped with its TF binding region. The
enrichment of genomic annotation was assessed by Fisher’s exact
test. The significance criteria were set as FDR less than 0.05 for all
analyses.

Gene Set Enrichment Analysis
Gene signatures from public RNA-seq studies were downloaded
from Enrichr (Kuleshov et al., 2016). Gene ontology was obtained

from the Molecular Signatures Database v6.1 (Subramanian et al.,
2005; Liberzon et al., 2011). The multi-validated protein-protein
interactions from BIOGRID v3.4.155 (Stark et al., 2006) was used
to extract binding proteins for TFs. The enrichment analysis
was performed using Fisher’s exact test. Differentially expressed
genes (DEGs) for each phenotype were used as the background
gene set of the enrichment analysis for upstream genes. For
the enrichment of protein interactions with TFs binding to
upstream H3K9ac peaks, the 565 TFs in Figure 3F were used as
a background set. For GO enrichment analysis, all genes in the
database were used as a background set. The significance criteria
were set as FDR less than 0.05 and the number of overlapped
genes greater than 2.

Genome-Wide Association Study (GWAS)
Enrichment Analysis
The summary statistics of GWASs for AD and general
cognition were downloaded from http://web.pasteur-
lille.fr/en/recherche/u744/igap/igap_download.php, https://ctg.
cncr.nl/software/summary_statistics, and https://www.thessgac.
org/data. The coloc algorithm (Wallace et al., 2012) was applied
to summary statistics of ROSMAP eQTL and GWAS with
default parameters of coloc R package. Then, genes showing the
strongest posterior probability in the co-localized model were
defined as co-localized genes and assessed enrichment of those
genes in upstream genes of phenotype by hypergeometric test.

Data Availability
The datasets analyzed for this study can be found in the Synapse
repository (http://dx.doi.org/10.7303/syn3388564, http://dx.doi.
org/10.7303/syn3157329, http://dx.doi.org/10.7303/syn3157275,
and http://dx.doi.org/10.7303/syn4896408).

RESULTS

Summary of Approach
The overarching goal of our approach is to identify the cascade of
molecular events that drive age-associated neuropathologies and
cognitive decline. To do so, we integrated a large multi-omics
dataset from aged brains, which includes genetic variants, DNA
5C methylation (DNAm), acetylation at the 9th lysine residue
of the histone H3 protein (H3K9ac), mRNA, and phenotypes
via a network-based approach that describes the local regulatory
control over the expression of individual genes in aged brains
(Figure 1). The genomic variants were measured by SNP arrays
from blood or brain samples, and the multiple omics data
of DNAm, H3K9ac, and mRNA were all assayed in DLPFC
from the same set of 413 participants (Supplementary Table 1)
from the ROS and Rush MAP cohorts, collectively referred
to as ROSMAP (see methods). Our analysis consists of three
steps. First, this set of omics is unified based on correlation to
understand cross-omics relationships among genome, epigenetic
marks, and mRNA (Figure 1A). Second, those correlative
relations are further refined as directed regulatory networks
by inferring their conditional independence relations through
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FIGURE 1 | Overview of processing multi-omic data into local regulatory networks (LRNs) and testing the validity of cross–omics interaction. (A) Genetic variants
and other brain-based omics data were all acquired from the same set of individuals in the ROSMAP aging cohorts. (B) Using causal inference methods, we
consider many possible networks among the omic data types and infer a likely local regulatory structure around each gene. These networks also include nodes
representing AD-related phenotypes. (C) The inferred LRNs predict relationships between genes and phenotypes and are publicly available through a web resource:
www.molecular.network.

a Bayesian structure learning framework. We validate directed
edges between epigenetic marks and mRNA with existing
knowledge on transcription (Figure 1B). Third, these networks
are further utilized to predict for each gene whether it is
“upstream” or “downstream” of disease phenotypes, such as
cognitive decline (CogDec) (Figure 1C).

Cis-Genomic Features Associated With
mRNA Expression Levels
Our model builds a LRN for each gene: these networks capture
the impact of genetic and epigenetic variation on the expression
of the gene. To ensure these results are biologically plausible,
we first surveyed cross-omics correlations among 7,159,943
(imputed with the 1000 Genomes reference) genetic variants,
191,590 DNAm loci, 25,611 H3K9ac peaks, and 12,742 mRNAs.
We assessed pairwise correlations between gene expression and
cis-DNA methylation, or cis-H3K9ac that are located, restricting
our analysis within 1 Mbp upstream or downstream of each
TSS. We identified 1,437 DNA-methylation-associated genes and
7,914 H3K9ac-associated genes with an FDR of 5%. We also
used a standard way for mapping quantitative trait loci (QTLs)
at multiple molecular levels (xQTL) (Ng et al., 2017) to identify
genes, DNAm loci, and H3K9ac peaks associated with cis-SNPs.
We used a 50Kb cis-window to test for eQTLs and H3K9ac
peaks, and a 5 Kb cis-window for DNAm loci based on results
from other studies (see Materials and Methods). We found 8,067
genes, 84,770 DNAm loci, and 7,548 H3K9ac peaks are correlated
significantly (FDR < 0.05) with the genotype of their proximal
SNPs (Figure 2A). This result of QTL mapping is consistent
with the associations previously reported based on the same

data from ROSMAP participants (Ng et al., 2017) as replication
rates (π1) are greater than 0.99 for all three types of omics
measurements (Supplementary Figure 3), which ensures the
quality of normalization and association procedures.

Before estimating LRNs based on the cross-omics correlations,
we first conducted a series of characterizations and validations
for the observed mRNA-epigenetic correlations in aged brains
to ensure correlations reflect the mechanisms involving gene
transcription. We examined the direction of mRNA-epigenetic
relations and their genomic locations in relation to each TSS. For
cis-DNAm correlated with mRNA (eQTM) as expected, negative
correlations are more common (63%) than positive correlations
(binomial test; p-value < 2.2e-16) (Figure 2B). However, we
also observe that DNA methylation at a sizable fraction of
eQTMs (37%) is associated with positive gene expression,
an observation previously reported (Gutierrez-Arcelus et al.,
2013). By contrast, cis-H3K9ac correlated with mRNA (eQTH)
tends to be positively correlated with mRNA levels (62%)
(binomial test; p-value < 2.2e-16) (Figure 2B), which agrees
with findings that H3K9ac is a marker for chromatin undergoing
active transcription (Ernst et al., 2011). Indeed, the two marks
were chosen in part based on the fact that they are known
to be associated with relatively closed and open chromatin
states, respectively. The eQTHs associated with positive gene
expression are located at the regions close to TSSs, whereas
negatively correlated eQTHs are distributed broadly across
cis-genomic regions (Figure 2C). Alternatively, the eQTMs
negatively correlated with mRNA levels are more condensed
at the TSS regions than the ones associated with positive
gene expression (Wilcoxon rank sum test; p-value = 3.8e-05)
(Figure 2C). The enrichment of eQTHs and eQTMs in the
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FIGURE 2 | Identification and characterization of relations between mRNA expression and cis-regulatory signals. (A) The map of cross-omics associations in
DLPFC. The cis-regulatory associations across mRNA levels, H3K9ac peaks, DNA methylation (DNAm) sites, and SNPs were assessed via linear regression
(FDR < 0.05). Brain phenotypes associated with mRNA levels were assessed via Spearman’s correlation (FDR < 0.05). (B) Proportions of a sign of the correlation
between mRNA levels and both eQTMs and eQTHs. (C) Distribution of eQTM and eQTH in relation to transcription start site. (D) The intersection of genes
associated with cig-regulatory signals. Genes associated with at least one SNP (FDR < 0.05), genes associated with at least one DNA methylation locus
(FDR < 0.05), and genes associated with at least one H3K9ac peak (FDR < 0.05) are defined as sGene, mGene, and hGene, respectively. To visualize the number of
overlapped genes, UpSet plot was used. The horizontal bar plot represents the total number of sGene, hGene, or mGene. The vertical bar plot represents the
number of genes shared among combinations of sGene, hGene, and mGene. For instance, the first column indicates the number of genes shared between hGene
and sGene and the forth column indicates the genes shared by all three groups. This “UpSet” plot was generated using UpSetR software (Conway et al., 2017).
(E) Quantile–quantile (Q-Q) plots of genetic associations of DNAm sites and H3K9ac peaks stratified by their associations to mRNA levels. The significance of
genetic associations was assessed via linear regression using FastQTL software with 1,000 times permutation.

key genomic element of transcriptional activity indicates that
correlations observed between epigenome and gene expression
are likely to be induced by cause-and-effect relationships rather
than by lateral confounding factors.

After assessing the independent effects, to quantify the
combinatorial regulatory influences on mRNAs, we examined
whether mRNA levels are associated with singular SNP,
DNAm, and H3K9ac cis-signals, or multiple cis-signals. Pair-
wise significant overlaps are observed between genes regulated by
SNPs (sGene) vs. DNA-methylation-associated genes (mGenes)
(Fisher’s exact test; p-value < 10e-16) and mGenes vs. H3K9ac-
associated genes (hGenes) (Fisher’s exact test; p-value = 10e-6),
but not between sGenes vs. hGenes (Fisher’s exact test;
p-value > 0.05) (Figure 2D). Moreover, genes whose mRNA
levels are associated with all three cis-genomic features are
more frequent than expected by chance (permutation test,

p-value < 0.0001). This indicates that mRNA levels are more
likely to associate with multiple cis-genomic features investigated
in this study, consistent with our understanding that regulation
of mRNA is a coordinated process, rather than conducted by a
single source of cis-genomic features. As the number of regulatory
elements assayed in this cohort increases, we expect further
diversification in the origin of regulatory signals.

Having assessed the co-regulatory effects, next we examined
whether genetic variations could associate with the relationships
between epigenetics and gene expression. Specifically, we
contrasted p-values for association with genetic variations
between eQTMs and non-eQTMs. We found that eQTMs
are more likely to be associated with genetic variants
(mQTLs), compared to non-eQTMs (Wilcoxon rank sum
test; p-value < 10e-16) (Figure 2E). We also observed the same
trend of genetic influence on eQTHs (Wilcoxon rank sum
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test; p-value = 2.9e-08) (Figure 2E). These results suggest that
the epigenetic modifications that are associated with genetic
variations are more likely to have a functional influence on gene
expression in aged brains.

Taken together, our multi-omics data measured in the same set
of people reveals reasonable cross-omics relations, which would
allow us to learn the characteristics of cis-mechanisms regarding
mRNA regulations in aged brains via LRNs.

Assign Directionality of Cis-Regulatory
Elements via Local Regulatory Networks
Because cross-omic associations are determined based on
correlation analysis (Figure 2A) it is difficult to determine
their causal relationships, except for those with genetics, where
we can assume the SNP effect precedes all other effects. Such
unidirectional genetic information can be used as a causal prior
to predict the relationships between biological measurements
(Schadt et al., 2005; Zhang et al., 2013; Tasaki et al., 2015).
We developed a Bayesian network (BN) inference method that
integrates SNP and omics data (Tasaki et al., 2015) to estimate
directed molecular networks. Applying the BN method to multi-
omics data setallows us to reconstruct LRN for each gene that
models causal relationships between epigenetic modifications,
mRNA levels, and phenotypes in aged brains (Figure 1). These
LRNs consist of nodes for phenotype, mRNA, mRNA-associated
epigenetic marks, SNPs associated with levels of mRNA and
epigenetic marks, and hidden factors used for QTL mapping (see
Materials and Methods). The number of epigenetic marks in LRN
varies depending on genes and the best SNP for each variable
was included in LRN. To reduce the computational complexity
of BN inference, we only included SNP-associated epigenetic
modifications in each LRN as we identified those features are
more likely to influence gene expression (Figure 2E). After this
variable selection procedure, 3,795 genes that are associated with
both SNPs and one of the epigenetic marks were applied to
our BN inference procedure to investigate cross-omics LRNs.
Genes used for LRN are not enriched or depleted in any gene
ontology categories (FDR > 0.05), suggesting gene selection
does not bias biological functions that can be investigated by
LRN. Each LRN was estimated with each of the age-related
neuropathologies and cognitive phenotypes, PHFtau-tangles,
β-amyloid, cognition, and CogDec, resulting in estimating 15,180
LRNs in total.

First, in order to characterize and validate regulations
from epigenomes to gene expression, we investigated directed
links between mRNA and epigenetic modifications. Based
on patterns of connectivity between different types of omics
in LRNs, we classified relations between gene expression
and epigenetic modifications into “upstream,” “downstream,”
or “independent.” Specifically, if there is a path from an
epigenetic node to a mRNA node in LRN, an epigenetic
node is classified as “upstream.” Conversely, if there is a
path from a mRNA node to an epigenetic node in LRN,
an epigenetic node is classified as “downstream.” Lastly,
an epigenetic node is classified as “independent” if there
is no path between an epigenetic node and a mRNA

node. Estimated cause-and-effect relations are consistently
identified across LRNs with four different phenotype nodes
(Supplementary Figure 4). Specifically, 2,655 relations between
gene expression and DNAm and 5,716 relations between
gene expression and H3K9ac are found in at least three out
of four LRNs with different phenotype nodes (Figure 3A
and Supplementary Table 2). The consistency of these
relationships is higher than expected by chance (permutation
p-value < 0.0001).

To evaluate the validity of estimated relations of epigenetic
modifications to gene expression, we conducted a series of
assessments based on biological knowledge that is not included
in the process of LRN construction. First, we observed that
the excess of DNAm sites that are predicted to be upstream
of gene expression are suppressors of gene expression (Fisher’s
exact test; p-value = 8.3e-06) (Figure 3A). Moreover, these
suppressive DNAm sites are located in the promoter regions
more frequently than DNAm sites that are predicted to be
independent or downstream of gene expression (Figure 3B).
DNAm sites predicted to be activators of gene expression are
enriched in distal intergenic regions (Figure 3B). The conversion
of the effect of DNAm based on the proximity to the promoter
is demonstrated by direct editing of DNAm levels by Cas9-fused
DNAm modifiers (Liu et al., 2016), and this indicates that LRN
models capture known biology regarding the effect of DNAm on
gene transcription.

H3K9ac peaks that are predicted as upstream of mRNA
nodes in LRNs contain the similar proportion of positive and
negative regulators of gene expression compared to other classes
of H3K9ac peaks (Figure 3A). However, we found that upstream
H3K9ac peaks are enriched in the super-enhancers in various
brains regions profiled in BI Human Reference Epigenome
Mapping Project (Bernstein et al., 2010; Khan and Zhang, 2016),
especially in the middle frontal lobe, corresponding to the origin
of omics data (Figure 3C). Super-enhancers are the cluster of
transcriptional enhancers recruiting many TFs and thus have
strong transcriptional activities (Hnisz et al., 2013). Since super-
enhancers are expected to be larger than normal enhancers (Pott
and Lieb, 2015), we asked whether the width of H3K9ac peaks
that drive gene expression changes are different from other
H3K9ac peaks. As expected, upstream H3K9ac peaks are wider
than H3K9ac peaks that are downstream or independent of
gene expression (Welch’s t-test; p-value < 2.2e-16) (Figure 3D).
To further characterize transcriptional capability of upstream
H3K9ac peaks, co-localization of transcriptional factor (TF)
binding sites with H3K9ac peaks were investigated by integrating
publicly available ChIP-seq data from 565 human TFs (Yevshin
et al., 2017). We found that a greater number of TFs are bound
to upstream H3K9ac peaks with a median of 51 binding sites
(permutation p-value = 0.0009), whereas TFs are depleted from
independent H3K9ac peaks (permutation p-value < 0.0001)
(Figure 3E). To clarify whether these observations are because
of the difference of peak width, we also calculated TF binding
density in H3K9ac peaks. TF binding densities in upstream
H3K9ac peaks are not significantly higher than others, but
those in independent H3K9ac peaks are still significantly lower
(permutation p-value = 0.0005) (Figure 3E). These results
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FIGURE 3 | Local regulatory network predicts epigenetic modifications leading gene expression changes. (A) Predicted relationships of eQTMs and eQTHs to
mRNA levels. An LRN was built for each of 3795 genes and for each AD phenotype, then DNAm and H3K9ac were classified as upstream, independent, or
downstream of a given gene expression, based on the direction of the cascade of edges between the mRNA node and both DNAm and H3K9ac nodes. (B) The
enrichment of predicted relationships of eQTMs to mRNA levels with genomic annotations based on gene coordinate. The asterisks represent the statistical
significance based on Fisher’s exact test (FDR < 0.05). (C) The enrichment of predicted relationships of eQTHs to mRNA levels with super-enhancers in brains. The
asterisks represent the statistical significance based on Fisher’s exact test (FDR < 0.05). (D) The distribution of width of eQTHs in relation to their predicted
relationships to mRNA levels. (E) The TF-binding capability of eQTHs in relation to their predicted relationships to mRNA levels. The upper panel represents the
median number of TF peaks overlapping with H3K9ac peaks for each predicted relationship. The lower panel represents the median number of TF peaks
overlapping with H3K9ac peaks per 100 bp for each predicted relationship. The histograms represent null distributions estimated by 10,000 permutations of the
relations of eQTH nodes to mRNA nodes. The red vertical lines represent observed values based on the estimated directions from eQTHs node to mRNA node.
(F) The enrichment of TFs binding to eQTHs upstream or independent of mRNA levels. The dashed lines indicate the significance threshold based on Fisher’s exact
test (FDR < 0.05). (G) TF-TF interaction networks around TFs binding to eQTHs upstream of mRNA nodes. For each TF, the overlap of its binding TFs and the TFs
enriched in eQTHs upstream of mRNA nodes was evaluated by Fisher’s exact test (FDR < 0.05).
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indicated that LRN approaches can assign directionality of
relations based on the transcriptional capability of H3K9ac
peaks in a purely data-driven way without any prior biological
knowledge.

We further examined the co-localization of binding sites
of individual TF with H3K9ac peaks and identified 28 TFs
enriched in upstream H3K9ac peaks and 55 TFs depleted from
independent H3K9ac peaks (FDR < 0.05) (Figure 3F). We found
that these enriched TFs interact with chromatin remodeling
machinery in protein levels (FDR < 0.05) (Stark et al., 2006)
(Figure 3G). One of the hub proteins interacting with enriched
TFs is KAT2B (p-value = 10e-4), a histone acetyltransferase that
mediates acetylation of H3K9: a histone mark integrated into
the LRN (Figure 3G). This suggests that KAT2B protein induces
acetylation of upstream H3K9ac peaks as well as recruits the
variety of TFs to regulate gene expression levels in aged brains.

Finally, we examined the similarity and relatedness of
LRN-based link predictions with results from correlation-
based analysis. DNAm sites that are independent of gene
expression in LRNs showed less evidence of correlation with
gene expression than upstream and downstream DNAm sites
(Wilcoxon rank sum test; p-value = 0.0002), but upstream and
downstream DNAm sites showed similar levels of significance
(Supplementary Figure 5). Notably, H3K9ac peaks that are
independent of gene expression are more strongly correlated
with gene expression levels than upstream and downstream
H3K9ac peaks (Wilcoxon rank sum test; p-value = 1.0e-12)
(Supplementary Figure 5), despite their limited activity for
regulating gene transcription as suggested above. This indicates
that multi-omic integration can distinguish cause-and-effect
relations to a greater extent than traditional correlation-based
analysis.

Multi-omic Regulatory Networks Predict
Upstream Genes for Age-Related
Neuropathologies and Cognitive
Phenotypes
Transcriptome data allows us to understand genes differentially
expressed in aged brains with cognitive impairment, which
is difficult to achieve based on genetic data because the
genome is relatively stable across the lifespan. However, selecting
therapeutic targets based on the output of DEG analysis can be
challenging because DEGs may indeed be causally upstream of
a phenotype of interest (upstream), but in other cases, some
or all of those genes may be downstream of the phenotype
(downstream). A third possible explanation for observed gene
expression changes is that they are in fact independent of
the phenotype (independent), but synchronized to it through
the action of some third unmeasured latent variable that
jointly affects the phenotype and gene expression. Based on
the structures of the LRNs for DEG’s of each phenotype, we
identified genes which are upstream of cognition, CogDec,
β-amyloid and PHFtau-tangles, downstream of the phenotypes,
and independent of the phenotypes. Two hundred and eighty-
one genes (23% of DEGs), 272 genes (24% of DEGs), 280
genes (36% of DEGs), and 218 genes (42% of DEGs) are

estimated as upstream of cognition, CogDec, β-amyloid and
PHFtau-tangles, respectively, while the 37% to 58% of remaining
DEGs are classified as downstream of phenotypes (Figure 4A
and Supplementary Table 3). The relationships of genes with
phenotypes tended to be consistent across different phenotypes
(Figure 4B), suggesting LRNs robustly identified key genes
common for multiple AD-related phenotypes. This is expected
given the inter-correlation of the phenotypes.

To understand biological functions related to upstream genes
for AD-related phenotypes, we examined overlaps of upstream
genes with the collection of gene signatures from 651 RNA-
seq studies (Kuleshov et al., 2016) (Figure 4C). Thirty-eight
gene signatures from 24 RNA-seq studies depicted in the middle
layer of Figure 4C are enriched with upstream genes for
cognition, CogDec, or β-amyloid compared to downstream and
independent genes in DEGs for each phenotype (FDR < 0.05,
Supplementary Table 4). Of these, 13 studies are derived from
the brain- or neuron-related studies, such as gene signatures
from Huntington brains, hippocampus region of APP/PSEN1
transgenic mouse, and motor neurons with TDP43 knockdown.
As expected, these enriched gene signatures are associated with
gene ontology categories (Subramanian et al., 2005; Liberzon
et al., 2011) related to neuron and myelin systems (Figure 4C).
This suggests that the upstream genes represent the alterations of
neuronal activities.

Upstream Genes Are Enriched in GWAS
of Human General Cognition
To evaluate the prediction of upstream genes, we assessed
whether the GWAS genes associated with cognition or AD are
concentrated in genes predicted to be upstream of phenotypes.
For this assessment, we used genetic associations with clinical
AD diagnosis from the International Genomics of Alzheimer’s
Project (IGAP) (Lambert et al., 2013) and those from two
meta-analyses of GWAS for human general cognition (Sniekers
et al., 2017; Lee et al., 2018). Although two general cognition
GWASs potentially share part of participants through the UK
Biobank, we used these two recent GWASs to increase the
robustness and generality of results. The biological implications
based on primary genetic findings from these studies are
different: AD GWAS shows the contribution of immune-
related genes to clinical AD diagnosis whereas general cognition
GWASs indicates the critical roles of neuronal genes in
cognitive performance. These panels allow us to evaluate the
upstream genes from distinct biological perspectives. To compare
upstream genes with GWAS results, we assessed GWAS signals
in upstream genes based on a detailed spatial association
between eSNPs for upstream genes and GWAS signals in
those genes. Specifically, we assessed co-localization of eQTL
signals from ROSMAP data and GWAS signals of AD and
general cognition by the “coloc” algorithm (Wallace et al.,
2012). The coloc algorithm estimates posterior probabilities for
the model where eQTL signals are co-localized with GWAS
signal and the models where these signals are not co-localized.
Within the DEGs for any of four phenotypes, eQTL signals
of 9, 24, and 74 genes are co-localized with AD GWAS, and
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FIGURE 4 | Prediction of upstream genes for neuropathologies and cognitive measures. (A) Predicted relationships of DEGs to neuropathologies and cognitive
measures. An LRN was built for each DEG and for each neuropathology or cognitive measure, and then genes were classified as upstream, independent, or
downstream of a given phenotype, based on the direction of the edge between the mRNA node and the phenotype node. (B) Common upstream and downstream
genes across phenotypes. Pairwise overlaps among genes predicted as upstream, independent, and downstream of each phenotype were evaluated by
hypergeometric test. (C) Gene set enrichment for upstream genes. The enrichment of gene signatures from public RNA-seq studies with upstream genes was
assessed by hypergeometric test. The top 10 gene signatures significantly associated with the genes upstream of phenotype (FDR < 0.05) were depicted in the
middle layer. Gene signatures from the same tissue or cell type were displayed as one category. The thickness of edge corresponds to the fold enrichment. Gene
signatures for public RNA-seq studies were further annotated based on their enrichment of gene ontology (GO) terms. If a gene signature was significantly enriched
with a given GO term (Bonferroni corrected p-value < 0.05) and the overlapped genes contain at least one of upstream genes, an edge between the study name
and the most enriched GO term is depicted.

two general cognition GWASs, respectively (Supplementary
Table 5), and those genes are likely controlled by causal
SNPs in DLPFC. Interestingly, the co-localized gene sets from
two cognition GWAS are both significantly enriched with
the upstream genes for any of four phenotypes compared to
downstream or independent genes [Figure 5A; hypergeometric
test; p-value = 0.009 and 0.02 for Sniekers et al. (2017) and Lee
et al. (2018), respectively], but the gene set from AD GWAS
is not (p-value = 0.85). As expected, the co-localized genes
from two general cognition GWASs are overlapped significantly
(Supplementary Figure 6). Then, we further examined the
enrichment of upstream genes with 17 genes that are identified
in both studies and observed an increase in fold enrichment

(Figure 5A). We then broke down these associations into
each phenotype and found that the upstream genes for each
phenotype tend to enrich with the colocalized genes for general
cognition, in particular for CogDec (Figure 5A). The result
supports causal roles of upstream genes for cognitive processes.
The smaller overlaps of AD GWAS and predicted upstream
genes in DEGs is also suggested by a previous analysis of
the ROSMAP transcriptome that found the immune gene
signature enriched with AD GWAS was associated with age,
but not AD-phenotypes (Mostafavi et al., 2018). Conversely, as
both upstream genes and the primary findings from general
cognition GWASs are characterized by the involvement of
neuronal genes (Figure 4C), two complementary approaches
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FIGURE 5 | Enrichment of general cognition GWAS signals in upstream genes. (A) The enrichment of genetic associations in upstream genes based on eQTL
co-localized genes. The enrichment of genes showing co-localized eQTL and AD or general cognition GWASs in upstream genes was evaluated by hypergeometric
test. An asterisk indicates p-value < 0.05. (B) The posterior probability of co-localization for genes enriched in upstream genes. (C) Predicted relationships between
genes colocalized with general cognition GWASs and phenotypes in LRNs.

point to the coherent cellular component regarding cognitive
phenotypes.

Of the consensus colocalized genes in general cognition
GWASs that are overlapped with upstream genes, ten genes show
strong evidence of co-localization (posterior probability > 0.8)
(Figure 5B) in either study. Those genes are mostly predicted as
upstream of cognition or CogDec (Figure 5C), suggesting that
they are top candidates of genes affecting cognitive performance
possibly accompanied by the pathological burden. Particularly,
literature evidence suggests that STAU1 and SEMA3F play critical
roles in synaptic transmission and neural circuits formation
(Sahay et al., 2005; Lebeau et al., 2008). These results, showing
overlap with causal variants defined by large general cognition
GWASs, indicate that the multi-omic network framework is
likely to provide a novel approach to prioritize DEGs for further
validation experiments.

DISCUSSION

Overall, this method of predicting multi-omic networks provides
a detailed description of gene regulation across the genome in
aged brains and capitalizes on the original promise of omics
to improve our understanding of disease. Importantly, these
molecular regulations were inferred based on data from DLPFC
in older adults, thus this ensures these results describe molecular
events existing in a brain region relevant to cognition and
cognitive decline. The mathematical method by which we do this

reaches back to the genome for causal anchors and then flows
forward through epigenomes, gene expression to pathological
and clinical AD phenotypes. These predictions of cross-omics
interactions are likely to be accurate, not only because they
incorporate diverse sources of information, but also because
they are concurrent with biological knowledge on epigenetics
and causal information from a related phenotype. Specifically,
multiple rounds of validation, from the variety of genome
annotations, large-scale ChIP-seq compendia, general cognition
GWASs, and co-localization, all indicate the predicted multi-
omic networks accurately capture some aspects of biological
regulation.

Determining the downstream effects of epigenetic changes on
gene expression levels are one of the challenges in the study of the
epigenome. Despite its importance, computational approaches to
address this question have not been well studied yet (Gutierrez-
Arcelus et al., 2013). Our multi-omic integration predicts
epigenetic peaks driving gene expression and we successfully
show their prominent transcriptional capability based on the
location of peaks and TF binding capabilities (Figure 3E). These
results are the most extensive attempt to infer the consequence
of alterations of DNAm and H3K9ac. These predictions can be
supplied to recently developed Cas9 systems that can modify
epigenomes for further validation (Liu et al., 2016; Kwon et al.,
2017). The results from experimental validation can be used as
causal priors for reconstructing directed networks, which allows
us to improve the accuracy of our LRN estimation iteratively.
Our catalog of multi-omics LRNs provides the first hypothesis
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landscape of causal epigenome-transcriptome associations and
will help to boost functional understanding of epigenomes in
humans.

These upstream genes are enriched with neuronal signatures
driven by genetic or compound interventions (Figure 4C).
Of these interventions, knockout mutations of DNMT1 cause
demented phenotype in humans (Klein et al., 2011), inhibition
of class I HDACs regulates memory extinction (Gräff et al.,
2014), and treatment with tetrodotoxin impairs special memory
(Wesierska et al., 2005). Thus, our analysis is likely to capture
the genes affecting cognitive performance in broad situations,
which concur with the nature of the prospective design of
ROSMAP cohort that includes a range of mechanisms affecting
cognitive performance (Bennett et al., 2018). Among the
upstream genes, in particular, STAU1 showed strong evidence
of genetic association with general cognition (Figure 5B). This
protein is an RNA-binding protein playing roles in transporting
RNA granules along dendrite in neurons and maintaining
efficient synaptic transmission in hippocampal synapses (Lebeau
et al., 2008). In addition, STAU1 forms a protein complex
with TDP43, whose mutation is associated with frontotemporal
lobar degeneration and amyotrophic lateral sclerosis and this
complex regulates the sensitivity of neuronal cells to apoptosis
and DNA damage (Yu et al., 2012). TRIOBP is another
upstream gene supported by genetics (Figure 5B). TRIOBP is
a binding protein for TRIO, a guanine nucleotide exchange
factor (Seipel et al., 2001) and its mutations are associated
with hearing impairment (Shahin et al., 2006). Interestingly,
the dysfunction of TRIO causes mild intellectual disability
(Ba et al., 2016) and Rho GTPases regulated by TRIO are
involved in the processes of synaptic loss and β-amyloid
production (Schmidt and Debant, 2014). Another interesting
gene SEMA3F (Figure 5B), a secreted member of the semaphorin
III family, plays important roles in synaptic transmission and
neural circuits formation (Sahay et al., 2005). SEMA3F regulates
dendritic spine dynamics and hippocampal excitatory networks
application to cultured neurons and acute hippocampal slices,
respectively (Sahay et al., 2005; Demyanenko et al., 2014).
Interestingly, SEMA3A, a close member of SEMA3F in a
semaphorin III family, is associated with neuropathologies in
the hippocampus of AD patients (Good et al., 2004). These
findings support that the validity of our integrated computational
approach to screen genes that influence neuropathologies and
cognitive processes based on the posterior probability of an
outgoing edge from a mRNA node to a phenotype node in
the LRN.

The question often arises about the ability of causal inference
methods to recapitulate GWAS hits. We utilized a separate set
of subjects and show enrichment of GWAS hits for general
cognition, among genes predicted to be upstream of cognition.
Two general cognition GWASs do not specifically focus on older
adults, but some fractions of participants are likely from older
adults with preclinical AD. This might explain the enrichment
of general cognition GWAS signals in the genes upstream of
cognitive function, as well as common neuronal pathways shared
by various conditions with cognitive dysfunctions. The lack
of predictions that AD GWAS hits are upstream of cognition

should be viewed in the context of the effect of genetics on gene
expression in DLPFC. The expression levels of genes located
in the vicinity of the robustly validated AD variants are not
associated with cognitive decline or AD pathology in DLPFC, but
with age (Mostafavi et al., 2018). Because of this limited influence
of the known genetic architecture of AD on cognitive decline
overall and through gene expression, the absence of AD GWAS
enrichment in upstream genes is not surprising, as our prediction
of upstream genes assumed significant correlations between
genes and the phenotypes. We should note, however, that
we successfully identified genes affecting β-amyloid production
based on ROSMAP transcriptomes without using genetic
information (Mostafavi et al., 2018), indicating genes playing
critical roles in AD-phenotypes are not necessarily implicated
by genetics and cannot be discovered even by the recent meta-
GWAS (Lambert et al., 2013). One of those validated genes,
INPPL1, has an eQTL and associated epigenetic modifications
and thus was investigated with the LRN. Consistent with the
result from previous experimental validation, the LRN predicted
INPPL1 as upstream of β-amyloid1, which further supports the
accuracy of our prediction.

Our analysis focused on LRNs that model multi-layer
regulatory networks for a single gene. Although our LRN
model captured known biology regarding relationships between,
epigenomes, gene expression, and phenotypes, many indirect
relations should be included in the single gene LRN because
we omit the influence from other genes. Thus, in theory,
extending LRN to multi-gene multi-omic networks would
improve the accuracy of predictions, however, this requires
further development of efficient methods to search a huge
possible number of network structures comprising thousands
of nodes (Tasaki et al., 2015). Also, the accuracy of regulatory
networks and hence of predicted upstream genes should
improve with the addition of other omic data, obtained in
these same individuals. For instance, integrating microRNA
levels, DNA methylation at 5-hydroxymethylcytosine, or other
histone marks should lead to more accurate structure in
the LRNs, as would information on the activation state of
promoters, obtained via ATAC-seq. The inclusion of data from
non-Caucasian genetic backgrounds with varying minor allele
frequencies could also provide improved predictions. While
we provide extensive validation of the causal classification,
experimental tests of several predicted upstream genes with novel
relevance to cognitive decline will further test the validity of
these predictions, and potentially define the drivers of disease
mechanisms.
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